xref: /haiku/src/add-ons/accelerants/intel_extreme/Pipes.cpp (revision d12bb8b14803d030b4a8fba91131e4bb96c4f406)
1 /*
2  * Copyright 2011-2015, Haiku, Inc. All Rights Reserved.
3  * Distributed under the terms of the MIT License.
4  *
5  * Authors:
6  *		Michael Lotz, mmlr@mlotz.ch
7  *		Alexander von Gluck IV, kallisti5@unixzen.com
8  */
9 #include "Pipes.h"
10 
11 #include "accelerant.h"
12 #include "intel_extreme.h"
13 #include <KernelExport.h>
14 
15 #include <stdlib.h>
16 #include <string.h>
17 
18 #include <new>
19 
20 
21 #define TRACE_PIPE
22 #ifdef TRACE_PIPE
23 extern "C" void _sPrintf(const char* format, ...);
24 #	define TRACE(x...) _sPrintf("intel_extreme: " x)
25 #else
26 #	define TRACE(x...) ;
27 #endif
28 
29 #define ERROR(x...) _sPrintf("intel_extreme: " x)
30 #define CALLED(x...) TRACE("CALLED %s\n", __PRETTY_FUNCTION__)
31 
32 
33 // PIPE: 6
34 // PLANE: 7
35 
36 
37 void
38 program_pipe_color_modes(uint32 colorMode)
39 {
40 	// All pipes get the same color mode
41 	write32(INTEL_DISPLAY_A_CONTROL, (read32(INTEL_DISPLAY_A_CONTROL)
42 			& ~(DISPLAY_CONTROL_COLOR_MASK | DISPLAY_CONTROL_GAMMA))
43         | colorMode);
44 	write32(INTEL_DISPLAY_B_CONTROL, (read32(INTEL_DISPLAY_B_CONTROL)
45 			& ~(DISPLAY_CONTROL_COLOR_MASK | DISPLAY_CONTROL_GAMMA))
46 		| colorMode);
47 }
48 
49 
50 // #pragma mark - Pipe
51 
52 
53 Pipe::Pipe(pipe_index pipeIndex)
54 	:
55 	fHasTranscoder(false),
56 	fFDILink(NULL),
57 //	fPanelFitter(NULL),
58 	fPipeIndex(pipeIndex),
59 	fPipeOffset(0),
60 	fPlaneOffset(0)
61 {
62 	if (pipeIndex == INTEL_PIPE_B) {
63 		fPipeOffset = INTEL_DISPLAY_OFFSET;
64 		fPlaneOffset = INTEL_PLANE_OFFSET;
65 	}
66 
67 	// IvyBridge: Analog + Digital Ports behind FDI (on northbridge)
68 	// Haswell: Only VGA behind FDI (on northbridge)
69 	// SkyLake: FDI gone. No more northbridge video.
70 	if (gInfo->shared_info->pch_info != INTEL_PCH_NONE) {
71 		TRACE("%s: Pipe %s routed through FDI\n", __func__,
72 			(pipeIndex == INTEL_PIPE_A) ? "A" : "B");
73 
74 		fHasTranscoder = true;
75 
76 		// Program FDILink if PCH
77 		fFDILink = new(std::nothrow) FDILink(pipeIndex);
78 	}
79 
80 	TRACE("Pipe %s. Pipe Base: 0x%" B_PRIxADDR
81 		" Plane Base: 0x% " B_PRIxADDR "\n", (pipeIndex == INTEL_PIPE_A)
82 			? "A" : "B", fPipeOffset, fPlaneOffset);
83 }
84 
85 
86 Pipe::~Pipe()
87 {
88 }
89 
90 
91 bool
92 Pipe::IsEnabled()
93 {
94 	CALLED();
95 
96 	return (read32(INTEL_DISPLAY_A_PIPE_CONTROL + fPipeOffset)
97 		& INTEL_PIPE_ENABLED) != 0;
98 }
99 
100 
101 void
102 Pipe::Configure(display_mode* mode)
103 {
104 #if 0
105 	// FIXME the previous values are never masked out from the
106 	// register, so we just OR things together and hope to fall on a working
107 	// mode. Better do nothing at all for now.
108 	uint32 pipeControl = read32(INTEL_DISPLAY_A_PIPE_CONTROL + fPipeOffset);
109 
110 	// TODO: Haswell+ dithering changes.
111 	if (gInfo->shared_info->device_type.Generation() >= 4) {
112 		pipeControl |= (INTEL_PIPE_DITHER_EN | INTEL_PIPE_DITHER_TYPE_SP);
113 		// FIXME this makes no sense, if only because B_CMAP8, B_RGB24 and
114 		// B_RGB32 have the same color precision (8bit per component).
115 		// Also because the color mode is a property of the hardware
116 		// (depends on which LVDS panel is used, typically), not the video mode.
117 		switch (mode->space) {
118 			case B_CMAP8:
119 			case B_RGB15_LITTLE:
120 			case B_RGB16_LITTLE:
121 				pipeControl |= INTEL_PIPE_6BPC;
122 				break;
123 			case B_RGB24_LITTLE:
124 				pipeControl |= INTEL_PIPE_8BPC;
125 				break;
126 			case B_RGB32_LITTLE:
127 			default:
128 				pipeControl |= INTEL_PIPE_10BPC;
129 				break;
130 		}
131 	}
132 
133 	// TODO: CxSR downclocking?
134 
135 	// TODO: Interlaced modes
136 	pipeControl |= INTEL_PIPE_PROGRESSIVE;
137 
138 	write32(INTEL_DISPLAY_A_PIPE_CONTROL + fPipeOffset, pipeControl);
139 	read32(INTEL_DISPLAY_A_PIPE_CONTROL + fPipeOffset);
140 #endif
141 
142 	// According to SandyBridge modesetting sequence, pipe must be enabled
143 	// before PLL are configured.
144 	addr_t pipeReg = INTEL_DISPLAY_A_PIPE_CONTROL + fPipeOffset;
145 	write32(pipeReg, read32(pipeReg) | INTEL_PIPE_ENABLED);
146 
147 }
148 
149 
150 void
151 Pipe::_ConfigureTranscoder(display_mode* target)
152 {
153 	CALLED();
154 
155 	TRACE("%s: fPipeOffset: 0x%" B_PRIx32"\n", __func__, fPipeOffset);
156 
157 	// update timing (fPipeOffset bumps the DISPLAY_A to B when needed)
158 	write32(INTEL_TRANSCODER_A_HTOTAL + fPipeOffset,
159 		((uint32)(target->timing.h_total - 1) << 16)
160 		| ((uint32)target->timing.h_display - 1));
161 	write32(INTEL_TRANSCODER_A_HBLANK + fPipeOffset,
162 		((uint32)(target->timing.h_total - 1) << 16)
163 		| ((uint32)target->timing.h_display - 1));
164 	write32(INTEL_TRANSCODER_A_HSYNC + fPipeOffset,
165 		((uint32)(target->timing.h_sync_end - 1) << 16)
166 		| ((uint32)target->timing.h_sync_start - 1));
167 
168 	write32(INTEL_TRANSCODER_A_VTOTAL + fPipeOffset,
169 		((uint32)(target->timing.v_total - 1) << 16)
170 		| ((uint32)target->timing.v_display - 1));
171 	write32(INTEL_TRANSCODER_A_VBLANK + fPipeOffset,
172 		((uint32)(target->timing.v_total - 1) << 16)
173 		| ((uint32)target->timing.v_display - 1));
174 	write32(INTEL_TRANSCODER_A_VSYNC + fPipeOffset,
175 		((uint32)(target->timing.v_sync_end - 1) << 16)
176 		| ((uint32)target->timing.v_sync_start - 1));
177 
178 	#if 0
179 	// XXX: Is it ok to do these on non-digital?
180 	write32(INTEL_TRANSCODER_A_POS + fPipeOffset, 0);
181 	write32(INTEL_TRANSCODER_A_IMAGE_SIZE + fPipeOffset,
182 		((uint32)(target->virtual_width - 1) << 16)
183 			| ((uint32)target->virtual_height - 1));
184 	#endif
185 }
186 
187 
188 void
189 Pipe::ConfigureTimings(display_mode* target, bool hardware)
190 {
191 	CALLED();
192 
193 	TRACE("%s(%d): fPipeOffset: 0x%" B_PRIx32"\n", __func__, hardware,
194 		fPipeOffset);
195 
196 	if (target == NULL) {
197 		ERROR("%s: Invalid display mode!\n", __func__);
198 		return;
199 	}
200 
201 	/* If using the transcoder, leave the display at its native resolution,
202 	 * and configure only the transcoder (panel fitting will match them
203 	 * together). */
204 	if (!fHasTranscoder || hardware)
205 	{
206 		// update timing (fPipeOffset bumps the DISPLAY_A to B when needed)
207 		write32(INTEL_DISPLAY_A_HTOTAL + fPipeOffset,
208 			((uint32)(target->timing.h_total - 1) << 16)
209 			| ((uint32)target->timing.h_display - 1));
210 		write32(INTEL_DISPLAY_A_HBLANK + fPipeOffset,
211 			((uint32)(target->timing.h_total - 1) << 16)
212 			| ((uint32)target->timing.h_display - 1));
213 		write32(INTEL_DISPLAY_A_HSYNC + fPipeOffset,
214 			((uint32)(target->timing.h_sync_end - 1) << 16)
215 			| ((uint32)target->timing.h_sync_start - 1));
216 
217 		write32(INTEL_DISPLAY_A_VTOTAL + fPipeOffset,
218 			((uint32)(target->timing.v_total - 1) << 16)
219 			| ((uint32)target->timing.v_display - 1));
220 		write32(INTEL_DISPLAY_A_VBLANK + fPipeOffset,
221 			((uint32)(target->timing.v_total - 1) << 16)
222 			| ((uint32)target->timing.v_display - 1));
223 		write32(INTEL_DISPLAY_A_VSYNC + fPipeOffset,
224 			((uint32)(target->timing.v_sync_end - 1) << 16)
225 			| ((uint32)target->timing.v_sync_start - 1));
226 	}
227 
228 	if (gInfo->shared_info->device_type.Generation() < 6) {
229 		// FIXME check on which generations this register exists
230 		// (it appears it would be available only for cursor planes, not
231 		// display planes)
232 		// Since we set the plane to be the same size as the display, we can
233 		// just show it starting at top-left.
234 		write32(INTEL_DISPLAY_A_POS + fPipeOffset, 0);
235 	}
236 
237 	// The only thing that really matters: set the image size and let the
238 	// panel fitter or the transcoder worry about the rest
239 	write32(INTEL_DISPLAY_A_PIPE_SIZE + fPipeOffset,
240 		((uint32)(target->virtual_width - 1) << 16)
241 			| ((uint32)target->virtual_height - 1));
242 
243 	// Set the plane size as well while we're at it (this is independant, we
244 	// could have a larger plane and scroll through it).
245 	if (gInfo->shared_info->device_type.Generation() <= 4) {
246 		// This is "reserved" on G35 and GMA965, but needed on 945 (for which
247 		// there is no public documentation), and I assume earlier devices as
248 		// well. Note that the height and width are swapped when compared to
249 		// the other registers.
250 		write32(INTEL_DISPLAY_A_IMAGE_SIZE + fPipeOffset,
251 			((uint32)(target->virtual_height - 1) << 16)
252 			| ((uint32)target->virtual_width - 1));
253 	}
254 
255 	if (fHasTranscoder && hardware) {
256 		_ConfigureTranscoder(target);
257 	}
258 }
259 
260 
261 void
262 Pipe::ConfigureClocks(const pll_divisors& divisors, uint32 pixelClock,
263 	uint32 extraFlags)
264 {
265 	CALLED();
266 
267 	addr_t pllDivisorA = INTEL_DISPLAY_A_PLL_DIVISOR_0;
268 	addr_t pllDivisorB = INTEL_DISPLAY_A_PLL_DIVISOR_1;
269 	addr_t pllControl = INTEL_DISPLAY_A_PLL;
270 	addr_t pllMD = INTEL_DISPLAY_A_PLL_MD;
271 
272 	if (fPipeIndex == INTEL_PIPE_B) {
273 		pllDivisorA = INTEL_DISPLAY_B_PLL_DIVISOR_0;
274 		pllDivisorB = INTEL_DISPLAY_B_PLL_DIVISOR_1;
275 		pllControl = INTEL_DISPLAY_B_PLL;
276 		pllMD = INTEL_DISPLAY_B_PLL_MD;
277 	}
278 
279 	float refFreq = gInfo->shared_info->pll_info.reference_frequency / 1000.0f;
280 
281 	if (gInfo->shared_info->device_type.InGroup(INTEL_GROUP_96x)) {
282 		float adjusted = ((refFreq * divisors.m) / divisors.n) / divisors.p;
283 		uint32 pixelMultiply = uint32(adjusted / (pixelClock / 1000.0f));
284 		write32(pllMD, (0 << 24) | ((pixelMultiply - 1) << 8));
285 	}
286 
287 	// XXX: For now we assume no LVDS downclocking and program the same divisor
288 	// value to both divisor 0 (standard) and 1 (reduced divisor)
289 	if (gInfo->shared_info->device_type.InGroup(INTEL_GROUP_PIN)) {
290 		write32(pllDivisorA, (((1 << divisors.n) << DISPLAY_PLL_N_DIVISOR_SHIFT)
291 				& DISPLAY_PLL_IGD_N_DIVISOR_MASK)
292 			| (((divisors.m2 - 2) << DISPLAY_PLL_M2_DIVISOR_SHIFT)
293 				& DISPLAY_PLL_IGD_M2_DIVISOR_MASK));
294 		write32(pllDivisorB, (((1 << divisors.n) << DISPLAY_PLL_N_DIVISOR_SHIFT)
295 				& DISPLAY_PLL_IGD_N_DIVISOR_MASK)
296 			| (((divisors.m2 - 2) << DISPLAY_PLL_M2_DIVISOR_SHIFT)
297 				& DISPLAY_PLL_IGD_M2_DIVISOR_MASK));
298 	} else {
299 		write32(pllDivisorA, (((divisors.n - 2) << DISPLAY_PLL_N_DIVISOR_SHIFT)
300 				& DISPLAY_PLL_N_DIVISOR_MASK)
301 			| (((divisors.m1 - 2) << DISPLAY_PLL_M1_DIVISOR_SHIFT)
302 				& DISPLAY_PLL_M1_DIVISOR_MASK)
303 			| (((divisors.m2 - 2) << DISPLAY_PLL_M2_DIVISOR_SHIFT)
304 				& DISPLAY_PLL_M2_DIVISOR_MASK));
305 		write32(pllDivisorB, (((divisors.n - 2) << DISPLAY_PLL_N_DIVISOR_SHIFT)
306 				& DISPLAY_PLL_N_DIVISOR_MASK)
307 			| (((divisors.m1 - 2) << DISPLAY_PLL_M1_DIVISOR_SHIFT)
308 				& DISPLAY_PLL_M1_DIVISOR_MASK)
309 			| (((divisors.m2 - 2) << DISPLAY_PLL_M2_DIVISOR_SHIFT)
310 				& DISPLAY_PLL_M2_DIVISOR_MASK));
311 	}
312 
313 	uint32 pll = DISPLAY_PLL_ENABLED | DISPLAY_PLL_NO_VGA_CONTROL | extraFlags;
314 
315 	if (gInfo->shared_info->device_type.Generation() >= 3) {
316 		// p1 divisor << 1 , 1-8
317 		if (gInfo->shared_info->device_type.InGroup(INTEL_GROUP_PIN)) {
318 			pll |= ((1 << (divisors.p1 - 1))
319 					<< DISPLAY_PLL_IGD_POST1_DIVISOR_SHIFT)
320 				& DISPLAY_PLL_IGD_POST1_DIVISOR_MASK;
321 		} else {
322 			pll |= ((1 << (divisors.p1 - 1))
323 					<< DISPLAY_PLL_POST1_DIVISOR_SHIFT)
324 				& DISPLAY_PLL_9xx_POST1_DIVISOR_MASK;
325 		//	pll |= ((divisors.p1 - 1) << DISPLAY_PLL_POST1_DIVISOR_SHIFT)
326 		//		& DISPLAY_PLL_9xx_POST1_DIVISOR_MASK;
327 		}
328 
329 		// Also configure the FP0 divisor on SandyBridge
330 		if (gInfo->shared_info->device_type.Generation() == 6) {
331 			pll |= ((1 << (divisors.p1 - 1))
332 					<< DISPLAY_PLL_SNB_FP0_POST1_DIVISOR_SHIFT)
333 				& DISPLAY_PLL_SNB_FP0_POST1_DIVISOR_MASK;
334 		}
335 
336 		if (divisors.p2 == 5 || divisors.p2 == 7)
337 			pll |= DISPLAY_PLL_DIVIDE_HIGH;
338 
339 		if (gInfo->shared_info->device_type.InGroup(INTEL_GROUP_96x))
340 			pll |= 6 << DISPLAY_PLL_PULSE_PHASE_SHIFT;
341 	} else {
342 		if (divisors.p2 != 5 && divisors.p2 != 7)
343 			pll |= DISPLAY_PLL_DIVIDE_4X;
344 
345 		pll |= DISPLAY_PLL_2X_CLOCK;
346 
347 		// TODO: Is this supposed to be DISPLAY_PLL_IGD_POST1_DIVISOR_MASK??
348 		if (divisors.p1 > 2) {
349 			pll |= ((divisors.p1 - 2) << DISPLAY_PLL_POST1_DIVISOR_SHIFT)
350 				& DISPLAY_PLL_POST1_DIVISOR_MASK;
351 		} else
352 			pll |= DISPLAY_PLL_POST1_DIVIDE_2;
353 	}
354 
355 	write32(pllControl, pll & ~DISPLAY_PLL_NO_VGA_CONTROL);
356 		// FIXME what is this doing? Why put the PLL back under VGA_CONTROL
357 		// here?
358 	read32(pllControl);
359 	spin(150);
360 
361 	// Configure and enable the PLL
362 	write32(pllControl, pll);
363 	read32(pllControl);
364 
365 	// Allow the PLL to warm up.
366 	spin(150);
367 
368 	if (gInfo->shared_info->device_type.Generation() >= 6) {
369 		// SandyBridge has 3 transcoders, but only 2 PLLs. So there is a new
370 		// register which routes the PLL output to the transcoder that we need
371 		// to configure
372 		uint32 pllSel = read32(SNB_DPLL_SEL);
373 		TRACE("Old PLL selection: %x\n", pllSel);
374 		uint32 shift = 0;
375 		uint32 pllIndex = 0;
376 
377 		// FIXME we assume that pipe A is used with transcoder A, and pipe B
378 		// with transcoder B, that may not always be the case
379 		if (fPipeIndex == INTEL_PIPE_A) {
380 			shift = 0;
381 			pllIndex = 0;
382 			TRACE("Route PLL A to transcoder A\n");
383 		} else if (fPipeIndex == INTEL_PIPE_B) {
384 			shift = 4;
385 			pllIndex = 1;
386 			TRACE("Route PLL B to transcoder B\n");
387 		} else {
388 			ERROR("Attempting to configure PLL for unhandled pipe");
389 			return;
390 		}
391 
392 		// Mask out the previous PLL configuration for this transcoder
393 		pllSel &= ~(0xF << shift);
394 
395 		// Set up the new configuration for this transcoder and enable it
396 		pllSel |= (8 | pllIndex) << shift;
397 
398 		TRACE("New PLL selection: %x\n", pllSel);
399 		write32(SNB_DPLL_SEL, pllSel);
400 	}
401 }
402 
403 
404 void
405 Pipe::Enable(bool enable)
406 {
407 	CALLED();
408 
409 	addr_t pipeReg = INTEL_DISPLAY_A_PIPE_CONTROL + fPipeOffset;
410 	addr_t planeReg = INTEL_DISPLAY_A_CONTROL + fPlaneOffset;
411 
412 	// Planes always have to operate on an enabled pipe
413 
414 	if (enable) {
415 		write32(pipeReg, read32(pipeReg) | INTEL_PIPE_ENABLED);
416 		wait_for_vblank();
417 		write32(planeReg, read32(planeReg) | DISPLAY_CONTROL_ENABLED);
418 	} else {
419 		write32(planeReg, read32(planeReg) & ~DISPLAY_CONTROL_ENABLED);
420 		wait_for_vblank();
421 		write32(pipeReg, read32(pipeReg) & ~INTEL_PIPE_ENABLED);
422 	}
423 
424 	read32(INTEL_DISPLAY_A_BASE);
425 		// flush the eventually cached PCI bus writes
426 }
427