1 /* G200-G550 Back End Scaler functions */ 2 /* Written by Rudolf Cornelissen 05/2002-12/2005 */ 3 4 #define MODULE_BIT 0x00000200 5 6 #include "mga_std.h" 7 8 typedef struct move_overlay_info move_overlay_info; 9 10 struct move_overlay_info 11 { 12 uint32 hcoordv; /* left and right edges of video output window */ 13 uint32 vcoordv; /* top and bottom edges of video output window */ 14 uint32 hsrcstv; /* horizontal source start in source buffer (clipping) */ 15 uint32 hsrcendv; /* horizontal source end in source buffer (clipping) */ 16 uint32 v1srcstv; /* vertical source start in source buffer (clipping) */ 17 uint32 a1orgv; /* alternate source clipping via startadress of source buffer */ 18 }; 19 20 static void gx00_bes_calc_move_overlay(move_overlay_info *moi); 21 static void gx00_bes_program_move_overlay(move_overlay_info moi); 22 23 /* move the overlay output window in virtualscreens */ 24 /* Note: 25 * si->dm.h_display_start and si->dm.v_display_start determine where the new 26 * output window is located! */ 27 void gx00_bes_move_overlay() 28 { 29 move_overlay_info moi; 30 31 /* abort if overlay is not active */ 32 if (!si->overlay.active) return; 33 34 gx00_bes_calc_move_overlay(&moi); 35 gx00_bes_program_move_overlay(moi); 36 } 37 38 static void gx00_bes_calc_move_overlay(move_overlay_info *moi) 39 { 40 /* misc used variables */ 41 uint16 temp1, temp2; 42 /* visible screen window in virtual workspaces */ 43 uint16 crtc_hstart, crtc_vstart, crtc_hend, crtc_vend; 44 45 /* the BES does not respect virtual_workspaces, but adheres to CRTC 46 * constraints only */ 47 crtc_hstart = si->dm.h_display_start; 48 /* make dualhead switch mode with TVout enabled work while we're at it.. */ 49 if (si->switched_crtcs) 50 { 51 crtc_hstart += si->dm.timing.h_display; 52 } 53 /* horizontal end is the first position beyond the displayed range on the CRTC */ 54 crtc_hend = crtc_hstart + si->dm.timing.h_display; 55 crtc_vstart = si->dm.v_display_start; 56 /* vertical end is the first position beyond the displayed range on the CRTC */ 57 crtc_vend = crtc_vstart + si->dm.timing.v_display; 58 59 60 /**************************************** 61 *** setup all edges of output window *** 62 ****************************************/ 63 64 /* setup left and right edges of output window */ 65 moi->hcoordv = 0; 66 /* left edge coordinate of output window, must be inside desktop */ 67 /* clipping on the left side */ 68 if (si->overlay.ow.h_start < crtc_hstart) 69 { 70 temp1 = 0; 71 } 72 else 73 { 74 /* clipping on the right side */ 75 if (si->overlay.ow.h_start >= (crtc_hend - 1)) 76 { 77 /* width < 2 is not allowed */ 78 temp1 = (crtc_hend - crtc_hstart - 2) & 0x7ff; 79 } 80 else 81 /* no clipping here */ 82 { 83 temp1 = (si->overlay.ow.h_start - crtc_hstart) & 0x7ff; 84 } 85 } 86 moi->hcoordv |= temp1 << 16; 87 /* right edge coordinate of output window, must be inside desktop */ 88 /* width < 2 is not allowed */ 89 if (si->overlay.ow.width < 2) 90 { 91 temp2 = (temp1 + 1) & 0x7ff; 92 } 93 else 94 { 95 /* clipping on the right side */ 96 if ((si->overlay.ow.h_start + si->overlay.ow.width - 1) > (crtc_hend - 1)) 97 { 98 temp2 = (crtc_hend - crtc_hstart - 1) & 0x7ff; 99 } 100 else 101 { 102 /* clipping on the left side */ 103 if ((si->overlay.ow.h_start + si->overlay.ow.width - 1) < (crtc_hstart + 1)) 104 { 105 /* width < 2 is not allowed */ 106 temp2 = 1; 107 } 108 else 109 /* no clipping here */ 110 { 111 temp2 = ((uint16)(si->overlay.ow.h_start + si->overlay.ow.width - crtc_hstart - 1)) & 0x7ff; 112 } 113 } 114 } 115 moi->hcoordv |= temp2 << 0; 116 LOG(4,("Overlay: CRTC left-edge output %d, right-edge output %d\n",temp1, temp2)); 117 118 /* setup top and bottom edges of output window */ 119 moi->vcoordv = 0; 120 /* top edge coordinate of output window, must be inside desktop */ 121 /* clipping on the top side */ 122 if (si->overlay.ow.v_start < crtc_vstart) 123 { 124 temp1 = 0; 125 } 126 else 127 { 128 /* clipping on the bottom side */ 129 if (si->overlay.ow.v_start >= (crtc_vend - 1)) 130 { 131 /* height < 2 is not allowed */ 132 temp1 = (crtc_vend - crtc_vstart - 2) & 0x7ff; 133 } 134 else 135 /* no clipping here */ 136 { 137 temp1 = (si->overlay.ow.v_start - crtc_vstart) & 0x7ff; 138 } 139 } 140 moi->vcoordv |= temp1 << 16; 141 /* bottom edge coordinate of output window, must be inside desktop */ 142 /* height < 2 is not allowed */ 143 if (si->overlay.ow.height < 2) 144 { 145 temp2 = (temp1 + 1) & 0x7ff; 146 } 147 else 148 { 149 /* clipping on the bottom side */ 150 if ((si->overlay.ow.v_start + si->overlay.ow.height - 1) > (crtc_vend - 1)) 151 { 152 temp2 = (crtc_vend - crtc_vstart - 1) & 0x7ff; 153 } 154 else 155 { 156 /* clipping on the top side */ 157 if ((si->overlay.ow.v_start + si->overlay.ow.height - 1) < (crtc_vstart + 1)) 158 { 159 /* height < 2 is not allowed */ 160 temp2 = 1; 161 } 162 else 163 /* no clipping here */ 164 { 165 temp2 = ((uint16)(si->overlay.ow.v_start + si->overlay.ow.height - crtc_vstart - 1)) & 0x7ff; 166 } 167 } 168 } 169 moi->vcoordv |= temp2 << 0; 170 LOG(4,("Overlay: CRTC top-edge output %d, bottom-edge output %d\n",temp1, temp2)); 171 172 173 /********************************* 174 *** setup horizontal clipping *** 175 *********************************/ 176 177 /* Setup horizontal source start: first (sub)pixel contributing to output picture */ 178 /* Note: 179 * The method is to calculate, based on 1:1 scaling, based on the output window. 180 * After this is done, include the scaling factor so you get a value based on the input bitmap. 181 * Then add the left starting position of the bitmap's view (zoom function) to get the final value needed. 182 * Note: The input bitmaps slopspace is automatically excluded from the calculations this way! */ 183 /* Note also: 184 * Even if the scaling factor is clamping we instruct the BES to use the correct source start pos.! */ 185 moi->hsrcstv = 0; 186 /* check for destination horizontal clipping at left side */ 187 if (si->overlay.ow.h_start < crtc_hstart) 188 { 189 /* check if entire destination picture is clipping left: 190 * (2 pixels will be clamped onscreen at least) */ 191 if ((si->overlay.ow.h_start + si->overlay.ow.width - 1) < (crtc_hstart + 1)) 192 { 193 /* increase 'first contributing pixel' with 'fixed value': (total dest. width - 2) */ 194 moi->hsrcstv += (si->overlay.ow.width - 2); 195 } 196 else 197 { 198 /* increase 'first contributing pixel' with actual number of dest. clipping pixels */ 199 moi->hsrcstv += (crtc_hstart - si->overlay.ow.h_start); 200 } 201 LOG(4,("Overlay: clipping left...\n")); 202 203 /* The calculated value is based on scaling = 1x. So we now compensate for scaling. 204 * Note that this also already takes care of aligning the value to the BES register! */ 205 moi->hsrcstv *= si->overlay.h_ifactor; 206 } 207 /* take zoom into account */ 208 moi->hsrcstv += ((uint32)si->overlay.my_ov.h_start) << 16; 209 /* AND below required by hardware */ 210 moi->hsrcstv &= 0x03fffffc; 211 LOG(4,("Overlay: first hor. (sub)pixel of input bitmap contributing %f\n", moi->hsrcstv / (float)65536)); 212 213 /* Setup horizontal source end: last (sub)pixel contributing to output picture */ 214 /* Note: 215 * The method is to calculate, based on 1:1 scaling, based on the output window. 216 * After this is done, include the scaling factor so you get a value based on the input bitmap. 217 * Then add the right ending position of the bitmap's view (zoom function) to get the final value needed. */ 218 /* Note also: 219 * Even if the scaling factor is clamping we instruct the BES to use the correct source end pos.! */ 220 moi->hsrcendv = 0; 221 /* check for destination horizontal clipping at right side */ 222 if ((si->overlay.ow.h_start + si->overlay.ow.width - 1) > (crtc_hend - 1)) 223 { 224 /* check if entire destination picture is clipping right: 225 * (2 pixels will be clamped onscreen at least) */ 226 if (si->overlay.ow.h_start > (crtc_hend - 2)) 227 { 228 /* increase 'number of clipping pixels' with 'fixed value': (total dest. width - 2) */ 229 moi->hsrcendv += (si->overlay.ow.width - 2); 230 } 231 else 232 { 233 /* increase 'number of clipping pixels' with actual number of dest. clipping pixels */ 234 moi->hsrcendv += ((si->overlay.ow.h_start + si->overlay.ow.width - 1) - (crtc_hend - 1)); 235 } 236 LOG(4,("Overlay: clipping right...\n")); 237 238 /* The calculated value is based on scaling = 1x. So we now compensate for scaling. 239 * Note that this also already takes care of aligning the value to the BES register! */ 240 moi->hsrcendv *= si->overlay.h_ifactor; 241 /* now subtract this value from the last used pixel in (zoomed) inputbuffer, aligned to BES */ 242 moi->hsrcendv = (((uint32)((si->overlay.my_ov.h_start + si->overlay.my_ov.width) - 1)) << 16) - moi->hsrcendv; 243 } 244 else 245 { 246 /* set last contributing pixel to last used pixel in (zoomed) inputbuffer, aligned to BES */ 247 moi->hsrcendv = (((uint32)((si->overlay.my_ov.h_start + si->overlay.my_ov.width) - 1)) << 16); 248 } 249 /* AND below required by hardware */ 250 moi->hsrcendv &= 0x03fffffc; 251 LOG(4,("Overlay: last horizontal (sub)pixel of input bitmap contributing %f\n", moi->hsrcendv / (float)65536)); 252 253 254 /******************************* 255 *** setup vertical clipping *** 256 *******************************/ 257 258 /* Setup vertical source start: first (sub)pixel contributing to output picture. */ 259 /* Note: this exists of two parts: 260 * 1. setup fractional part (sign is always 'positive'); 261 * 2. setup relative base_adress, taking clipping on top (and zoom) into account. 262 * Both parts are done intertwined below. */ 263 /* Note: 264 * The method is to calculate, based on 1:1 scaling, based on the output window. 265 * 'After' this is done, include the scaling factor so you get a value based on the input bitmap. 266 * Then add the top starting position of the bitmap's view (zoom function) to get the final value needed. */ 267 /* Note also: 268 * Even if the scaling factor is clamping we instruct the BES to use the correct source start pos.! */ 269 270 /* calculate relative base_adress and 'vertical weight fractional part' */ 271 moi->v1srcstv = 0; 272 /* calculate origin adress */ 273 moi->a1orgv = (uint32)((vuint32 *)si->overlay.ob.buffer); 274 moi->a1orgv -= (uint32)((vuint32 *)si->framebuffer); 275 LOG(4,("Overlay: topleft corner of input bitmap (cardRAM offset) $%08x\n", moi->a1orgv)); 276 /* check for destination vertical clipping at top side */ 277 if (si->overlay.ow.v_start < crtc_vstart) 278 { 279 /* check if entire destination picture is clipping at top: 280 * (2 pixels will be clamped onscreen at least) */ 281 if ((si->overlay.ow.v_start + si->overlay.ow.height - 1) < (crtc_vstart + 1)) 282 { 283 /* increase source buffer origin with 'fixed value': 284 * (integer part of ('total height - 2' of dest. picture in pixels * inverse scaling factor)) * 285 * bytes per row source picture */ 286 moi->v1srcstv = (si->overlay.ow.height - 2) * si->overlay.v_ifactor; 287 moi->a1orgv += ((moi->v1srcstv >> 16) * si->overlay.ob.bytes_per_row); 288 } 289 else 290 { 291 /* increase source buffer origin with: 292 * (integer part of (number of destination picture clipping pixels * inverse scaling factor)) * 293 * bytes per row source picture */ 294 moi->v1srcstv = (crtc_vstart - si->overlay.ow.v_start) * si->overlay.v_ifactor; 295 moi->a1orgv += ((moi->v1srcstv >> 16) * si->overlay.ob.bytes_per_row); 296 } 297 LOG(4,("Overlay: clipping at top...\n")); 298 } 299 /* take zoom into account */ 300 moi->v1srcstv += (((uint32)si->overlay.my_ov.v_start) << 16); 301 moi->a1orgv += (si->overlay.my_ov.v_start * si->overlay.ob.bytes_per_row); 302 LOG(4,("Overlay: 'contributing part of buffer' origin is (cardRAM offset) $%08x\n", moi->a1orgv)); 303 LOG(4,("Overlay: first vert. (sub)pixel of input bitmap contributing %f\n", moi->v1srcstv / (float)65536)); 304 305 /* Note: 306 * Because all > G200 overlay units will ignore b0-3 of the calculated adress, 307 * we do not use the above way for horizontal source positioning. 308 * (G200 cards ignore b0-2.) 309 * If we did, 8 source-image pixel jumps (in 4:2:2 colorspace) will occur if the picture 310 * is shifted horizontally during left clipping on all > G200 cards, while G200 cards 311 * will have 4 source-image pixel jumps occuring. */ 312 313 /* AND below is required by G200-G550 hardware. > G200 cards can have max. 32Mb RAM on board 314 * (16Mb on G200 cards). Compatible setting used (between G200 and the rest), this has no 315 * downside consequences here. */ 316 /* Buffer A topleft corner of field 1 (origin)(field 1 contains our full frames) */ 317 moi->a1orgv &= 0x01fffff0; 318 319 /* field 1 weight: AND below required by hardware, also make sure 'sign' is always 'positive' */ 320 moi->v1srcstv &= 0x0000fffc; 321 } 322 323 static void gx00_bes_program_move_overlay(move_overlay_info moi) 324 { 325 /************************************* 326 *** sync to BES (Back End Scaler) *** 327 *************************************/ 328 329 /* Make sure reprogramming the BES completes before the next retrace occurs, 330 * to prevent register-update glitches (double buffer feature). */ 331 332 LOG(3,("Overlay: starting register programming beyond Vcount %d\n", CR1R(VCOUNT))); 333 /* Even at 1600x1200x90Hz, a single line still takes about 9uS to complete: 334 * this resolution will generate about 180Mhz pixelclock while we can do 335 * upto 360Mhz. So snooze about 4uS to prevent bus-congestion... 336 * Appr. 200 lines time will provide enough room even on a 100Mhz CPU if it's 337 * screen is set to the highest refreshrate/resolution possible. */ 338 while ((uint16)CR1R(VCOUNT) > (si->dm.timing.v_total - 200)) snooze(4); 339 340 341 /************************************** 342 *** actually program the registers *** 343 **************************************/ 344 345 BESW(HCOORD, moi.hcoordv); 346 BESW(VCOORD, moi.vcoordv); 347 BESW(HSRCST, moi.hsrcstv); 348 BESW(HSRCEND, moi.hsrcendv); 349 BESW(A1ORG, moi.a1orgv); 350 BESW(V1WGHT, moi.v1srcstv); 351 352 /* on a 500Mhz P3 CPU just logging a line costs 400uS (18-19 vcounts at 1024x768x60Hz)! 353 * programming the registers above actually costs 180uS here */ 354 LOG(3,("Overlay: completed at Vcount %d\n", CR1R(VCOUNT))); 355 } 356 357 status_t gx00_configure_bes 358 (const overlay_buffer *ob, const overlay_window *ow, const overlay_view *ov, int offset) 359 { 360 /* yuy2 (4:2:2) colorspace calculations */ 361 /* Note: Some calculations will have to be modified for other colorspaces if they are incorporated. */ 362 363 /* Note: 364 * in BeOS R5.0.3 and DANO: 365 * 'ow->offset_xxx' is always 0, so not used; 366 * 'ow->width' and 'ow->height' are the output window size: does not change 367 * if window is clipping; 368 * 'ow->h_start' and 'ow->v_start' are the left-top position of the output 369 * window. These values can be negative: this means the window is clipping 370 * at the left or the top of the display, respectively. */ 371 372 /* 'ov' is the view in the source bitmap, so which part of the bitmap is actually 373 * displayed on screen. This is used for the 'hardware zoom' function. */ 374 375 /* output window position and clipping info for source buffer */ 376 move_overlay_info moi; 377 /* calculated BES register values */ 378 uint32 hiscalv, hsrclstv, viscalv, v1srclstv, globctlv, ctlv; 379 /* interval representation, used for scaling calculations */ 380 uint16 intrep; 381 /* inverse scaling factor, used for source positioning */ 382 uint32 ifactor; 383 /* copy of overlay view which has checked valid values */ 384 overlay_view my_ov; 385 386 /* Slowdown the G200-G550 BES if the pixelclock is too high for it to cope. 387 * This will in fact half the horizontal resolution of the BES with high 388 * pixelclocks (by setting a BES hardware 'zoom' = 2x). 389 * If you want optimal output quality better make sure you set the refreshrate/resolution 390 * of your monitor not too high ... */ 391 uint16 acczoom = 1; 392 LOG(4,("Overlay: pixelclock is %dkHz, ", si->dm.timing.pixel_clock)); 393 if (si->dm.timing.pixel_clock > BESMAXSPEED) 394 { 395 /* BES running at half speed and resolution */ 396 /* This is how it works (BES slowing down): 397 * - Activate BES internal horizontal hardware scaling = 4x (in GLOBCTL below), 398 * - This also sets up BES only getting half the amount of pixels per line from 399 * the input picture buffer (in effect half-ing the BES pixelclock input speed). 400 * Now in order to get the picture back to original size, we need to also double 401 * the inverse horizontal scaling factor here (x4 /2 /2 = 1x again). 402 * Note that every other pixel is now doubled or interpolated, according to another 403 * GLOBCTL bit. */ 404 acczoom = 2; 405 LOG(4,("slowing down BES!\n")); 406 } 407 else 408 { 409 /* BES running at full speed and resolution */ 410 LOG(4,("BES is running at full speed\n")); 411 } 412 413 414 /************************************************************************************** 415 *** copy, check and limit if needed the user-specified view into the intput bitmap *** 416 **************************************************************************************/ 417 my_ov = *ov; 418 /* check for valid 'coordinates' */ 419 if (my_ov.width == 0) my_ov.width++; 420 if (my_ov.height == 0) my_ov.height++; 421 if (my_ov.h_start > ((ob->width - si->overlay.myBufInfo[offset].slopspace) - 1)) 422 my_ov.h_start = ((ob->width - si->overlay.myBufInfo[offset].slopspace) - 1); 423 if (((my_ov.h_start + my_ov.width) - 1) > ((ob->width - si->overlay.myBufInfo[offset].slopspace) - 1)) 424 my_ov.width = ((((ob->width - si->overlay.myBufInfo[offset].slopspace) - 1) - my_ov.h_start) + 1); 425 if (my_ov.v_start > (ob->height - 1)) 426 my_ov.v_start = (ob->height - 1); 427 if (((my_ov.v_start + my_ov.height) - 1) > (ob->height - 1)) 428 my_ov.height = (((ob->height - 1) - my_ov.v_start) + 1); 429 430 LOG(6,("Overlay: inputbuffer view (zoom) left %d, top %d, width %d, height %d\n", 431 my_ov.h_start, my_ov.v_start, my_ov.width, my_ov.height)); 432 433 /* save for nv_bes_calc_move_overlay() */ 434 si->overlay.ow = *ow; 435 si->overlay.ob = *ob; 436 si->overlay.my_ov = my_ov; 437 438 439 /******************************** 440 *** setup horizontal scaling *** 441 ********************************/ 442 443 LOG(6,("Overlay: total input picture width = %d, height = %d\n", 444 (ob->width - si->overlay.myBufInfo[offset].slopspace), ob->height)); 445 LOG(6,("Overlay: output picture width = %d, height = %d\n", ow->width, ow->height)); 446 447 /* determine interval representation value, taking zoom into account */ 448 if (ow->flags & B_OVERLAY_HORIZONTAL_FILTERING) 449 { 450 /* horizontal filtering is ON */ 451 if ((my_ov.width == ow->width) | (ow->width < 2)) 452 { 453 /* no horizontal scaling used, OR destination width < 2 */ 454 intrep = 0; 455 } 456 else 457 { 458 intrep = 1; 459 } 460 } 461 else 462 { 463 /* horizontal filtering is OFF */ 464 if ((ow->width < my_ov.width) & (ow->width >= 2)) 465 { 466 /* horizontal downscaling used AND destination width >= 2 */ 467 intrep = 1; 468 } 469 else 470 { 471 intrep = 0; 472 } 473 } 474 LOG(4,("Overlay: horizontal interval representation value is %d\n",intrep)); 475 476 /* calculate inverse horizontal scaling factor, taking zoom into account */ 477 /* standard scaling formula: */ 478 ifactor = (((uint32)(my_ov.width - intrep)) << 16) / (ow->width - intrep); 479 480 /* correct factor to prevent most-right visible 'line' from distorting */ 481 ifactor -= (1 << 2); 482 LOG(4,("Overlay: horizontal scaling factor is %f\n", (float)65536 / ifactor)); 483 484 /* compensate for accelerated 2x zoom (slowdown BES if pixelclock is too high) */ 485 hiscalv = ifactor * acczoom; 486 /* save for gx00_bes_calc_move_overlay() */ 487 si->overlay.h_ifactor = ifactor; 488 LOG(4,("Overlay: horizontal speed compensated factor is %f\n", (float)65536 / hiscalv)); 489 490 /* check scaling factor (and modify if needed) to be within scaling limits */ 491 if (((((uint32)my_ov.width) << 16) / 16384) > hiscalv) 492 { 493 /* (non-inverse) factor too large, set factor to max. valid value */ 494 hiscalv = ((((uint32)my_ov.width) << 16) / 16384); 495 LOG(4,("Overlay: horizontal scaling factor too large, clamping at %f\n", (float)65536 / hiscalv)); 496 } 497 if (hiscalv >= (32 << 16)) 498 { 499 /* (non-inverse) factor too small, set factor to min. valid value */ 500 hiscalv = 0x1ffffc; 501 LOG(4,("Overlay: horizontal scaling factor too small, clamping at %f\n", (float)65536 / hiscalv)); 502 } 503 /* AND below is required by hardware */ 504 hiscalv &= 0x001ffffc; 505 506 507 /****************************** 508 *** setup vertical scaling *** 509 ******************************/ 510 511 /* determine interval representation value, taking zoom into account */ 512 if (ow->flags & B_OVERLAY_VERTICAL_FILTERING) 513 { 514 /* vertical filtering is ON */ 515 if ((my_ov.height == ow->height) | (ow->height < 2)) 516 { 517 /* no vertical scaling used, OR destination height < 2 */ 518 intrep = 0; 519 } 520 else 521 { 522 intrep = 1; 523 } 524 } 525 else 526 { 527 /* vertical filtering is OFF */ 528 if ((ow->height < my_ov.height) & (ow->height >= 2)) 529 { 530 /* vertical downscaling used AND destination height >= 2 */ 531 intrep = 1; 532 } 533 else 534 { 535 intrep = 0; 536 } 537 } 538 LOG(4,("Overlay: vertical interval representation value is %d\n",intrep)); 539 540 /* calculate inverse vertical scaling factor, taking zoom into account */ 541 /* standard scaling formula: */ 542 ifactor = (((uint32)(my_ov.height - intrep)) << 16) / (ow->height - intrep); 543 544 /* correct factor to prevent lowest visible line from distorting */ 545 ifactor -= (1 << 2); 546 LOG(4,("Overlay: vertical scaling factor is %f\n", (float)65536 / ifactor)); 547 548 /* preserve ifactor for source positioning calculations later on */ 549 viscalv = ifactor; 550 /* save for gx00_bes_calc_move_overlay() */ 551 si->overlay.v_ifactor = ifactor; 552 553 /* check scaling factor (and modify if needed) to be within scaling limits */ 554 if (((((uint32)my_ov.height) << 16) / 16384) > viscalv) 555 { 556 /* (non-inverse) factor too large, set factor to max. valid value */ 557 viscalv = ((((uint32)my_ov.height) << 16) / 16384); 558 LOG(4,("Overlay: vertical scaling factor too large, clamping at %f\n", (float)65536 / viscalv)); 559 } 560 if (viscalv >= (32 << 16)) 561 { 562 /* (non-inverse) factor too small, set factor to min. valid value */ 563 viscalv = 0x1ffffc; 564 LOG(4,("Overlay: vertical scaling factor too small, clamping at %f\n", (float)65536 / viscalv)); 565 } 566 /* AND below is required by hardware */ 567 viscalv &= 0x001ffffc; 568 569 570 /******************************************************************************** 571 *** setup all edges of output window, setup horizontal and vertical clipping *** 572 ********************************************************************************/ 573 gx00_bes_calc_move_overlay(&moi); 574 575 576 /*************************************** 577 *** setup misc. source bitmap stuff *** 578 ***************************************/ 579 580 /* setup horizontal source last position excluding slopspace: 581 * this is the last pixel that will be used for calculating interpolated pixels */ 582 hsrclstv = ((ob->width - 1) - si->overlay.myBufInfo[offset].slopspace) << 16; 583 /* AND below required by hardware */ 584 hsrclstv &= 0x03ff0000; 585 586 /* setup field 1 (is our complete frame) vertical source last position. 587 * this is the last pixel that will be used for calculating interpolated pixels */ 588 v1srclstv = (ob->height - 1); 589 /* AND below required by hardware */ 590 v1srclstv &= 0x000003ff; 591 592 593 /***************************** 594 *** log color keying info *** 595 *****************************/ 596 597 LOG(6,("Overlay: key_red %d, key_green %d, key_blue %d, key_alpha %d\n", 598 ow->red.value, ow->green.value, ow->blue.value, ow->alpha.value)); 599 LOG(6,("Overlay: mask_red %d, mask_green %d, mask_blue %d, mask_alpha %d\n", 600 ow->red.mask, ow->green.mask, ow->blue.mask, ow->alpha.mask)); 601 602 603 /************************* 604 *** setup BES control *** 605 *************************/ 606 607 /* BES global control: setup functions */ 608 globctlv = 0; 609 610 /* slowdown BES if nessesary */ 611 if (acczoom == 1) 612 { 613 /* run at full speed and resolution */ 614 globctlv |= 0 << 0; 615 /* disable filtering for half speed interpolation */ 616 globctlv |= 0 << 1; 617 } 618 else 619 { 620 /* run at half speed and resolution */ 621 globctlv |= 1 << 0; 622 /* enable filtering for half speed interpolation */ 623 globctlv |= 1 << 1; 624 } 625 626 /* 4:2:0 specific setup: not needed here */ 627 globctlv |= 0 << 3; 628 /* BES testregister: keep zero */ 629 globctlv |= 0 << 4; 630 /* the following bits marked (> G200) *must* be zero on G200: */ 631 /* 4:2:0 specific setup: not needed here (> G200) */ 632 globctlv |= 0 << 5; 633 /* select yuy2 byte-order to B_YCbCr422 (> G200) */ 634 globctlv |= 0 << 6; 635 /* BES internal contrast and brighness controls are not used, disabled (> G200) */ 636 globctlv |= 0 << 7; 637 /* RGB specific setup: not needed here, so disabled (> G200) */ 638 globctlv |= 0 << 8; 639 globctlv |= 0 << 9; 640 /* 4:2:0 specific setup: not needed here (> G200) */ 641 globctlv |= 0 << 10; 642 /* Tell BES when to copy the new register values to the actual active registers. 643 * bits 16-27 (12 bits) are the CRTC vert. count value at which copying takes 644 * place. 645 * (This is the double buffering feature: programming must be completed *before* 646 * the CRTC vert count value set here!) */ 647 /* CRTC vert count for copying = $000, so during retrace, line 0. */ 648 globctlv |= 0x000 << 16; 649 650 /* BES control: enable scaler and setup functions */ 651 /* pre-reset all bits */ 652 ctlv = 0; 653 /* enable BES */ 654 ctlv |= 1 << 0; 655 /* we start displaying at an even startline (zero) in 'field 1' (no hardware de-interlacing is used) */ 656 ctlv |= 0 << 6; 657 /* we don't use field 2, so its startline is not important */ 658 ctlv |= 0 << 7; 659 660 LOG(6,("Overlay: ow->flags is $%08x\n",ow->flags)); 661 /* enable horizontal filtering on scaling if asked for: if we *are* actually scaling */ 662 if ((ow->flags & B_OVERLAY_HORIZONTAL_FILTERING) && (hiscalv != (0x01 << 16))) 663 { 664 ctlv |= 1 << 10; 665 LOG(6,("Overlay: using horizontal interpolation on scaling\n")); 666 } 667 else 668 { 669 ctlv |= 0 << 10; 670 LOG(6,("Overlay: using horizontal dropping or replication on scaling\n")); 671 } 672 /* enable vertical filtering on scaling if asked for: if we are *upscaling* only */ 673 if ((ow->flags & B_OVERLAY_VERTICAL_FILTERING) && (viscalv < (0x01 << 16))) 674 { 675 ctlv |= 1 << 11; 676 LOG(6,("Overlay: using vertical interpolation on scaling\n")); 677 } 678 else 679 { 680 ctlv |= 0 << 11; 681 LOG(6,("Overlay: using vertical dropping or replication on scaling\n")); 682 } 683 684 /* use actual calculated weight for horizontal interpolation */ 685 ctlv |= 0 << 12; 686 /* use horizontal chroma interpolation upsampling on BES input picture */ 687 ctlv |= 1 << 16; 688 /* select 4:2:2 BES input format */ 689 ctlv |= 0 << 17; 690 /* dithering is enabled */ 691 ctlv |= 1 << 18; 692 /* horizontal mirroring is not used */ 693 ctlv |= 0 << 19; 694 /* BES output should be in color */ 695 ctlv |= 0 << 20; 696 /* BES output blanking is disabled: we want a picture, no 'black box'! */ 697 ctlv |= 0 << 21; 698 /* we do software field select (field select is not used) */ 699 ctlv |= 0 << 24; 700 /* we always display field 1 in buffer A, this contains our full frames */ 701 /* select field 1 */ 702 ctlv |= 0 << 25; 703 /* select buffer A */ 704 ctlv |= 0 << 26; 705 706 707 /************************************* 708 *** sync to BES (Back End Scaler) *** 709 *************************************/ 710 711 /* Make sure reprogramming the BES completes before the next retrace occurs, 712 * to prevent register-update glitches (double buffer feature). */ 713 714 LOG(3,("Overlay: starting register programming beyond Vcount %d\n", CR1R(VCOUNT))); 715 /* Even at 1600x1200x90Hz, a single line still takes about 9uS to complete: 716 * this resolution will generate about 180Mhz pixelclock while we can do 717 * upto 360Mhz. So snooze about 4uS to prevent bus-congestion... 718 * Appr. 200 lines time will provide enough room even on a 100Mhz CPU if it's 719 * screen is set to the highest refreshrate/resolution possible. */ 720 while ((uint16)CR1R(VCOUNT) > (si->dm.timing.v_total - 200)) snooze(4); 721 722 723 /************************************** 724 *** actually program the registers *** 725 **************************************/ 726 727 BESW(HCOORD, moi.hcoordv); 728 BESW(VCOORD, moi.vcoordv); 729 BESW(HISCAL, hiscalv); 730 BESW(HSRCST, moi.hsrcstv); 731 BESW(HSRCEND, moi.hsrcendv); 732 BESW(HSRCLST, hsrclstv); 733 BESW(VISCAL, viscalv); 734 BESW(A1ORG, moi.a1orgv); 735 BESW(V1WGHT, moi.v1srcstv); 736 BESW(V1SRCLST, v1srclstv); 737 BESW(GLOBCTL, globctlv); 738 BESW(CTL, ctlv); 739 740 741 /************************** 742 *** setup color keying *** 743 **************************/ 744 745 /* setup colorkeying */ 746 DXIW(COLKEY, (ow->alpha.value & ow->alpha.mask)); 747 748 DXIW(COLKEY0RED, (ow->red.value & ow->red.mask)); 749 DXIW(COLKEY0GREEN, (ow->green.value & ow->green.mask)); 750 DXIW(COLKEY0BLUE, (ow->blue.value & ow->blue.mask)); 751 752 DXIW(COLMSK, ow->alpha.mask); 753 754 DXIW(COLMSK0RED, ow->red.mask); 755 DXIW(COLMSK0GREEN, ow->green.mask); 756 DXIW(COLMSK0BLUE, ow->blue.mask); 757 758 /* setup colorkeying */ 759 if (ow->flags & B_OVERLAY_COLOR_KEY) 760 DXIW(KEYOPMODE,0x01); 761 else 762 DXIW(KEYOPMODE,0x00); 763 764 765 /************************* 766 *** setup misc. stuff *** 767 *************************/ 768 769 /* setup brightness and contrast to be 'neutral' (this is not implemented on G200) */ 770 BESW(LUMACTL, 0x00000080); 771 772 /* setup source pitch including slopspace (in pixels); AND is required by hardware */ 773 BESW(PITCH, (ob->width & 0x00000fff)); 774 775 /* on a 500Mhz P3 CPU just logging a line costs 400uS (18-19 vcounts at 1024x768x60Hz)! 776 * programming the registers above actually costs 180uS here */ 777 LOG(3,("Overlay: completed at Vcount %d\n", CR1R(VCOUNT))); 778 779 /* note that overlay is in use (for gx00_bes_move_overlay()) */ 780 si->overlay.active = true; 781 782 return B_OK; 783 } 784 785 status_t gx00_release_bes() 786 { 787 /* setup BES control: disable scaler */ 788 BESW(CTL, 0x00000000); 789 790 /* note that overlay is not in use (for gx00_bes_move_overlay()) */ 791 si->overlay.active = false; 792 793 return B_OK; 794 } 795