1 /* second CTRC functionality for GeForce cards */ 2 /* Author: 3 Rudolf Cornelissen 11/2002-9/2009 4 */ 5 6 #define MODULE_BIT 0x00020000 7 8 #include "nv_std.h" 9 10 /* 11 Enable/Disable interrupts. Just a wrapper around the 12 ioctl() to the kernel driver. 13 */ 14 status_t nv_crtc2_interrupt_enable(bool flag) 15 { 16 status_t result = B_OK; 17 nv_set_vblank_int svi; 18 19 if (si->ps.int_assigned) 20 { 21 /* set the magic number so the driver knows we're for real */ 22 svi.magic = NV_PRIVATE_DATA_MAGIC; 23 svi.crtc = 1; 24 svi.do_it = flag; 25 /* contact driver and get a pointer to the registers and shared data */ 26 result = ioctl(fd, NV_RUN_INTERRUPTS, &svi, sizeof(svi)); 27 } 28 29 return result; 30 } 31 32 /* doing general fail-safe default setup here */ 33 //fixme: this is a _very_ basic setup, and it's preliminary... 34 status_t nv_crtc2_update_fifo() 35 { 36 uint8 bytes_per_pixel = 1; 37 uint32 drain; 38 39 /* we are only using this on >>coldstarted<< cards which really need this */ 40 //fixme: re-enable or remove after general user confirmation of behaviour... 41 if (/*(si->settings.usebios) ||*/ (si->ps.card_type != NV11)) return B_OK; 42 43 /* enable access to secondary head */ 44 set_crtc_owner(1); 45 46 /* set CRTC FIFO low watermark according to memory drain */ 47 switch(si->dm.space) 48 { 49 case B_CMAP8: 50 bytes_per_pixel = 1; 51 break; 52 case B_RGB15_LITTLE: 53 case B_RGB16_LITTLE: 54 bytes_per_pixel = 2; 55 break; 56 case B_RGB24_LITTLE: 57 bytes_per_pixel = 3; 58 break; 59 case B_RGB32_LITTLE: 60 bytes_per_pixel = 4; 61 break; 62 } 63 /* fixme: 64 * - I should probably include the refreshrate as well; 65 * - and the memory clocking speed, core clocking speed, RAM buswidth.. */ 66 drain = si->dm.timing.h_display * si->dm.timing.v_display * bytes_per_pixel; 67 68 /* Doesn't work for other than 32bit space (yet?) */ 69 if (si->dm.space != B_RGB32_LITTLE) 70 { 71 /* BIOS defaults */ 72 CRTC2W(FIFO, 0x03); 73 CRTC2W(FIFO_LWM, 0x20); 74 LOG(4,("CRTC2: FIFO low-watermark set to $20, burst size 256 (BIOS defaults)\n")); 75 return B_OK; 76 } 77 78 if (drain > (((uint32)1280) * 1024 * 4)) 79 { 80 /* set CRTC FIFO burst size for 'smaller' bursts */ 81 CRTC2W(FIFO, 0x01); 82 /* Instruct CRTC to fetch new data 'earlier' */ 83 CRTC2W(FIFO_LWM, 0x40); 84 LOG(4,("CRTC2: FIFO low-watermark set to $40, burst size 64\n")); 85 } 86 else 87 { 88 if (drain > (((uint32)1024) * 768 * 4)) 89 { 90 /* BIOS default */ 91 CRTC2W(FIFO, 0x02); 92 /* Instruct CRTC to fetch new data 'earlier' */ 93 CRTC2W(FIFO_LWM, 0x40); 94 LOG(4,("CRTC2: FIFO low-watermark set to $40, burst size 128\n")); 95 } 96 else 97 { 98 /* BIOS defaults */ 99 CRTC2W(FIFO, 0x03); 100 CRTC2W(FIFO_LWM, 0x20); 101 LOG(4,("CRTC2: FIFO low-watermark set to $20, burst size 256 (BIOS defaults)\n")); 102 } 103 } 104 105 return B_OK; 106 } 107 108 /* Adjust passed parameters to a valid mode line */ 109 status_t nv_crtc2_validate_timing( 110 uint16 *hd_e,uint16 *hs_s,uint16 *hs_e,uint16 *ht, 111 uint16 *vd_e,uint16 *vs_s,uint16 *vs_e,uint16 *vt 112 ) 113 { 114 /* horizontal */ 115 /* make all parameters multiples of 8 */ 116 *hd_e &= 0xfff8; 117 *hs_s &= 0xfff8; 118 *hs_e &= 0xfff8; 119 *ht &= 0xfff8; 120 121 /* confine to required number of bits, taking logic into account */ 122 if (*hd_e > ((0x01ff - 2) << 3)) *hd_e = ((0x01ff - 2) << 3); 123 if (*hs_s > ((0x01ff - 1) << 3)) *hs_s = ((0x01ff - 1) << 3); 124 if (*hs_e > ( 0x01ff << 3)) *hs_e = ( 0x01ff << 3); 125 if (*ht > ((0x01ff + 5) << 3)) *ht = ((0x01ff + 5) << 3); 126 127 /* NOTE: keep horizontal timing at multiples of 8! */ 128 /* confine to a reasonable width */ 129 if (*hd_e < 640) *hd_e = 640; 130 if (*hd_e > 2048) *hd_e = 2048; 131 132 /* if hor. total does not leave room for a sensible sync pulse, increase it! */ 133 if (*ht < (*hd_e + 80)) *ht = (*hd_e + 80); 134 135 /* if hor. total does not adhere to max. blanking pulse width, decrease it! */ 136 if (*ht > (*hd_e + 0x3f8)) *ht = (*hd_e + 0x3f8); 137 138 /* make sure sync pulse is not during display */ 139 if (*hs_e > (*ht - 8)) *hs_e = (*ht - 8); 140 if (*hs_s < (*hd_e + 8)) *hs_s = (*hd_e + 8); 141 142 /* correct sync pulse if it is too long: 143 * there are only 5 bits available to save this in the card registers! */ 144 if (*hs_e > (*hs_s + 0xf8)) *hs_e = (*hs_s + 0xf8); 145 146 /*vertical*/ 147 /* confine to required number of bits, taking logic into account */ 148 //fixme if needed: on GeForce cards there are 12 instead of 11 bits... 149 if (*vd_e > (0x7ff - 2)) *vd_e = (0x7ff - 2); 150 if (*vs_s > (0x7ff - 1)) *vs_s = (0x7ff - 1); 151 if (*vs_e > 0x7ff ) *vs_e = 0x7ff ; 152 if (*vt > (0x7ff + 2)) *vt = (0x7ff + 2); 153 154 /* confine to a reasonable height */ 155 if (*vd_e < 480) *vd_e = 480; 156 if (*vd_e > 1536) *vd_e = 1536; 157 158 /*if vertical total does not leave room for a sync pulse, increase it!*/ 159 if (*vt < (*vd_e + 3)) *vt = (*vd_e + 3); 160 161 /* if vert. total does not adhere to max. blanking pulse width, decrease it! */ 162 if (*vt > (*vd_e + 0xff)) *vt = (*vd_e + 0xff); 163 164 /* make sure sync pulse is not during display */ 165 if (*vs_e > (*vt - 1)) *vs_e = (*vt - 1); 166 if (*vs_s < (*vd_e + 1)) *vs_s = (*vd_e + 1); 167 168 /* correct sync pulse if it is too long: 169 * there are only 4 bits available to save this in the card registers! */ 170 if (*vs_e > (*vs_s + 0x0f)) *vs_e = (*vs_s + 0x0f); 171 172 return B_OK; 173 } 174 175 /*set a mode line - inputs are in pixels*/ 176 status_t nv_crtc2_set_timing(display_mode target) 177 { 178 uint8 temp; 179 180 uint32 htotal; /*total horizontal total VCLKs*/ 181 uint32 hdisp_e; /*end of horizontal display (begins at 0)*/ 182 uint32 hsync_s; /*begin of horizontal sync pulse*/ 183 uint32 hsync_e; /*end of horizontal sync pulse*/ 184 uint32 hblnk_s; /*begin horizontal blanking*/ 185 uint32 hblnk_e; /*end horizontal blanking*/ 186 187 uint32 vtotal; /*total vertical total scanlines*/ 188 uint32 vdisp_e; /*end of vertical display*/ 189 uint32 vsync_s; /*begin of vertical sync pulse*/ 190 uint32 vsync_e; /*end of vertical sync pulse*/ 191 uint32 vblnk_s; /*begin vertical blanking*/ 192 uint32 vblnk_e; /*end vertical blanking*/ 193 194 uint32 linecomp; /*split screen and vdisp_e interrupt*/ 195 196 LOG(4,("CRTC2: setting timing\n")); 197 198 /* setup tuned internal modeline for flatpanel if connected and active */ 199 /* notes: 200 * - the CRTC modeline must end earlier than the panel modeline to keep correct 201 * sync going; 202 * - if the CRTC modeline ends too soon, pixelnoise will occur in 8 (or so) pixel 203 * wide horizontal stripes. This can be observed earliest on fullscreen overlay, 204 * and if it gets worse, also normal desktop output will suffer. The stripes 205 * are mainly visible at the left of the screen, over the entire screen height. */ 206 if (si->ps.monitors & CRTC2_TMDS) 207 { 208 LOG(2,("CRTC2: DFP active: tuning modeline\n")); 209 210 /* horizontal timing */ 211 target.timing.h_sync_start = 212 ((uint16)((si->ps.p2_timing.h_sync_start / ((float)si->ps.p2_timing.h_display)) * 213 target.timing.h_display)) & 0xfff8; 214 215 target.timing.h_sync_end = 216 ((uint16)((si->ps.p2_timing.h_sync_end / ((float)si->ps.p2_timing.h_display)) * 217 target.timing.h_display)) & 0xfff8; 218 219 target.timing.h_total = 220 (((uint16)((si->ps.p2_timing.h_total / ((float)si->ps.p2_timing.h_display)) * 221 target.timing.h_display)) & 0xfff8) - 8; 222 223 /* in native mode the CRTC needs some extra time to keep synced correctly; 224 * OTOH the overlay unit distorts if we reserve too much time! */ 225 if (target.timing.h_display == si->ps.p2_timing.h_display) 226 { 227 /* NV11 timing has different constraints than later cards */ 228 if (si->ps.card_type == NV11) 229 target.timing.h_total -= 56; 230 else 231 /* confirmed NV34 with 1680x1050 panel */ 232 target.timing.h_total -= 32; 233 } 234 235 /* assure sync pulse is at the correct timing position */ 236 if (target.timing.h_sync_start == target.timing.h_display) 237 target.timing.h_sync_start += 8; 238 if (target.timing.h_sync_end == target.timing.h_total) 239 target.timing.h_sync_end -= 8; 240 /* assure we (still) have a sync pulse */ 241 if (target.timing.h_sync_start == target.timing.h_sync_end) { 242 if (target.timing.h_sync_end < (target.timing.h_total - 8)) { 243 target.timing.h_sync_end += 8; 244 } else { 245 if (target.timing.h_sync_start > (target.timing.h_display + 8)) { 246 target.timing.h_sync_start -= 8; 247 } else { 248 LOG(2,("CRTC2: tuning modeline, not enough room for Hsync pulse, forcing it anyway..\n")); 249 target.timing.h_sync_start -= 8; 250 } 251 } 252 } 253 254 /* vertical timing */ 255 target.timing.v_sync_start = 256 ((uint16)((si->ps.p2_timing.v_sync_start / ((float)si->ps.p2_timing.v_display)) * 257 target.timing.v_display)); 258 259 target.timing.v_sync_end = 260 ((uint16)((si->ps.p2_timing.v_sync_end / ((float)si->ps.p2_timing.v_display)) * 261 target.timing.v_display)); 262 263 target.timing.v_total = 264 ((uint16)((si->ps.p2_timing.v_total / ((float)si->ps.p2_timing.v_display)) * 265 target.timing.v_display)) - 1; 266 267 /* assure sync pulse is at the correct timing position */ 268 if (target.timing.v_sync_start == target.timing.v_display) 269 target.timing.v_sync_start += 1; 270 if (target.timing.v_sync_end == target.timing.v_total) 271 target.timing.v_sync_end -= 1; 272 /* assure we (still) have a sync pulse */ 273 if (target.timing.v_sync_start == target.timing.v_sync_end) { 274 if (target.timing.v_sync_end < (target.timing.v_total - 1)) { 275 target.timing.v_sync_end += 1; 276 } else { 277 if (target.timing.v_sync_start > (target.timing.v_display + 1)) { 278 target.timing.v_sync_start -= 1; 279 } else { 280 LOG(2,("CRTC2: tuning modeline, not enough room for Vsync pulse, forcing it anyway..\n")); 281 target.timing.v_sync_start -= 1; 282 } 283 } 284 } 285 286 /* disable GPU scaling testmode so automatic scaling will be done */ 287 DAC2W(FP_DEBUG1, 0); 288 } 289 290 /* Modify parameters as required by standard VGA */ 291 htotal = ((target.timing.h_total >> 3) - 5); 292 hdisp_e = ((target.timing.h_display >> 3) - 1); 293 hblnk_s = hdisp_e; 294 hblnk_e = (htotal + 4); 295 hsync_s = (target.timing.h_sync_start >> 3); 296 hsync_e = (target.timing.h_sync_end >> 3); 297 298 vtotal = target.timing.v_total - 2; 299 vdisp_e = target.timing.v_display - 1; 300 vblnk_s = vdisp_e; 301 vblnk_e = (vtotal + 1); 302 vsync_s = target.timing.v_sync_start; 303 vsync_e = target.timing.v_sync_end; 304 305 /* prevent memory adress counter from being reset (linecomp may not occur) */ 306 linecomp = target.timing.v_display; 307 308 /* enable access to secondary head */ 309 set_crtc_owner(1); 310 311 /* Note for laptop and DVI flatpanels: 312 * CRTC timing has a seperate set of registers from flatpanel timing. 313 * The flatpanel timing registers have scaling registers that are used to match 314 * these two modelines. */ 315 { 316 LOG(4,("CRTC2: Setting full timing...\n")); 317 318 /* log the mode that will be set */ 319 LOG(2,("CRTC2:\n\tHTOT:%x\n\tHDISPEND:%x\n\tHBLNKS:%x\n\tHBLNKE:%x\n\tHSYNCS:%x\n\tHSYNCE:%x\n\t",htotal,hdisp_e,hblnk_s,hblnk_e,hsync_s,hsync_e)); 320 LOG(2,("VTOT:%x\n\tVDISPEND:%x\n\tVBLNKS:%x\n\tVBLNKE:%x\n\tVSYNCS:%x\n\tVSYNCE:%x\n",vtotal,vdisp_e,vblnk_s,vblnk_e,vsync_s,vsync_e)); 321 322 /* actually program the card! */ 323 /* unlock CRTC registers at index 0-7 */ 324 CRTC2W(VSYNCE, (CRTC2R(VSYNCE) & 0x7f)); 325 /* horizontal standard VGA regs */ 326 CRTC2W(HTOTAL, (htotal & 0xff)); 327 CRTC2W(HDISPE, (hdisp_e & 0xff)); 328 CRTC2W(HBLANKS, (hblnk_s & 0xff)); 329 /* also unlock vertical retrace registers in advance */ 330 CRTC2W(HBLANKE, ((hblnk_e & 0x1f) | 0x80)); 331 CRTC2W(HSYNCS, (hsync_s & 0xff)); 332 CRTC2W(HSYNCE, ((hsync_e & 0x1f) | ((hblnk_e & 0x20) << 2))); 333 334 /* vertical standard VGA regs */ 335 CRTC2W(VTOTAL, (vtotal & 0xff)); 336 CRTC2W(OVERFLOW, 337 ( 338 ((vtotal & 0x100) >> (8 - 0)) | ((vtotal & 0x200) >> (9 - 5)) | 339 ((vdisp_e & 0x100) >> (8 - 1)) | ((vdisp_e & 0x200) >> (9 - 6)) | 340 ((vsync_s & 0x100) >> (8 - 2)) | ((vsync_s & 0x200) >> (9 - 7)) | 341 ((vblnk_s & 0x100) >> (8 - 3)) | ((linecomp & 0x100) >> (8 - 4)) 342 )); 343 CRTC2W(PRROWSCN, 0x00); /* not used */ 344 CRTC2W(MAXSCLIN, (((vblnk_s & 0x200) >> (9 - 5)) | ((linecomp & 0x200) >> (9 - 6)))); 345 CRTC2W(VSYNCS, (vsync_s & 0xff)); 346 CRTC2W(VSYNCE, ((CRTC2R(VSYNCE) & 0xf0) | (vsync_e & 0x0f))); 347 CRTC2W(VDISPE, (vdisp_e & 0xff)); 348 CRTC2W(VBLANKS, (vblnk_s & 0xff)); 349 CRTC2W(VBLANKE, (vblnk_e & 0xff)); 350 CRTC2W(LINECOMP, (linecomp & 0xff)); 351 352 /* horizontal extended regs */ 353 //fixme: we reset bit4. is this correct?? 354 CRTC2W(HEB, (CRTC2R(HEB) & 0xe0) | 355 ( 356 ((htotal & 0x100) >> (8 - 0)) | 357 ((hdisp_e & 0x100) >> (8 - 1)) | 358 ((hblnk_s & 0x100) >> (8 - 2)) | 359 ((hsync_s & 0x100) >> (8 - 3)) 360 )); 361 362 /* (mostly) vertical extended regs */ 363 CRTC2W(LSR, 364 ( 365 ((vtotal & 0x400) >> (10 - 0)) | 366 ((vdisp_e & 0x400) >> (10 - 1)) | 367 ((vsync_s & 0x400) >> (10 - 2)) | 368 ((vblnk_s & 0x400) >> (10 - 3)) | 369 ((hblnk_e & 0x040) >> (6 - 4)) 370 //fixme: we still miss one linecomp bit!?! is this it?? 371 //| ((linecomp & 0x400) >> 3) 372 )); 373 374 /* more vertical extended regs */ 375 CRTC2W(EXTRA, 376 ( 377 ((vtotal & 0x800) >> (11 - 0)) | 378 ((vdisp_e & 0x800) >> (11 - 2)) | 379 ((vsync_s & 0x800) >> (11 - 4)) | 380 ((vblnk_s & 0x800) >> (11 - 6)) 381 //fixme: do we miss another linecomp bit!?! 382 )); 383 384 /* setup 'large screen' mode */ 385 if (target.timing.h_display >= 1280) 386 CRTC2W(REPAINT1, (CRTC2R(REPAINT1) & 0xfb)); 387 else 388 CRTC2W(REPAINT1, (CRTC2R(REPAINT1) | 0x04)); 389 390 /* setup HSYNC & VSYNC polarity */ 391 LOG(2,("CRTC2: sync polarity: ")); 392 temp = NV_REG8(NV8_MISCR); 393 if (target.timing.flags & B_POSITIVE_HSYNC) 394 { 395 LOG(2,("H:pos ")); 396 temp &= ~0x40; 397 } 398 else 399 { 400 LOG(2,("H:neg ")); 401 temp |= 0x40; 402 } 403 if (target.timing.flags & B_POSITIVE_VSYNC) 404 { 405 LOG(2,("V:pos ")); 406 temp &= ~0x80; 407 } 408 else 409 { 410 LOG(2,("V:neg ")); 411 temp |= 0x80; 412 } 413 NV_REG8(NV8_MISCW) = temp; 414 415 LOG(2,(", MISC reg readback: $%02x\n", NV_REG8(NV8_MISCR))); 416 } 417 418 /* always disable interlaced operation */ 419 /* (interlace is supported on upto and including NV10, NV15, and NV30 and up) */ 420 CRTC2W(INTERLACE, 0xff); 421 422 /* disable CRTC slaved mode unless a panel is in use */ 423 // fixme: this kills TVout when it was in use... 424 if (!(si->ps.monitors & CRTC2_TMDS)) CRTC2W(PIXEL, (CRTC2R(PIXEL) & 0x7f)); 425 426 /* setup flatpanel if connected and active */ 427 if (si->ps.monitors & CRTC2_TMDS) 428 { 429 uint32 iscale_x, iscale_y; 430 431 /* calculate inverse scaling factors used by hardware in 20.12 format */ 432 iscale_x = (((1 << 12) * target.timing.h_display) / si->ps.p2_timing.h_display); 433 iscale_y = (((1 << 12) * target.timing.v_display) / si->ps.p2_timing.v_display); 434 435 /* unblock flatpanel timing programming (or something like that..) */ 436 CRTC2W(FP_HTIMING, 0); 437 CRTC2W(FP_VTIMING, 0); 438 LOG(2,("CRTC2: FP_HTIMING reg readback: $%02x\n", CRTC2R(FP_HTIMING))); 439 LOG(2,("CRTC2: FP_VTIMING reg readback: $%02x\n", CRTC2R(FP_VTIMING))); 440 441 /* enable full width visibility on flatpanel */ 442 DAC2W(FP_HVALID_S, 0); 443 DAC2W(FP_HVALID_E, (si->ps.p2_timing.h_display - 1)); 444 /* enable full height visibility on flatpanel */ 445 DAC2W(FP_VVALID_S, 0); 446 DAC2W(FP_VVALID_E, (si->ps.p2_timing.v_display - 1)); 447 448 /* nVidia cards support upscaling except on ??? */ 449 /* NV11 cards can upscale after all! */ 450 if (0)//si->ps.card_type == NV11) 451 { 452 /* disable last fetched line limiting */ 453 DAC2W(FP_DEBUG2, 0x00000000); 454 /* inform panel to scale if needed */ 455 if ((iscale_x != (1 << 12)) || (iscale_y != (1 << 12))) 456 { 457 LOG(2,("CRTC2: DFP needs to do scaling\n")); 458 DAC2W(FP_TG_CTRL, (DAC2R(FP_TG_CTRL) | 0x00000100)); 459 } 460 else 461 { 462 LOG(2,("CRTC2: no scaling for DFP needed\n")); 463 DAC2W(FP_TG_CTRL, (DAC2R(FP_TG_CTRL) & 0xfffffeff)); 464 } 465 } 466 else 467 { 468 float dm_aspect; 469 470 LOG(2,("CRTC2: GPU scales for DFP if needed\n")); 471 472 /* calculate display mode aspect */ 473 dm_aspect = (target.timing.h_display / ((float)target.timing.v_display)); 474 475 /* limit last fetched line if vertical scaling is done */ 476 if (iscale_y != (1 << 12)) 477 DAC2W(FP_DEBUG2, ((1 << 28) | ((target.timing.v_display - 1) << 16))); 478 else 479 DAC2W(FP_DEBUG2, 0x00000000); 480 481 /* inform panel not to scale */ 482 DAC2W(FP_TG_CTRL, (DAC2R(FP_TG_CTRL) & 0xfffffeff)); 483 484 /* GPU scaling is automatically setup by hardware, so only modify this 485 * scalingfactor for non 4:3 (1.33) aspect panels; 486 * let's consider 1280x1024 1:33 aspect (it's 1.25 aspect actually!) */ 487 488 /* correct for widescreen panels relative to mode... 489 * (so if panel is more widescreen than mode being set) */ 490 /* BTW: known widescreen panels: 491 * 1280 x 800 (1.60), 492 * 1440 x 900 (1.60), 493 * 1680 x 1050 (1.60), 494 * 1920 x 1200 (1.60). */ 495 /* known 4:3 aspect non-standard resolution panels: 496 * 1400 x 1050 (1.33). */ 497 /* NOTE: 498 * allow 0.10 difference so 1280x1024 panels will be used fullscreen! */ 499 if ((iscale_x != (1 << 12)) && (si->ps.crtc2_screen.aspect > (dm_aspect + 0.10))) 500 { 501 uint16 diff; 502 503 LOG(2,("CRTC2: (relative) widescreen panel: tuning horizontal scaling\n")); 504 505 /* X-scaling should be the same as Y-scaling */ 506 iscale_x = iscale_y; 507 /* enable testmode (b12) and program new X-scaling factor */ 508 DAC2W(FP_DEBUG1, (((iscale_x >> 1) & 0x00000fff) | (1 << 12))); 509 /* center/cut-off left and right side of screen */ 510 diff = ((si->ps.p2_timing.h_display - 511 ((target.timing.h_display * (1 << 12)) / iscale_x)) 512 / 2); 513 DAC2W(FP_HVALID_S, diff); 514 DAC2W(FP_HVALID_E, ((si->ps.p2_timing.h_display - diff) - 1)); 515 } 516 /* correct for portrait panels... */ 517 /* NOTE: 518 * allow 0.10 difference so 1280x1024 panels will be used fullscreen! */ 519 if ((iscale_y != (1 << 12)) && (si->ps.crtc2_screen.aspect < (dm_aspect - 0.10))) 520 { 521 LOG(2,("CRTC2: (relative) portrait panel: should tune vertical scaling\n")); 522 /* fixme: implement if this kind of portrait panels exist on nVidia... */ 523 } 524 } 525 526 /* do some logging.. */ 527 LOG(2,("CRTC2: FP_HVALID_S reg readback: $%08x\n", DAC2R(FP_HVALID_S))); 528 LOG(2,("CRTC2: FP_HVALID_E reg readback: $%08x\n", DAC2R(FP_HVALID_E))); 529 LOG(2,("CRTC2: FP_VVALID_S reg readback: $%08x\n", DAC2R(FP_VVALID_S))); 530 LOG(2,("CRTC2: FP_VVALID_E reg readback: $%08x\n", DAC2R(FP_VVALID_E))); 531 LOG(2,("CRTC2: FP_DEBUG0 reg readback: $%08x\n", DAC2R(FP_DEBUG0))); 532 LOG(2,("CRTC2: FP_DEBUG1 reg readback: $%08x\n", DAC2R(FP_DEBUG1))); 533 LOG(2,("CRTC2: FP_DEBUG2 reg readback: $%08x\n", DAC2R(FP_DEBUG2))); 534 LOG(2,("CRTC2: FP_DEBUG3 reg readback: $%08x\n", DAC2R(FP_DEBUG3))); 535 LOG(2,("CRTC2: FP_TG_CTRL reg readback: $%08x\n", DAC2R(FP_TG_CTRL))); 536 } 537 538 return B_OK; 539 } 540 541 status_t nv_crtc2_depth(int mode) 542 { 543 uint8 viddelay = 0; 544 uint32 genctrl = 0; 545 546 /* set VCLK scaling */ 547 switch(mode) 548 { 549 case BPP8: 550 viddelay = 0x01; 551 /* genctrl b4 & b5 reset: 'direct mode' */ 552 genctrl = 0x00101100; 553 break; 554 case BPP15: 555 viddelay = 0x02; 556 /* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */ 557 genctrl = 0x00100130; 558 break; 559 case BPP16: 560 viddelay = 0x02; 561 /* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */ 562 genctrl = 0x00101130; 563 break; 564 case BPP24: 565 viddelay = 0x03; 566 /* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */ 567 genctrl = 0x00100130; 568 break; 569 case BPP32: 570 viddelay = 0x03; 571 /* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */ 572 genctrl = 0x00101130; 573 break; 574 } 575 /* enable access to secondary head */ 576 set_crtc_owner(1); 577 578 CRTC2W(PIXEL, ((CRTC2R(PIXEL) & 0xfc) | viddelay)); 579 DAC2W(GENCTRL, genctrl); 580 581 return B_OK; 582 } 583 584 status_t nv_crtc2_dpms(bool display, bool h, bool v, bool do_panel) 585 { 586 uint8 temp; 587 char msg[100]; 588 589 sprintf(msg, "CRTC2: setting DPMS: "); 590 591 /* enable access to secondary head */ 592 set_crtc_owner(1); 593 594 /* start synchronous reset: required before turning screen off! */ 595 SEQW(RESET, 0x01); 596 597 temp = SEQR(CLKMODE); 598 if (display) 599 { 600 /* turn screen on */ 601 SEQW(CLKMODE, (temp & ~0x20)); 602 603 /* end synchronous reset because display should be enabled */ 604 SEQW(RESET, 0x03); 605 606 if (do_panel && (si->ps.monitors & CRTC2_TMDS)) 607 { 608 if (!si->ps.laptop) 609 { 610 /* restore original panelsync and panel-enable */ 611 uint32 panelsync = 0x00000000; 612 if(si->ps.p2_timing.flags & B_POSITIVE_VSYNC) panelsync |= 0x00000001; 613 if(si->ps.p2_timing.flags & B_POSITIVE_HSYNC) panelsync |= 0x00000010; 614 /* display enable polarity (not an official flag) */ 615 if(si->ps.p2_timing.flags & B_BLANK_PEDESTAL) panelsync |= 0x10000000; 616 DAC2W(FP_TG_CTRL, ((DAC2R(FP_TG_CTRL) & 0xcfffffcc) | panelsync)); 617 618 //fixme?: looks like we don't need this after all: 619 /* powerup both LVDS (laptop panellink) and TMDS (DVI panellink) 620 * internal transmitters... */ 621 /* note: 622 * the powerbits in this register are hardwired to the DVI connectors, 623 * instead of to the DACs! (confirmed NV34) */ 624 //fixme... 625 //DAC2W(FP_DEBUG0, (DAC2R(FP_DEBUG0) & 0xcfffffff)); 626 /* ... and powerup external TMDS transmitter if it exists */ 627 /* (confirmed OK on NV28 and NV34) */ 628 //CRTC2W(0x59, (CRTC2R(0x59) | 0x01)); 629 630 sprintf(msg, "%s(panel-)", msg); 631 } 632 else 633 { 634 //fixme: see if LVDS head can be determined with two panels there... 635 if (!(si->ps.monitors & CRTC1_TMDS) && (si->ps.card_type != NV11)) 636 { 637 /* b2 = 0 = enable laptop panel backlight */ 638 /* note: this seems to be a write-only register. */ 639 NV_REG32(NV32_LVDS_PWR) = 0x00000003; 640 641 sprintf(msg, "%s(panel-)", msg); 642 } 643 } 644 } 645 646 sprintf(msg, "%sdisplay on, ", msg); 647 } 648 else 649 { 650 /* turn screen off */ 651 SEQW(CLKMODE, (temp | 0x20)); 652 653 if (do_panel && (si->ps.monitors & CRTC2_TMDS)) 654 { 655 if (!si->ps.laptop) 656 { 657 /* shutoff panelsync and disable panel */ 658 DAC2W(FP_TG_CTRL, ((DAC2R(FP_TG_CTRL) & 0xcfffffcc) | 0x20000022)); 659 660 //fixme?: looks like we don't need this after all: 661 /* powerdown both LVDS (laptop panellink) and TMDS (DVI panellink) 662 * internal transmitters... */ 663 /* note: 664 * the powerbits in this register are hardwired to the DVI connectors, 665 * instead of to the DACs! (confirmed NV34) */ 666 //fixme... 667 //DAC2W(FP_DEBUG0, (DAC2R(FP_DEBUG0) | 0x30000000)); 668 /* ... and powerdown external TMDS transmitter if it exists */ 669 /* (confirmed OK on NV28 and NV34) */ 670 //CRTC2W(0x59, (CRTC2R(0x59) & 0xfe)); 671 672 sprintf(msg, "%s(panel-)", msg); 673 } 674 else 675 { 676 //fixme: see if LVDS head can be determined with two panels there... 677 if (!(si->ps.monitors & CRTC1_TMDS) && (si->ps.card_type != NV11)) 678 { 679 /* b2 = 1 = disable laptop panel backlight */ 680 /* note: this seems to be a write-only register. */ 681 NV_REG32(NV32_LVDS_PWR) = 0x00000007; 682 683 sprintf(msg, "%s(panel-)", msg); 684 } 685 } 686 } 687 688 sprintf(msg, "%sdisplay off, ", msg); 689 } 690 691 if (h) 692 { 693 CRTC2W(REPAINT1, (CRTC2R(REPAINT1) & 0x7f)); 694 sprintf(msg, "%shsync enabled, ", msg); 695 } 696 else 697 { 698 CRTC2W(REPAINT1, (CRTC2R(REPAINT1) | 0x80)); 699 sprintf(msg, "%shsync disabled, ", msg); 700 } 701 if (v) 702 { 703 CRTC2W(REPAINT1, (CRTC2R(REPAINT1) & 0xbf)); 704 sprintf(msg, "%svsync enabled\n", msg); 705 } 706 else 707 { 708 CRTC2W(REPAINT1, (CRTC2R(REPAINT1) | 0x40)); 709 sprintf(msg, "%svsync disabled\n", msg); 710 } 711 712 LOG(4, (msg)); 713 714 return B_OK; 715 } 716 717 status_t nv_crtc2_set_display_pitch() 718 { 719 uint32 offset; 720 721 LOG(4,("CRTC2: setting card pitch (offset between lines)\n")); 722 723 /* figure out offset value hardware needs */ 724 offset = si->fbc.bytes_per_row / 8; 725 726 LOG(2,("CRTC2: offset register set to: $%04x\n", offset)); 727 728 /* enable access to secondary head */ 729 set_crtc_owner(1); 730 731 /* program the card */ 732 CRTC2W(PITCHL, (offset & 0x00ff)); 733 CRTC2W(REPAINT0, ((CRTC2R(REPAINT0) & 0x1f) | ((offset & 0x0700) >> 3))); 734 735 return B_OK; 736 } 737 738 status_t nv_crtc2_set_display_start(uint32 startadd,uint8 bpp) 739 { 740 uint32 timeout = 0; 741 742 LOG(4,("CRTC2: setting card RAM to be displayed bpp %d\n", bpp)); 743 744 LOG(2,("CRTC2: startadd: $%08x\n", startadd)); 745 LOG(2,("CRTC2: frameRAM: $%08x\n", si->framebuffer)); 746 LOG(2,("CRTC2: framebuffer: $%08x\n", si->fbc.frame_buffer)); 747 748 /* we might have no retraces during setmode! */ 749 /* wait 25mS max. for retrace to occur (refresh > 40Hz) */ 750 while (((NV_REG32(NV32_RASTER2) & 0x000007ff) < si->dm.timing.v_display) && 751 (timeout < (25000/10))) 752 { 753 /* don't snooze much longer or retrace might get missed! */ 754 snooze(10); 755 timeout++; 756 } 757 758 /* enable access to secondary head */ 759 set_crtc_owner(1); 760 761 /* upto 4Gb RAM adressing: must be used on NV10 and later! */ 762 /* NOTE: 763 * While this register also exists on pre-NV10 cards, it will 764 * wrap-around at 16Mb boundaries!! */ 765 766 /* 30bit adress in 32bit words */ 767 NV_REG32(NV32_NV10FB2STADD32) = (startadd & 0xfffffffc); 768 769 /* set byte adress: (b0 - 1) */ 770 ATB2W(HORPIXPAN, ((startadd & 0x00000003) << 1)); 771 772 return B_OK; 773 } 774 775 status_t nv_crtc2_cursor_init() 776 { 777 int i; 778 vuint32 * fb; 779 /* cursor bitmap will be stored at the start of the framebuffer */ 780 const uint32 curadd = 0; 781 782 /* enable access to secondary head */ 783 set_crtc_owner(1); 784 785 /* set cursor bitmap adress ... */ 786 if (si->ps.laptop) 787 { 788 /* must be used this way on pre-NV10 and on all 'Go' cards! */ 789 790 /* cursorbitmap must start on 2Kbyte boundary: */ 791 /* set adress bit11-16, and set 'no doublescan' (registerbit 1 = 0) */ 792 CRTC2W(CURCTL0, ((curadd & 0x0001f800) >> 9)); 793 /* set adress bit17-23, and set graphics mode cursor(?) (registerbit 7 = 1) */ 794 CRTC2W(CURCTL1, (((curadd & 0x00fe0000) >> 17) | 0x80)); 795 /* set adress bit24-31 */ 796 CRTC2W(CURCTL2, ((curadd & 0xff000000) >> 24)); 797 } 798 else 799 { 800 /* upto 4Gb RAM adressing: 801 * can be used on NV10 and later (except for 'Go' cards)! */ 802 /* NOTE: 803 * This register does not exist on pre-NV10 and 'Go' cards. */ 804 805 /* cursorbitmap must still start on 2Kbyte boundary: */ 806 NV_REG32(NV32_NV10CUR2ADD32) = (curadd & 0xfffff800); 807 } 808 809 /* set cursor colour: not needed because of direct nature of cursor bitmap. */ 810 811 /*clear cursor*/ 812 fb = (vuint32 *) si->framebuffer + curadd; 813 for (i=0;i<(2048/4);i++) 814 { 815 fb[i]=0; 816 } 817 818 /* select 32x32 pixel, 16bit color cursorbitmap, no doublescan */ 819 NV_REG32(NV32_2CURCONF) = 0x02000100; 820 821 /* activate hardware-sync between cursor updates and vertical retrace */ 822 DAC2W(NV10_CURSYNC, (DAC2R(NV10_CURSYNC) | 0x02000000)); 823 824 /* activate hardware cursor */ 825 nv_crtc2_cursor_show(); 826 827 return B_OK; 828 } 829 830 status_t nv_crtc2_cursor_show() 831 { 832 LOG(4,("CRTC2: enabling cursor\n")); 833 834 /* enable access to secondary head */ 835 set_crtc_owner(1); 836 837 /* b0 = 1 enables cursor */ 838 CRTC2W(CURCTL0, (CRTC2R(CURCTL0) | 0x01)); 839 840 /* workaround for hardware bug confirmed existing on NV43: 841 * Cursor visibility is not updated without a position update if its hardware 842 * retrace sync is enabled. */ 843 if (si->ps.card_arch == NV40A) DAC2W(CURPOS, (DAC2R(CURPOS))); 844 845 return B_OK; 846 } 847 848 status_t nv_crtc2_cursor_hide() 849 { 850 LOG(4,("CRTC2: disabling cursor\n")); 851 852 /* enable access to secondary head */ 853 set_crtc_owner(1); 854 855 /* b0 = 0 disables cursor */ 856 CRTC2W(CURCTL0, (CRTC2R(CURCTL0) & 0xfe)); 857 858 /* workaround for hardware bug confirmed existing on NV43: 859 * Cursor visibility is not updated without a position update if its hardware 860 * retrace sync is enabled. */ 861 if (si->ps.card_arch == NV40A) DAC2W(CURPOS, (DAC2R(CURPOS))); 862 863 return B_OK; 864 } 865 866 /*set up cursor shape*/ 867 status_t nv_crtc2_cursor_define(uint8* andMask,uint8* xorMask) 868 { 869 int x, y; 870 uint8 b; 871 vuint16 *cursor; 872 uint16 pixel; 873 874 /* get a pointer to the cursor */ 875 cursor = (vuint16*) si->framebuffer; 876 877 /* draw the cursor */ 878 /* (Nvidia cards have a RGB15 direct color cursor bitmap, bit #16 is transparancy) */ 879 for (y = 0; y < 16; y++) 880 { 881 b = 0x80; 882 for (x = 0; x < 8; x++) 883 { 884 /* preset transparant */ 885 pixel = 0x0000; 886 /* set white if requested */ 887 if ((!(*andMask & b)) && (!(*xorMask & b))) pixel = 0xffff; 888 /* set black if requested */ 889 if ((!(*andMask & b)) && (*xorMask & b)) pixel = 0x8000; 890 /* set invert if requested */ 891 if ( (*andMask & b) && (*xorMask & b)) pixel = 0x7fff; 892 /* place the pixel in the bitmap */ 893 cursor[x + (y * 32)] = pixel; 894 b >>= 1; 895 } 896 xorMask++; 897 andMask++; 898 b = 0x80; 899 for (; x < 16; x++) 900 { 901 /* preset transparant */ 902 pixel = 0x0000; 903 /* set white if requested */ 904 if ((!(*andMask & b)) && (!(*xorMask & b))) pixel = 0xffff; 905 /* set black if requested */ 906 if ((!(*andMask & b)) && (*xorMask & b)) pixel = 0x8000; 907 /* set invert if requested */ 908 if ( (*andMask & b) && (*xorMask & b)) pixel = 0x7fff; 909 /* place the pixel in the bitmap */ 910 cursor[x + (y * 32)] = pixel; 911 b >>= 1; 912 } 913 xorMask++; 914 andMask++; 915 } 916 917 return B_OK; 918 } 919 920 /* position the cursor */ 921 status_t nv_crtc2_cursor_position(uint16 x, uint16 y) 922 { 923 /* the cursor position is updated during retrace by card hardware */ 924 925 /* update cursorposition */ 926 DAC2W(CURPOS, ((x & 0x0fff) | ((y & 0x0fff) << 16))); 927 928 return B_OK; 929 } 930 931 status_t nv_crtc2_stop_tvout(void) 932 { 933 uint16 cnt; 934 935 LOG(4,("CRTC2: stopping TV output\n")); 936 937 /* enable access to secondary head */ 938 set_crtc_owner(1); 939 940 /* just to be sure Vsync is _really_ enabled */ 941 CRTC2W(REPAINT1, (CRTC2R(REPAINT1) & 0xbf)); 942 943 /* wait for one image to be generated to make sure VGA has kicked in and is 944 * running OK before continuing... 945 * (Kicking in will fail often if we do not wait here) */ 946 /* Note: 947 * The used CRTC's Vsync is required to be enabled here. The DPMS state 948 * programming in the driver makes sure this is the case. 949 * (except for driver startup: see nv_general.c.) */ 950 951 /* make sure we are 'in' active VGA picture: wait with timeout! */ 952 cnt = 1; 953 while ((NV_REG8(NV8_INSTAT1) & 0x08) && cnt) 954 { 955 snooze(1); 956 cnt++; 957 } 958 /* wait for next vertical retrace start on VGA: wait with timeout! */ 959 cnt = 1; 960 while ((!(NV_REG8(NV8_INSTAT1) & 0x08)) && cnt) 961 { 962 snooze(1); 963 cnt++; 964 } 965 /* now wait until we are 'in' active VGA picture again: wait with timeout! */ 966 cnt = 1; 967 while ((NV_REG8(NV8_INSTAT1) & 0x08) && cnt) 968 { 969 snooze(1); 970 cnt++; 971 } 972 973 /* set CRTC to master mode (b7 = 0) if it wasn't slaved for a panel before */ 974 if (!(si->ps.slaved_tmds2)) CRTC2W(PIXEL, (CRTC2R(PIXEL) & 0x03)); 975 976 /* CAUTION: 977 * On old cards, PLLSEL (and TV_SETUP?) cannot be read (sometimes?), but 978 * write actions do succeed ... 979 * This is confirmed for both ISA and PCI access, on NV04 and NV11. */ 980 981 /* setup TVencoder connection */ 982 /* b1-0 = %00: encoder type is SLAVE; 983 * b24 = 1: VIP datapos is b0-7 */ 984 //fixme if needed: setup completely instead of relying on pre-init by BIOS.. 985 //(it seems to work OK on NV04 and NV11 although read reg. doesn't seem to work) 986 DAC2W(TV_SETUP, ((DAC2R(TV_SETUP) & ~0x00000003) | 0x01000000)); 987 988 /* tell GPU to use pixelclock from internal source instead of using TVencoder */ 989 DACW(PLLSEL, 0x30000f00); 990 991 /* HTOTAL, VTOTAL and OVERFLOW return their default CRTC use, instead of 992 * H, V-low and V-high 'shadow' counters(?)(b0, 4 and 6 = 0) (b7 use = unknown) */ 993 CRTC2W(TREG, 0x00); 994 995 /* select panel encoder, not TV encoder if needed (b0 = 1). 996 * Note: 997 * Both are devices (often) using the CRTC in slaved mode. */ 998 if (si->ps.slaved_tmds2) CRTC2W(LCD, (CRTC2R(LCD) | 0x01)); 999 1000 return B_OK; 1001 } 1002 1003 status_t nv_crtc2_start_tvout(void) 1004 { 1005 LOG(4,("CRTC2: starting TV output\n")); 1006 1007 /* switch TV encoder to CRTC2 */ 1008 NV_REG32(NV32_FUNCSEL) &= ~0x00000100; 1009 NV_REG32(NV32_2FUNCSEL) |= 0x00000100; 1010 1011 /* enable access to secondary head */ 1012 set_crtc_owner(1); 1013 1014 /* CAUTION: 1015 * On old cards, PLLSEL (and TV_SETUP?) cannot be read (sometimes?), but 1016 * write actions do succeed ... 1017 * This is confirmed for both ISA and PCI access, on NV04 and NV11. */ 1018 1019 /* setup TVencoder connection */ 1020 /* b1-0 = %01: encoder type is MASTER; 1021 * b24 = 1: VIP datapos is b0-7 */ 1022 //fixme if needed: setup completely instead of relying on pre-init by BIOS.. 1023 //(it seems to work OK on NV04 and NV11 although read reg. doesn't seem to work) 1024 DAC2W(TV_SETUP, ((DAC2R(TV_SETUP) & ~0x00000002) | 0x01000001)); 1025 1026 /* tell GPU to use pixelclock from TVencoder instead of using internal source */ 1027 /* (nessecary or display will 'shiver' on both TV and VGA.) */ 1028 DACW(PLLSEL, 0x100c0f00); 1029 1030 /* Set overscan color to 'black' */ 1031 /* note: 1032 * Change this instruction for a visible overscan color if you're trying to 1033 * center the output on TV. Use it as a guide-'line' then ;-) */ 1034 ATB2W(OSCANCOLOR, 0x00); 1035 1036 /* set CRTC to slaved mode (b7 = 1) and clear TVadjust (b3-5 = %000) */ 1037 CRTC2W(PIXEL, ((CRTC2R(PIXEL) & 0xc7) | 0x80)); 1038 /* select TV encoder, not panel encoder (b0 = 0). 1039 * Note: 1040 * Both are devices (often) using the CRTC in slaved mode. */ 1041 CRTC2W(LCD, (CRTC2R(LCD) & 0xfe)); 1042 1043 /* HTOTAL, VTOTAL and OVERFLOW return their default CRTC use, instead of 1044 * H, V-low and V-high 'shadow' counters(?)(b0, 4 and 6 = 0) (b7 use = unknown) */ 1045 CRTC2W(TREG, 0x80); 1046 1047 return B_OK; 1048 } 1049