xref: /haiku/src/add-ons/accelerants/intel_extreme/mode.cpp (revision 675ffabd70492a962f8c0288a32208c22ce5de18)
1 /*
2  * Copyright 2006-2010, Haiku, Inc. All Rights Reserved.
3  * Distributed under the terms of the MIT License.
4  *
5  * Support for i915 chipset and up based on the X driver,
6  * Copyright 2006-2007 Intel Corporation.
7  *
8  * Authors:
9  *		Axel Dörfler, axeld@pinc-software.de
10  */
11 
12 
13 #include "accelerant_protos.h"
14 #include "accelerant.h"
15 #include "utility.h"
16 
17 #include <stdio.h>
18 #include <string.h>
19 #include <math.h>
20 
21 #include <create_display_modes.h>
22 #include <ddc.h>
23 #include <edid.h>
24 
25 
26 #define TRACE_MODE
27 #ifdef TRACE_MODE
28 extern "C" void _sPrintf(const char *format, ...);
29 #	define TRACE(x) _sPrintf x
30 #else
31 #	define TRACE(x) ;
32 #endif
33 
34 
35 struct display_registers {
36 	uint32	pll;
37 	uint32	divisors;
38 	uint32	control;
39 	uint32	pipe_config;
40 	uint32	horiz_total;
41 	uint32	horiz_blank;
42 	uint32	horiz_sync;
43 	uint32	vert_total;
44 	uint32	vert_blank;
45 	uint32	vert_sync;
46 	uint32	size;
47 	uint32	stride;
48 	uint32	position;
49 	uint32	pipe_source;
50 };
51 
52 struct pll_divisors {
53 	uint32	post;
54 	uint32	post1;
55 	uint32	post2;
56 	bool	post2_high;
57 	uint32	n;
58 	uint32	m;
59 	uint32	m1;
60 	uint32	m2;
61 };
62 
63 struct pll_limits {
64 	pll_divisors	min;
65 	pll_divisors	max;
66 	uint32			min_post2_frequency;
67 	uint32			min_vco;
68 	uint32			max_vco;
69 };
70 
71 
72 static status_t
73 get_i2c_signals(void* cookie, int* _clock, int* _data)
74 {
75 	uint32 ioRegister = (uint32)cookie;
76 	uint32 value = read32(ioRegister);
77 
78 	*_clock = (value & I2C_CLOCK_VALUE_IN) != 0;
79 	*_data = (value & I2C_DATA_VALUE_IN) != 0;
80 
81 	return B_OK;
82 }
83 
84 
85 static status_t
86 set_i2c_signals(void* cookie, int clock, int data)
87 {
88 	uint32 ioRegister = (uint32)cookie;
89 	uint32 value;
90 
91 	if (gInfo->shared_info->device_type.InGroup(INTEL_TYPE_83x)) {
92 		// on these chips, the reserved values are fixed
93 		value = 0;
94 	} else {
95 		// on all others, we have to preserve them manually
96 		value = read32(ioRegister) & I2C_RESERVED;
97 	}
98 
99 	if (data != 0)
100 		value |= I2C_DATA_DIRECTION_MASK;
101 	else
102 		value |= I2C_DATA_DIRECTION_MASK | I2C_DATA_DIRECTION_OUT | I2C_DATA_VALUE_MASK;
103 
104 	if (clock != 0)
105 		value |= I2C_CLOCK_DIRECTION_MASK;
106 	else
107 		value |= I2C_CLOCK_DIRECTION_MASK | I2C_CLOCK_DIRECTION_OUT | I2C_CLOCK_VALUE_MASK;
108 
109 	write32(ioRegister, value);
110 	read32(ioRegister);
111 		// make sure the PCI bus has flushed the write
112 
113 	return B_OK;
114 }
115 
116 
117 void
118 set_frame_buffer_base()
119 {
120 	intel_shared_info &sharedInfo = *gInfo->shared_info;
121 	display_mode &mode = sharedInfo.current_mode;
122 	uint32 baseRegister;
123 	uint32 surfaceRegister;
124 
125 	if (gInfo->head_mode & HEAD_MODE_A_ANALOG) {
126 		baseRegister = INTEL_DISPLAY_A_BASE;
127 		surfaceRegister = INTEL_DISPLAY_A_SURFACE;
128 	} else {
129 		baseRegister = INTEL_DISPLAY_B_BASE;
130 		surfaceRegister = INTEL_DISPLAY_B_SURFACE;
131 	}
132 
133 	if (sharedInfo.device_type.InGroup(INTEL_TYPE_96x)
134 		|| sharedInfo.device_type.InGroup(INTEL_TYPE_G4x)) {
135 		write32(baseRegister, mode.v_display_start * sharedInfo.bytes_per_row
136 			+ mode.h_display_start * (sharedInfo.bits_per_pixel + 7) / 8);
137 		read32(baseRegister);
138 		write32(surfaceRegister, sharedInfo.frame_buffer_offset);
139 		read32(surfaceRegister);
140 	} else {
141 		write32(baseRegister, sharedInfo.frame_buffer_offset
142 			+ mode.v_display_start * sharedInfo.bytes_per_row
143 			+ mode.h_display_start * (sharedInfo.bits_per_pixel + 7) / 8);
144 		read32(baseRegister);
145 	}
146 }
147 
148 
149 /*!	Creates the initial mode list of the primary accelerant.
150 	It's called from intel_init_accelerant().
151 */
152 status_t
153 create_mode_list(void)
154 {
155 	i2c_bus bus;
156 	bus.cookie = (void*)INTEL_I2C_IO_A;
157 	bus.set_signals = &set_i2c_signals;
158 	bus.get_signals = &get_i2c_signals;
159 	ddc2_init_timing(&bus);
160 
161 	status_t error = ddc2_read_edid1(&bus, &gInfo->edid_info, NULL, NULL);
162 	if (error == B_OK) {
163 		edid_dump(&gInfo->edid_info);
164 		gInfo->has_edid = true;
165 	} else {
166 		TRACE(("intel_extreme: getting EDID on port A (analog) failed : %s. "
167 			"Trying on port C (lvds)\n", strerror(error)));
168 		bus.cookie = (void*)INTEL_I2C_IO_C;
169 		error = ddc2_read_edid1(&bus, &gInfo->edid_info, NULL, NULL);
170 		if (error == B_OK) {
171 			edid_dump(&gInfo->edid_info);
172 			gInfo->has_edid = true;
173 		} else {
174 			TRACE(("intel_extreme: getting EDID on port C failed : %s\n",
175 				strerror(error)));
176 		}
177 	}
178 
179 #if 0
180 	// TODO: support lower modes via scaling and windowing
181 	if (gInfo->head_mode & HEAD_MODE_LVDS_PANEL
182 		&& ((gInfo->head_mode & HEAD_MODE_A_ANALOG) == 0)) {
183 		size_t size = (sizeof(display_mode) + B_PAGE_SIZE - 1)
184 			& ~(B_PAGE_SIZE - 1);
185 
186 		display_mode *list;
187 		area_id area = create_area("intel extreme modes", (void **)&list,
188 			B_ANY_ADDRESS, size, B_NO_LOCK, B_READ_AREA | B_WRITE_AREA);
189 		if (area < B_OK)
190 			return area;
191 
192 		memcpy(list, &gInfo->lvds_panel_mode, sizeof(display_mode));
193 
194 		gInfo->mode_list_area = area;
195 		gInfo->mode_list = list;
196 		gInfo->shared_info->mode_list_area = gInfo->mode_list_area;
197 		gInfo->shared_info->mode_count = 1;
198 		return B_OK;
199 	}
200 #endif
201 
202 	// Otherwise return the 'real' list of modes
203 	display_mode *list;
204 	uint32 count = 0;
205 	gInfo->mode_list_area = create_display_modes("intel extreme modes",
206 		gInfo->has_edid ? &gInfo->edid_info : NULL, NULL, 0, NULL, 0, NULL,
207 		&list, &count);
208 	if (gInfo->mode_list_area < B_OK)
209 		return gInfo->mode_list_area;
210 
211 	gInfo->mode_list = list;
212 	gInfo->shared_info->mode_list_area = gInfo->mode_list_area;
213 	gInfo->shared_info->mode_count = count;
214 
215 	return B_OK;
216 }
217 
218 
219 void
220 wait_for_vblank(void)
221 {
222 	acquire_sem_etc(gInfo->shared_info->vblank_sem, 1, B_RELATIVE_TIMEOUT, 25000);
223 		// With the output turned off via DPMS, we might not get any interrupts anymore
224 		// that's why we don't wait forever for it.
225 }
226 
227 
228 static void
229 get_pll_limits(pll_limits &limits)
230 {
231 	// Note, the limits are taken from the X driver; they have not yet been
232 	// tested
233 
234 	if (gInfo->shared_info->device_type.InGroup(INTEL_TYPE_G4x)) {
235 		// single LVDS output
236 		// NOTE: not sure these will work with CRT displays
237 		static const pll_limits kLimits = {
238 			// p, p1, p2, high,   n,   m, m1, m2
239 			{ 28,  2, 14, false,  1, 104, 17,  5},	// min
240 			{112,  8,  0, true,   3, 138, 23, 11},	// max
241 			200000, 1750000, 3500000
242 		};
243 		limits = kLimits;
244 	} else if (gInfo->shared_info->device_type.InFamily(INTEL_TYPE_9xx)) {
245 		// TODO: support LVDS output limits as well
246 		// (Update: Output limits are adjusted in the computation (post2=7/14))
247 		// Should move them here!
248 		static const pll_limits kLimits = {
249 			// p, p1, p2, high,   n,   m, m1, m2
250 			{  5,  1, 10, false,  5,  70, 12,  7},	// min
251 			{ 80,  8,  5, true,  10, 120, 22, 11},	// max
252 			200000, 1400000, 2800000
253 		};
254 		limits = kLimits;
255 	} else {
256 		// TODO: support LVDS output limits as well
257 		static const pll_limits kLimits = {
258 			// p, p1, p2, high,   n,   m, m1, m2
259 			{  4,  2,  4, false,  5,  96, 20,  8},
260 			{128, 33,  2, true,  18, 140, 28, 18},
261 			165000, 930000, 1400000
262 		};
263 		limits = kLimits;
264 	}
265 
266 	TRACE(("PLL limits, min: p %lu (p1 %lu, p2 %lu), n %lu, m %lu (m1 %lu, m2 %lu)\n",
267 		limits.min.post, limits.min.post1, limits.min.post2, limits.min.n,
268 		limits.min.m, limits.min.m1, limits.min.m2));
269 	TRACE(("PLL limits, max: p %lu (p1 %lu, p2 %lu), n %lu, m %lu (m1 %lu, m2 %lu)\n",
270 		limits.max.post, limits.max.post1, limits.max.post2, limits.max.n,
271 		limits.max.m, limits.max.m1, limits.max.m2));
272 }
273 
274 
275 static bool
276 valid_pll_divisors(const pll_divisors& divisors, const pll_limits& limits)
277 {
278 	pll_info &info = gInfo->shared_info->pll_info;
279 	uint32 vco = info.reference_frequency * divisors.m / divisors.n;
280 	uint32 frequency = vco / divisors.post;
281 
282 	if (divisors.post < limits.min.post || divisors.post > limits.max.post
283 		|| divisors.m < limits.min.m || divisors.m > limits.max.m
284 		|| vco < limits.min_vco || vco > limits.max_vco
285 		|| frequency < info.min_frequency || frequency > info.max_frequency)
286 		return false;
287 
288 	return true;
289 }
290 
291 
292 static void
293 compute_pll_divisors(const display_mode &current, pll_divisors& divisors,
294 	bool isLVDS)
295 {
296 	float requestedPixelClock = current.timing.pixel_clock / 1000.0f;
297 	float referenceClock = gInfo->shared_info->pll_info.reference_frequency / 1000.0f;
298 	pll_limits limits;
299 	get_pll_limits(limits);
300 
301 	TRACE(("required MHz: %g\n", requestedPixelClock));
302 
303 	if (isLVDS) {
304 		if ((read32(INTEL_DISPLAY_LVDS_PORT) & LVDS_CLKB_POWER_MASK)
305 				== LVDS_CLKB_POWER_UP)
306 			divisors.post2 = LVDS_POST2_RATE_FAST;
307 		else
308 			divisors.post2 = LVDS_POST2_RATE_SLOW;
309 	} else {
310 		if (current.timing.pixel_clock < limits.min_post2_frequency) {
311 			// slow DAC timing
312 			divisors.post2 = limits.min.post2;
313 			divisors.post2_high = limits.min.post2_high;
314 		} else {
315 			// fast DAC timing
316 			divisors.post2 = limits.max.post2;
317 			divisors.post2_high = limits.max.post2_high;
318 		}
319 	}
320 
321 	float best = requestedPixelClock;
322 	pll_divisors bestDivisors;
323 
324 	for (divisors.m1 = limits.min.m1; divisors.m1 <= limits.max.m1; divisors.m1++) {
325 		for (divisors.m2 = limits.min.m2; divisors.m2 < divisors.m1
326 				&& divisors.m2 <= limits.max.m2; divisors.m2++) {
327 			for (divisors.n = limits.min.n; divisors.n <= limits.max.n;
328 					divisors.n++) {
329 				for (divisors.post1 = limits.min.post1;
330 						divisors.post1 <= limits.max.post1; divisors.post1++) {
331 					divisors.m = 5 * divisors.m1 + divisors.m2;
332 					divisors.post = divisors.post1 * divisors.post2;
333 
334 					if (!valid_pll_divisors(divisors, limits))
335 						continue;
336 
337 					float error = fabs(requestedPixelClock
338 						- ((referenceClock * divisors.m) / divisors.n) / divisors.post);
339 					if (error < best) {
340 						best = error;
341 						bestDivisors = divisors;
342 
343 						if (error == 0)
344 							break;
345 					}
346 				}
347 			}
348 		}
349 	}
350 
351 	divisors = bestDivisors;
352 
353 	TRACE(("found: %g MHz, p = %lu (p1 = %lu, p2 = %lu), n = %lu, m = %lu (m1 = %lu, m2 = %lu)\n",
354 		((referenceClock * divisors.m) / divisors.n) / divisors.post,
355 		divisors.post, divisors.post1, divisors.post2, divisors.n,
356 		divisors.m, divisors.m1, divisors.m2));
357 }
358 
359 
360 void
361 retrieve_current_mode(display_mode& mode, uint32 pllRegister)
362 {
363 	uint32 pll = read32(pllRegister);
364 	uint32 pllDivisor;
365 	uint32 hTotalRegister;
366 	uint32 vTotalRegister;
367 	uint32 hSyncRegister;
368 	uint32 vSyncRegister;
369 	uint32 imageSizeRegister;
370 	uint32 controlRegister;
371 
372 	if (pllRegister == INTEL_DISPLAY_A_PLL) {
373 		pllDivisor = read32((pll & DISPLAY_PLL_DIVISOR_1) != 0
374 			? INTEL_DISPLAY_A_PLL_DIVISOR_1 : INTEL_DISPLAY_A_PLL_DIVISOR_0);
375 
376 		hTotalRegister = INTEL_DISPLAY_A_HTOTAL;
377 		vTotalRegister = INTEL_DISPLAY_A_VTOTAL;
378 		hSyncRegister = INTEL_DISPLAY_A_HSYNC;
379 		vSyncRegister = INTEL_DISPLAY_A_VSYNC;
380 		imageSizeRegister = INTEL_DISPLAY_A_IMAGE_SIZE;
381 		controlRegister = INTEL_DISPLAY_A_CONTROL;
382 	} else if (pllRegister == INTEL_DISPLAY_B_PLL) {
383 		pllDivisor = read32((pll & DISPLAY_PLL_DIVISOR_1) != 0
384 			? INTEL_DISPLAY_B_PLL_DIVISOR_1 : INTEL_DISPLAY_B_PLL_DIVISOR_0);
385 
386 		hTotalRegister = INTEL_DISPLAY_B_HTOTAL;
387 		vTotalRegister = INTEL_DISPLAY_B_VTOTAL;
388 		hSyncRegister = INTEL_DISPLAY_B_HSYNC;
389 		vSyncRegister = INTEL_DISPLAY_B_VSYNC;
390 		imageSizeRegister = INTEL_DISPLAY_B_IMAGE_SIZE;
391 		controlRegister = INTEL_DISPLAY_B_CONTROL;
392 	} else {
393 		// TODO: not supported
394 		return;
395 	}
396 
397 	pll_divisors divisors;
398 	divisors.m1 = (pllDivisor & DISPLAY_PLL_M1_DIVISOR_MASK)
399 		>> DISPLAY_PLL_M1_DIVISOR_SHIFT;
400 	divisors.m2 = (pllDivisor & DISPLAY_PLL_M2_DIVISOR_MASK)
401 		>> DISPLAY_PLL_M2_DIVISOR_SHIFT;
402 	divisors.n = (pllDivisor & DISPLAY_PLL_N_DIVISOR_MASK)
403 		>> DISPLAY_PLL_N_DIVISOR_SHIFT;
404 
405 	pll_limits limits;
406 	get_pll_limits(limits);
407 
408 	if (gInfo->shared_info->device_type.InFamily(INTEL_TYPE_9xx)) {
409 		divisors.post1 = (pll & DISPLAY_PLL_9xx_POST1_DIVISOR_MASK)
410 			>> DISPLAY_PLL_POST1_DIVISOR_SHIFT;
411 
412 		if (pllRegister == INTEL_DISPLAY_B_PLL
413 			&& !gInfo->shared_info->device_type.InGroup(INTEL_TYPE_96x)) {
414 			// TODO: Fix this? Need to support dual channel LVDS.
415 			divisors.post2 = LVDS_POST2_RATE_SLOW;
416 		} else {
417 			if ((pll & DISPLAY_PLL_DIVIDE_HIGH) != 0)
418 				divisors.post2 = limits.max.post2;
419 			else
420 				divisors.post2 = limits.min.post2;
421 		}
422 	} else {
423 		// 8xx
424 		divisors.post1 = (pll & DISPLAY_PLL_POST1_DIVISOR_MASK)
425 			>> DISPLAY_PLL_POST1_DIVISOR_SHIFT;
426 
427 		if ((pll & DISPLAY_PLL_DIVIDE_4X) != 0)
428 			divisors.post2 = limits.max.post2;
429 		else
430 			divisors.post2 = limits.min.post2;
431 	}
432 
433 	divisors.m = 5 * divisors.m1 + divisors.m2;
434 	divisors.post = divisors.post1 * divisors.post2;
435 
436 	float referenceClock
437 		= gInfo->shared_info->pll_info.reference_frequency / 1000.0f;
438 	float pixelClock
439 		= ((referenceClock * divisors.m) / divisors.n) / divisors.post;
440 
441 	// timing
442 
443 	mode.timing.pixel_clock = uint32(pixelClock * 1000);
444 	mode.timing.flags = 0;
445 
446 	uint32 value = read32(hTotalRegister);
447 	mode.timing.h_total = (value >> 16) + 1;
448 	mode.timing.h_display = (value & 0xffff) + 1;
449 
450 	value = read32(hSyncRegister);
451 	mode.timing.h_sync_end = (value >> 16) + 1;
452 	mode.timing.h_sync_start = (value & 0xffff) + 1;
453 
454 	value = read32(vTotalRegister);
455 	mode.timing.v_total = (value >> 16) + 1;
456 	mode.timing.v_display = (value & 0xffff) + 1;
457 
458 	value = read32(vSyncRegister);
459 	mode.timing.v_sync_end = (value >> 16) + 1;
460 	mode.timing.v_sync_start = (value & 0xffff) + 1;
461 
462 	// image size and color space
463 
464 	value = read32(imageSizeRegister);
465 	mode.virtual_width = (value >> 16) + 1;
466 	mode.virtual_height = (value & 0xffff) + 1;
467 
468 	// using virtual size based on image size is the 'proper' way to do it,
469 	// however the bios appears to be suggesting scaling or somesuch, so ignore
470 	// the proper virtual dimension for now if they'd suggest a smaller size.
471 	if (mode.virtual_width < mode.timing.h_display)
472 		mode.virtual_width = mode.timing.h_display;
473 	if (mode.virtual_height < mode.timing.v_display)
474 		mode.virtual_height = mode.timing.v_display;
475 
476 	value = read32(controlRegister);
477 	switch (value & DISPLAY_CONTROL_COLOR_MASK) {
478 		case DISPLAY_CONTROL_RGB32:
479 		default:
480 			mode.space = B_RGB32;
481 			break;
482 		case DISPLAY_CONTROL_RGB16:
483 			mode.space = B_RGB16;
484 			break;
485 		case DISPLAY_CONTROL_RGB15:
486 			mode.space = B_RGB15;
487 			break;
488 		case DISPLAY_CONTROL_CMAP8:
489 			mode.space = B_CMAP8;
490 			break;
491 	}
492 
493 	mode.h_display_start = 0;
494 	mode.v_display_start = 0;
495 	mode.flags = B_8_BIT_DAC | B_HARDWARE_CURSOR | B_PARALLEL_ACCESS
496 		| B_DPMS | B_SUPPORTS_OVERLAYS;
497 }
498 
499 
500 /*! Store away panel information if identified on startup
501 	(used for pipe B->lvds).
502 */
503 void
504 save_lvds_mode(void)
505 {
506 	// dump currently programmed mode.
507 	display_mode biosMode;
508 	retrieve_current_mode(biosMode, INTEL_DISPLAY_B_PLL);
509 	gInfo->lvds_panel_mode = biosMode;
510 }
511 
512 
513 static void
514 get_color_space_format(const display_mode &mode, uint32 &colorMode,
515 	uint32 &bytesPerRow, uint32 &bitsPerPixel)
516 {
517 	uint32 bytesPerPixel;
518 
519 	switch (mode.space) {
520 		case B_RGB32_LITTLE:
521 			colorMode = DISPLAY_CONTROL_RGB32;
522 			bytesPerPixel = 4;
523 			bitsPerPixel = 32;
524 			break;
525 		case B_RGB16_LITTLE:
526 			colorMode = DISPLAY_CONTROL_RGB16;
527 			bytesPerPixel = 2;
528 			bitsPerPixel = 16;
529 			break;
530 		case B_RGB15_LITTLE:
531 			colorMode = DISPLAY_CONTROL_RGB15;
532 			bytesPerPixel = 2;
533 			bitsPerPixel = 15;
534 			break;
535 		case B_CMAP8:
536 		default:
537 			colorMode = DISPLAY_CONTROL_CMAP8;
538 			bytesPerPixel = 1;
539 			bitsPerPixel = 8;
540 			break;
541 	}
542 
543 	bytesPerRow = mode.virtual_width * bytesPerPixel;
544 
545 	// Make sure bytesPerRow is a multiple of 64
546 	// TODO: check if the older chips have the same restriction!
547 	if ((bytesPerRow & 63) != 0)
548 		bytesPerRow = (bytesPerRow + 63) & ~63;
549 }
550 
551 
552 //	#pragma mark -
553 
554 
555 uint32
556 intel_accelerant_mode_count(void)
557 {
558 	TRACE(("intel_accelerant_mode_count()\n"));
559 	return gInfo->shared_info->mode_count;
560 }
561 
562 
563 status_t
564 intel_get_mode_list(display_mode *modeList)
565 {
566 	TRACE(("intel_get_mode_info()\n"));
567 	memcpy(modeList, gInfo->mode_list,
568 		gInfo->shared_info->mode_count * sizeof(display_mode));
569 	return B_OK;
570 }
571 
572 
573 status_t
574 intel_propose_display_mode(display_mode *target, const display_mode *low,
575 	const display_mode *high)
576 {
577 	TRACE(("intel_propose_display_mode()\n"));
578 
579 	// just search for the specified mode in the list
580 
581 	for (uint32 i = 0; i < gInfo->shared_info->mode_count; i++) {
582 		display_mode *mode = &gInfo->mode_list[i];
583 
584 		// TODO: improve this, ie. adapt pixel clock to allowed values!!!
585 
586 		if (target->virtual_width != mode->virtual_width
587 			|| target->virtual_height != mode->virtual_height
588 			|| target->space != mode->space)
589 			continue;
590 
591 		*target = *mode;
592 		return B_OK;
593 	}
594 	return B_BAD_VALUE;
595 }
596 
597 
598 status_t
599 intel_set_display_mode(display_mode *mode)
600 {
601 	TRACE(("intel_set_display_mode(%ldx%ld)\n", mode->virtual_width,
602 		mode->virtual_height));
603 
604 	if (mode == NULL)
605 		return B_BAD_VALUE;
606 
607 	display_mode target = *mode;
608 
609 	// TODO: it may be acceptable to continue when using panel fitting or
610 	// centering, since the data from propose_display_mode will not actually be
611 	// used as is in this case.
612 	if (intel_propose_display_mode(&target, mode, mode))
613 		return B_BAD_VALUE;
614 
615 	uint32 colorMode, bytesPerRow, bitsPerPixel;
616 	get_color_space_format(target, colorMode, bytesPerRow, bitsPerPixel);
617 
618 	// TODO: do not go further if the mode is identical to the current one.
619 	// This would avoid the screen being off when switching workspaces when they
620 	// have the same resolution.
621 
622 #if 0
623 static bool first = true;
624 if (first) {
625 	int fd = open("/boot/home/ie_.regs", O_CREAT | O_WRONLY, 0644);
626 	if (fd >= 0) {
627 		for (int32 i = 0; i < 0x80000; i += 16) {
628 			char line[512];
629 			int length = sprintf(line, "%05lx: %08lx %08lx %08lx %08lx\n",
630 				i, read32(i), read32(i + 4), read32(i + 8), read32(i + 12));
631 			write(fd, line, length);
632 		}
633 		close(fd);
634 		sync();
635 	}
636 	first = false;
637 }
638 #endif
639 
640 	intel_shared_info &sharedInfo = *gInfo->shared_info;
641 	Autolock locker(sharedInfo.accelerant_lock);
642 
643 	// TODO: This may not be neccesary
644 	set_display_power_mode(B_DPMS_OFF);
645 
646 	// free old and allocate new frame buffer in graphics memory
647 
648 	intel_free_memory(sharedInfo.frame_buffer);
649 
650 	uint32 base;
651 	if (intel_allocate_memory(bytesPerRow * target.virtual_height, 0,
652 			base) < B_OK) {
653 		// oh, how did that happen? Unfortunately, there is no really good way
654 		// back
655 		if (intel_allocate_memory(sharedInfo.current_mode.virtual_height
656 				* sharedInfo.bytes_per_row, 0, base) == B_OK) {
657 			sharedInfo.frame_buffer = base;
658 			sharedInfo.frame_buffer_offset = base
659 				- (addr_t)sharedInfo.graphics_memory;
660 			set_frame_buffer_base();
661 		}
662 
663 		TRACE(("intel_extreme : Failed to allocate framebuffer !\n"));
664 		return B_NO_MEMORY;
665 	}
666 
667 	// clear frame buffer before using it
668 	memset((uint8 *)base, 0, bytesPerRow * target.virtual_height);
669 	sharedInfo.frame_buffer = base;
670 	sharedInfo.frame_buffer_offset = base - (addr_t)sharedInfo.graphics_memory;
671 
672 	// make sure VGA display is disabled
673 	write32(INTEL_VGA_DISPLAY_CONTROL, VGA_DISPLAY_DISABLED);
674 	read32(INTEL_VGA_DISPLAY_CONTROL);
675 
676 	if ((gInfo->head_mode & HEAD_MODE_B_DIGITAL) != 0) {
677 		// For LVDS panels, we actually always set the native mode in hardware
678 		// Then we use the panel fitter to scale the picture to that.
679 		display_mode hardwareTarget;
680 		bool needsScaling = false;
681 
682 		// Try to get the panel preferred screen mode from EDID info
683 		if (gInfo->has_edid) {
684 			hardwareTarget.space = target.space;
685 			hardwareTarget.virtual_width
686 				= gInfo->edid_info.std_timing[0].h_size;
687 			hardwareTarget.virtual_height
688 				= gInfo->edid_info.std_timing[0].v_size;
689 			for (int i = 0; i < EDID1_NUM_DETAILED_MONITOR_DESC; i++) {
690 				if (gInfo->edid_info.detailed_monitor[i].monitor_desc_type
691 						== EDID1_IS_DETAILED_TIMING) {
692 					hardwareTarget.virtual_width = gInfo->edid_info
693 						.detailed_monitor[i].data.detailed_timing.h_active;
694 					hardwareTarget.virtual_height = gInfo->edid_info
695 						.detailed_monitor[i].data.detailed_timing.v_active;
696 					break;
697 				}
698 			}
699 			TRACE(("intel_extreme : hardware mode will actually be %dx%d\n",
700 				hardwareTarget.virtual_width, hardwareTarget.virtual_height));
701 			if ((hardwareTarget.virtual_width <= target.virtual_width
702 					&& hardwareTarget.virtual_height <= target.virtual_height
703 					&& hardwareTarget.space <= target.space)
704 				|| intel_propose_display_mode(&hardwareTarget, mode, mode)) {
705 				hardwareTarget = target;
706 			} else
707 				needsScaling = true;
708 		} else {
709 			// We don't have EDID data, try to set the requested mode directly
710 			hardwareTarget = target;
711 		}
712 
713 		pll_divisors divisors;
714 		if (needsScaling)
715 			compute_pll_divisors(hardwareTarget, divisors, true);
716 		else
717 			compute_pll_divisors(target, divisors, true);
718 
719 		uint32 dpll = DISPLAY_PLL_NO_VGA_CONTROL | DISPLAY_PLL_ENABLED;
720 		if (gInfo->shared_info->device_type.InFamily(INTEL_TYPE_9xx)) {
721 			dpll |= LVDS_PLL_MODE_LVDS;
722 				// DPLL mode LVDS for i915+
723 		}
724 
725 		// Compute bitmask from p1 value
726 		dpll |= (1 << (divisors.post1 - 1)) << DISPLAY_PLL_POST1_DIVISOR_SHIFT;
727 		switch (divisors.post2) {
728 			case 5:
729 			case 7:
730 				dpll |= DISPLAY_PLL_DIVIDE_HIGH;
731 				break;
732 		}
733 
734 		// Disable panel fitting, but enable 8 to 6-bit dithering
735 		write32(INTEL_PANEL_FIT_CONTROL, 0x4);
736 			// TODO: do not do this if the connected panel is 24-bit
737 			// (I don't know how to detect that)
738 
739 		if ((dpll & DISPLAY_PLL_ENABLED) != 0) {
740 			write32(INTEL_DISPLAY_B_PLL_DIVISOR_0,
741 				(((divisors.n - 2) << DISPLAY_PLL_N_DIVISOR_SHIFT)
742 					& DISPLAY_PLL_N_DIVISOR_MASK)
743 				| (((divisors.m1 - 2) << DISPLAY_PLL_M1_DIVISOR_SHIFT)
744 					& DISPLAY_PLL_M1_DIVISOR_MASK)
745 				| (((divisors.m2 - 2) << DISPLAY_PLL_M2_DIVISOR_SHIFT)
746 					& DISPLAY_PLL_M2_DIVISOR_MASK));
747 			write32(INTEL_DISPLAY_B_PLL, dpll & ~DISPLAY_PLL_ENABLED);
748 			read32(INTEL_DISPLAY_B_PLL);
749 			spin(150);
750 		}
751 
752 		uint32 lvds = read32(INTEL_DISPLAY_LVDS_PORT)
753 			| LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
754 
755 		lvds |= LVDS_18BIT_DITHER;
756 			// TODO: do not do this if the connected panel is 24-bit
757 			// (I don't know how to detect that)
758 
759 		float referenceClock = gInfo->shared_info->pll_info.reference_frequency
760 			/ 1000.0f;
761 
762 		// Set the B0-B3 data pairs corresponding to whether we're going to
763 		// set the DPLLs for dual-channel mode or not.
764 		if (divisors.post2 == LVDS_POST2_RATE_FAST)
765 			lvds |= LVDS_B0B3PAIRS_POWER_UP | LVDS_CLKB_POWER_UP;
766 		else
767 			lvds &= ~( LVDS_B0B3PAIRS_POWER_UP | LVDS_CLKB_POWER_UP);
768 
769 		write32(INTEL_DISPLAY_LVDS_PORT, lvds);
770 		read32(INTEL_DISPLAY_LVDS_PORT);
771 
772 		write32(INTEL_DISPLAY_B_PLL_DIVISOR_0,
773 			(((divisors.n - 2) << DISPLAY_PLL_N_DIVISOR_SHIFT)
774 				& DISPLAY_PLL_N_DIVISOR_MASK)
775 			| (((divisors.m1 - 2) << DISPLAY_PLL_M1_DIVISOR_SHIFT)
776 				& DISPLAY_PLL_M1_DIVISOR_MASK)
777 			| (((divisors.m2 - 2) << DISPLAY_PLL_M2_DIVISOR_SHIFT)
778 				& DISPLAY_PLL_M2_DIVISOR_MASK));
779 
780 		write32(INTEL_DISPLAY_B_PLL, dpll);
781 		read32(INTEL_DISPLAY_B_PLL);
782 
783 		// Wait for the clocks to stabilize
784 		spin(150);
785 
786 		if (gInfo->shared_info->device_type.InGroup(INTEL_TYPE_96x)) {
787 			float adjusted = ((referenceClock * divisors.m) / divisors.n)
788 				/ divisors.post;
789 			uint32 pixelMultiply;
790 			if (needsScaling) {
791 				pixelMultiply = uint32(adjusted
792 					/ (hardwareTarget.timing.pixel_clock / 1000.0f));
793 			} else {
794 				pixelMultiply = uint32(adjusted
795 					/ (target.timing.pixel_clock / 1000.0f));
796 			}
797 
798 			write32(INTEL_DISPLAY_B_PLL_MULTIPLIER_DIVISOR, (0 << 24)
799 				| ((pixelMultiply - 1) << 8));
800 		} else
801 			write32(INTEL_DISPLAY_B_PLL, dpll);
802 
803 		read32(INTEL_DISPLAY_B_PLL);
804 		spin(150);
805 
806 		// update timing parameters
807 		if (needsScaling) {
808 			// TODO: Alternatively, it should be possible to use the panel
809 			// fitter and scale the picture.
810 
811 			// TODO: Perform some sanity check, for example if the target is
812 			// wider than the hardware mode we end up with negative borders and
813 			// broken timings
814 			uint32 borderWidth = hardwareTarget.timing.h_display
815 				- target.timing.h_display;
816 
817 			uint32 syncWidth = hardwareTarget.timing.h_sync_end
818 				- hardwareTarget.timing.h_sync_start;
819 
820 			uint32 syncCenter = target.timing.h_display
821 				+ (hardwareTarget.timing.h_total
822 				- target.timing.h_display) / 2;
823 
824 			write32(INTEL_DISPLAY_B_HTOTAL,
825 				((uint32)(hardwareTarget.timing.h_total - 1) << 16)
826 				| ((uint32)target.timing.h_display - 1));
827 			write32(INTEL_DISPLAY_B_HBLANK,
828 				((uint32)(hardwareTarget.timing.h_total - borderWidth / 2 - 1)
829 					<< 16)
830 				| ((uint32)target.timing.h_display + borderWidth / 2 - 1));
831 			write32(INTEL_DISPLAY_B_HSYNC,
832 				((uint32)(syncCenter + syncWidth / 2 - 1) << 16)
833 				| ((uint32)syncCenter - syncWidth / 2 - 1));
834 
835 			uint32 borderHeight = hardwareTarget.timing.v_display
836 				- target.timing.v_display;
837 
838 			uint32 syncHeight = hardwareTarget.timing.v_sync_end
839 				- hardwareTarget.timing.v_sync_start;
840 
841 			syncCenter = target.timing.v_display
842 				+ (hardwareTarget.timing.v_total
843 				- target.timing.v_display) / 2;
844 
845 			write32(INTEL_DISPLAY_B_VTOTAL,
846 				((uint32)(hardwareTarget.timing.v_total - 1) << 16)
847 				| ((uint32)target.timing.v_display - 1));
848 			write32(INTEL_DISPLAY_B_VBLANK,
849 				((uint32)(hardwareTarget.timing.v_total - borderHeight / 2 - 1)
850 					<< 16)
851 				| ((uint32)target.timing.v_display
852 					+ borderHeight / 2 - 1));
853 			write32(INTEL_DISPLAY_B_VSYNC, ((uint32)(syncCenter
854 					+ syncHeight / 2 - 1) << 16)
855 				| ((uint32)syncCenter - syncHeight / 2 - 1));
856 
857 			// This is useful for debugging: it sets the border to red, so you
858 			// can see what is border and what is porch (black area around the
859 			// sync)
860 			// write32(0x61020, 0x00FF0000);
861 		} else {
862 			write32(INTEL_DISPLAY_B_HTOTAL,
863 				((uint32)(target.timing.h_total - 1) << 16)
864 				| ((uint32)target.timing.h_display - 1));
865 			write32(INTEL_DISPLAY_B_HBLANK,
866 				((uint32)(target.timing.h_total - 1) << 16)
867 				| ((uint32)target.timing.h_display - 1));
868 			write32(INTEL_DISPLAY_B_HSYNC, (
869 				(uint32)(target.timing.h_sync_end - 1) << 16)
870 				| ((uint32)target.timing.h_sync_start - 1));
871 
872 			write32(INTEL_DISPLAY_B_VTOTAL,
873 				((uint32)(target.timing.v_total - 1) << 16)
874 				| ((uint32)target.timing.v_display - 1));
875 			write32(INTEL_DISPLAY_B_VBLANK,
876 				((uint32)(target.timing.v_total - 1) << 16)
877 				| ((uint32)target.timing.v_display - 1));
878 			write32(INTEL_DISPLAY_B_VSYNC, (
879 				(uint32)(target.timing.v_sync_end - 1) << 16)
880 				| ((uint32)target.timing.v_sync_start - 1));
881 		}
882 
883 		write32(INTEL_DISPLAY_B_IMAGE_SIZE,
884 			((uint32)(target.timing.h_display - 1) << 16)
885 			| ((uint32)target.timing.v_display - 1));
886 
887 		write32(INTEL_DISPLAY_B_POS, 0);
888 		write32(INTEL_DISPLAY_B_PIPE_SIZE,
889 			((uint32)(target.timing.v_display - 1) << 16)
890 			| ((uint32)target.timing.h_display - 1));
891 
892 		write32(INTEL_DISPLAY_B_CONTROL, (read32(INTEL_DISPLAY_B_CONTROL)
893 				& ~(DISPLAY_CONTROL_COLOR_MASK | DISPLAY_CONTROL_GAMMA))
894 			| colorMode);
895 
896 		write32(INTEL_DISPLAY_B_PIPE_CONTROL,
897 			read32(INTEL_DISPLAY_B_PIPE_CONTROL) | DISPLAY_PIPE_ENABLED);
898 		read32(INTEL_DISPLAY_B_PIPE_CONTROL);
899 	}
900 
901 	if ((gInfo->head_mode & HEAD_MODE_A_ANALOG) != 0) {
902 		pll_divisors divisors;
903 		compute_pll_divisors(target, divisors, false);
904 
905 		write32(INTEL_DISPLAY_A_PLL_DIVISOR_0,
906 			(((divisors.n - 2) << DISPLAY_PLL_N_DIVISOR_SHIFT)
907 				& DISPLAY_PLL_N_DIVISOR_MASK)
908 			| (((divisors.m1 - 2) << DISPLAY_PLL_M1_DIVISOR_SHIFT)
909 				& DISPLAY_PLL_M1_DIVISOR_MASK)
910 			| (((divisors.m2 - 2) << DISPLAY_PLL_M2_DIVISOR_SHIFT)
911 				& DISPLAY_PLL_M2_DIVISOR_MASK));
912 
913 		uint32 pll = DISPLAY_PLL_ENABLED | DISPLAY_PLL_NO_VGA_CONTROL;
914 		if (gInfo->shared_info->device_type.InFamily(INTEL_TYPE_9xx)) {
915 			pll |= ((1 << (divisors.post1 - 1))
916 					<< DISPLAY_PLL_POST1_DIVISOR_SHIFT)
917 				& DISPLAY_PLL_9xx_POST1_DIVISOR_MASK;
918 //			pll |= ((divisors.post1 - 1) << DISPLAY_PLL_POST1_DIVISOR_SHIFT)
919 //				& DISPLAY_PLL_9xx_POST1_DIVISOR_MASK;
920 			if (divisors.post2_high)
921 				pll |= DISPLAY_PLL_DIVIDE_HIGH;
922 
923 			pll |= DISPLAY_PLL_MODE_ANALOG;
924 
925 			if (gInfo->shared_info->device_type.InGroup(INTEL_TYPE_96x))
926 				pll |= 6 << DISPLAY_PLL_PULSE_PHASE_SHIFT;
927 		} else {
928 			if (!divisors.post2_high)
929 				pll |= DISPLAY_PLL_DIVIDE_4X;
930 
931 			pll |= DISPLAY_PLL_2X_CLOCK;
932 
933 			if (divisors.post1 > 2) {
934 				pll |= ((divisors.post1 - 2) << DISPLAY_PLL_POST1_DIVISOR_SHIFT)
935 					& DISPLAY_PLL_POST1_DIVISOR_MASK;
936 			} else
937 				pll |= DISPLAY_PLL_POST1_DIVIDE_2;
938 		}
939 
940 		write32(INTEL_DISPLAY_A_PLL, pll);
941 		read32(INTEL_DISPLAY_A_PLL);
942 		spin(150);
943 		write32(INTEL_DISPLAY_A_PLL, pll);
944 		read32(INTEL_DISPLAY_A_PLL);
945 		spin(150);
946 
947 		// update timing parameters
948 		write32(INTEL_DISPLAY_A_HTOTAL,
949 			((uint32)(target.timing.h_total - 1) << 16)
950 			| ((uint32)target.timing.h_display - 1));
951 		write32(INTEL_DISPLAY_A_HBLANK,
952 			((uint32)(target.timing.h_total - 1) << 16)
953 			| ((uint32)target.timing.h_display - 1));
954 		write32(INTEL_DISPLAY_A_HSYNC,
955 			((uint32)(target.timing.h_sync_end - 1) << 16)
956 			| ((uint32)target.timing.h_sync_start - 1));
957 
958 		write32(INTEL_DISPLAY_A_VTOTAL,
959 			((uint32)(target.timing.v_total - 1) << 16)
960 			| ((uint32)target.timing.v_display - 1));
961 		write32(INTEL_DISPLAY_A_VBLANK,
962 			((uint32)(target.timing.v_total - 1) << 16)
963 			| ((uint32)target.timing.v_display - 1));
964 		write32(INTEL_DISPLAY_A_VSYNC,
965 			((uint32)(target.timing.v_sync_end - 1) << 16)
966 			| ((uint32)target.timing.v_sync_start - 1));
967 
968 		write32(INTEL_DISPLAY_A_IMAGE_SIZE,
969 			((uint32)(target.timing.h_display - 1) << 16)
970 			| ((uint32)target.timing.v_display - 1));
971 
972 		write32(INTEL_DISPLAY_A_ANALOG_PORT,
973 			(read32(INTEL_DISPLAY_A_ANALOG_PORT)
974 				& ~(DISPLAY_MONITOR_POLARITY_MASK
975 					| DISPLAY_MONITOR_VGA_POLARITY))
976 			| ((target.timing.flags & B_POSITIVE_HSYNC) != 0
977 				? DISPLAY_MONITOR_POSITIVE_HSYNC : 0)
978 			| ((target.timing.flags & B_POSITIVE_VSYNC) != 0
979 				? DISPLAY_MONITOR_POSITIVE_VSYNC : 0));
980 
981 		// TODO: verify the two comments below: the X driver doesn't seem to
982 		//		care about both of them!
983 
984 		// These two have to be set for display B, too - this obviously means
985 		// that the second head always must adopt the color space of the first
986 		// head.
987 		write32(INTEL_DISPLAY_A_CONTROL, (read32(INTEL_DISPLAY_A_CONTROL)
988 				& ~(DISPLAY_CONTROL_COLOR_MASK | DISPLAY_CONTROL_GAMMA))
989 			| colorMode);
990 
991 		if ((gInfo->head_mode & HEAD_MODE_B_DIGITAL) != 0) {
992 			write32(INTEL_DISPLAY_B_IMAGE_SIZE,
993 				((uint32)(target.timing.h_display - 1) << 16)
994 				| ((uint32)target.timing.v_display - 1));
995 
996 			write32(INTEL_DISPLAY_B_CONTROL, (read32(INTEL_DISPLAY_B_CONTROL)
997 					& ~(DISPLAY_CONTROL_COLOR_MASK | DISPLAY_CONTROL_GAMMA))
998 				| colorMode);
999 		}
1000 	}
1001 
1002 	set_display_power_mode(sharedInfo.dpms_mode);
1003 
1004 	// Changing bytes per row seems to be ignored if the plane/pipe is turned
1005 	// off
1006 
1007 	if (gInfo->head_mode & HEAD_MODE_A_ANALOG)
1008 		write32(INTEL_DISPLAY_A_BYTES_PER_ROW, bytesPerRow);
1009 	if (gInfo->head_mode & HEAD_MODE_B_DIGITAL)
1010 		write32(INTEL_DISPLAY_B_BYTES_PER_ROW, bytesPerRow);
1011 
1012 	set_frame_buffer_base();
1013 		// triggers writing back double-buffered registers
1014 
1015 	// update shared info
1016 	sharedInfo.bytes_per_row = bytesPerRow;
1017 	sharedInfo.current_mode = target;
1018 	sharedInfo.bits_per_pixel = bitsPerPixel;
1019 
1020 	return B_OK;
1021 }
1022 
1023 
1024 status_t
1025 intel_get_display_mode(display_mode *_currentMode)
1026 {
1027 	TRACE(("intel_get_display_mode()\n"));
1028 
1029 	retrieve_current_mode(*_currentMode, INTEL_DISPLAY_A_PLL);
1030 	return B_OK;
1031 }
1032 
1033 
1034 status_t
1035 intel_get_edid_info(void* info, size_t size, uint32* _version)
1036 {
1037 	TRACE(("intel_get_edid_info()\n"));
1038 
1039 	if (!gInfo->has_edid)
1040 		return B_ERROR;
1041 	if (size < sizeof(struct edid1_info))
1042 		return B_BUFFER_OVERFLOW;
1043 
1044 	memcpy(info, &gInfo->edid_info, sizeof(struct edid1_info));
1045 	*_version = EDID_VERSION_1;
1046 	return B_OK;
1047 }
1048 
1049 
1050 status_t
1051 intel_get_frame_buffer_config(frame_buffer_config *config)
1052 {
1053 	TRACE(("intel_get_frame_buffer_config()\n"));
1054 
1055 	uint32 offset = gInfo->shared_info->frame_buffer_offset;
1056 
1057 	config->frame_buffer = gInfo->shared_info->graphics_memory + offset;
1058 	config->frame_buffer_dma
1059 		= (uint8 *)gInfo->shared_info->physical_graphics_memory + offset;
1060 	config->bytes_per_row = gInfo->shared_info->bytes_per_row;
1061 
1062 	return B_OK;
1063 }
1064 
1065 
1066 status_t
1067 intel_get_pixel_clock_limits(display_mode *mode, uint32 *_low, uint32 *_high)
1068 {
1069 	TRACE(("intel_get_pixel_clock_limits()\n"));
1070 
1071 	if (_low != NULL) {
1072 		// lower limit of about 48Hz vertical refresh
1073 		uint32 totalClocks = (uint32)mode->timing.h_total * (uint32)mode->timing.v_total;
1074 		uint32 low = (totalClocks * 48L) / 1000L;
1075 		if (low < gInfo->shared_info->pll_info.min_frequency)
1076 			low = gInfo->shared_info->pll_info.min_frequency;
1077 		else if (low > gInfo->shared_info->pll_info.max_frequency)
1078 			return B_ERROR;
1079 
1080 		*_low = low;
1081 	}
1082 
1083 	if (_high != NULL)
1084 		*_high = gInfo->shared_info->pll_info.max_frequency;
1085 
1086 	return B_OK;
1087 }
1088 
1089 
1090 status_t
1091 intel_move_display(uint16 horizontalStart, uint16 verticalStart)
1092 {
1093 	TRACE(("intel_move_display()\n"));
1094 
1095 	intel_shared_info &sharedInfo = *gInfo->shared_info;
1096 	Autolock locker(sharedInfo.accelerant_lock);
1097 
1098 	display_mode &mode = sharedInfo.current_mode;
1099 
1100 	if (horizontalStart + mode.timing.h_display > mode.virtual_width
1101 		|| verticalStart + mode.timing.v_display > mode.virtual_height)
1102 		return B_BAD_VALUE;
1103 
1104 	mode.h_display_start = horizontalStart;
1105 	mode.v_display_start = verticalStart;
1106 
1107 	set_frame_buffer_base();
1108 
1109 	return B_OK;
1110 }
1111 
1112 
1113 status_t
1114 intel_get_timing_constraints(display_timing_constraints *constraints)
1115 {
1116 	TRACE(("intel_get_timing_contraints()\n"));
1117 	return B_ERROR;
1118 }
1119 
1120 
1121 void
1122 intel_set_indexed_colors(uint count, uint8 first, uint8 *colors, uint32 flags)
1123 {
1124 	TRACE(("intel_set_indexed_colors(colors = %p, first = %u)\n", colors, first));
1125 
1126 	if (colors == NULL)
1127 		return;
1128 
1129 	Autolock locker(gInfo->shared_info->accelerant_lock);
1130 
1131 	for (; count-- > 0; first++) {
1132 		uint32 color = colors[0] << 16 | colors[1] << 8 | colors[2];
1133 		colors += 3;
1134 
1135 		if (gInfo->head_mode & HEAD_MODE_A_ANALOG)
1136 			write32(INTEL_DISPLAY_A_PALETTE + first * sizeof(uint32), color);
1137 		if (gInfo->head_mode & HEAD_MODE_B_DIGITAL)
1138 			write32(INTEL_DISPLAY_B_PALETTE + first * sizeof(uint32), color);
1139 	}
1140 }
1141 
1142