xref: /haiku/src/add-ons/accelerants/intel_extreme/Pipes.cpp (revision 9a6a20d4689307142a7ed26a1437ba47e244e73f)
1 /*
2  * Copyright 2011-2015, Haiku, Inc. All Rights Reserved.
3  * Distributed under the terms of the MIT License.
4  *
5  * Authors:
6  *		Michael Lotz, mmlr@mlotz.ch
7  *		Alexander von Gluck IV, kallisti5@unixzen.com
8  */
9 #include "Pipes.h"
10 
11 #include "accelerant.h"
12 #include "accelerant_protos.h"
13 #include "intel_extreme.h"
14 
15 #include <stdlib.h>
16 #include <string.h>
17 
18 #include <new>
19 
20 
21 #undef TRACE
22 #define TRACE_PIPE
23 #ifdef TRACE_PIPE
24 #	define TRACE(x...) _sPrintf("intel_extreme: " x)
25 #else
26 #	define TRACE(x...) ;
27 #endif
28 
29 #define ERROR(x...) _sPrintf("intel_extreme: " x)
30 #define CALLED(x...) TRACE("CALLED %s\n", __PRETTY_FUNCTION__)
31 
32 
33 // PIPE: 6
34 // PLANE: 7
35 
36 
37 void
38 program_pipe_color_modes(uint32 colorMode)
39 {
40 	// All pipes get the same color mode
41 	if (gInfo->shared_info->device_type.InFamily(INTEL_FAMILY_LAKE)) {
42 		write32(INTEL_DISPLAY_A_CONTROL, (read32(INTEL_DISPLAY_A_CONTROL)
43 			& ~(DISPLAY_CONTROL_COLOR_MASK_SKY | DISPLAY_CONTROL_GAMMA))
44 			| colorMode);
45 		write32(INTEL_DISPLAY_B_CONTROL, (read32(INTEL_DISPLAY_B_CONTROL)
46 			& ~(DISPLAY_CONTROL_COLOR_MASK_SKY | DISPLAY_CONTROL_GAMMA))
47 			| colorMode);
48 	} else {
49 		write32(INTEL_DISPLAY_A_CONTROL, (read32(INTEL_DISPLAY_A_CONTROL)
50 			& ~(DISPLAY_CONTROL_COLOR_MASK | DISPLAY_CONTROL_GAMMA))
51 			| colorMode);
52 		write32(INTEL_DISPLAY_B_CONTROL, (read32(INTEL_DISPLAY_B_CONTROL)
53 			& ~(DISPLAY_CONTROL_COLOR_MASK | DISPLAY_CONTROL_GAMMA))
54 			| colorMode);
55 	}
56 }
57 
58 
59 // #pragma mark - Pipe
60 
61 
62 Pipe::Pipe(pipe_index pipeIndex)
63 	:
64 	fHasTranscoder(false),
65 	fFDILink(NULL),
66 	fPanelFitter(NULL),
67 	fPipeIndex(pipeIndex),
68 	fPipeOffset(0),
69 	fPlaneOffset(0)
70 {
71 	switch (pipeIndex) {
72 		case INTEL_PIPE_B:
73 			TRACE("Pipe B.\n");
74 			fPipeOffset = 0x1000;
75 			fPlaneOffset = INTEL_PLANE_OFFSET;
76 			break;
77 		case INTEL_PIPE_C:
78 			TRACE("Pipe C.\n");
79 			fPipeOffset = 0x2000;
80 			fPlaneOffset = INTEL_PLANE_OFFSET * 2;
81 			break;
82 		case INTEL_PIPE_D:
83 			TRACE("Pipe D.\n");
84 			fPipeOffset = 0xf000;
85 			//no fPlaneOffset..
86 			break;
87 		default:
88 			TRACE("Pipe A.\n");
89 			break;
90 	}
91 
92 	// IvyBridge: Analog + Digital Ports behind FDI (on northbridge)
93 	// Haswell: Only VGA behind FDI (on northbridge)
94 	// SkyLake: FDI gone. No more northbridge video.
95 	if ((gInfo->shared_info->pch_info != INTEL_PCH_NONE) &&
96 		(gInfo->shared_info->device_type.Generation() <= 8)) {
97 		TRACE("%s: Pipe is routed through FDI\n", __func__);
98 
99 		// Program FDILink if PCH
100 		fFDILink = new(std::nothrow) FDILink(pipeIndex);
101 	}
102 	if (gInfo->shared_info->pch_info != INTEL_PCH_NONE) {
103 		// DDI also has transcoders
104 		fHasTranscoder = true;
105 		// Program gen5(+) style panelfitter as well (DDI has this as well..)
106 		fPanelFitter = new(std::nothrow) PanelFitter(pipeIndex);
107 	}
108 
109 	TRACE("Pipe Base: 0x%" B_PRIxADDR " Plane Base: 0x%" B_PRIxADDR "\n",
110 			fPipeOffset, fPlaneOffset);
111 }
112 
113 
114 Pipe::~Pipe()
115 {
116 }
117 
118 
119 bool
120 Pipe::IsEnabled()
121 {
122 	CALLED();
123 
124 	return (read32(INTEL_DISPLAY_A_PIPE_CONTROL + fPipeOffset)
125 		& INTEL_PIPE_ENABLED) != 0;
126 }
127 
128 
129 void
130 Pipe::Configure(display_mode* mode)
131 {
132 	uint32 pipeControl = read32(INTEL_DISPLAY_A_PIPE_CONTROL + fPipeOffset);
133 
134 	// TODO: Haswell+ dithering changes.
135 	//if (gInfo->shared_info->device_type.Generation() >= 4) {
136 	//	pipeControl |= (INTEL_PIPE_DITHER_EN | INTEL_PIPE_DITHER_TYPE_SP);
137 
138 	//Link bit depth: this should be globally known per FDI link (i.e. laptop panel 3x6, rest 3x8)
139 	//currently using BIOS preconfigured setup
140 	//pipeControl = (pipeControl & ~INTEL_PIPE_BPC_MASK) | INTEL_PIPE_BPC(INTEL_PIPE_8BPC);
141 
142 	// TODO: CxSR downclocking?
143 
144 	// TODO: Interlaced modes
145 	pipeControl = (pipeControl & ~(0x7 << 21)) | INTEL_PIPE_PROGRESSIVE;
146 
147 	write32(INTEL_DISPLAY_A_PIPE_CONTROL + fPipeOffset, pipeControl);
148 	read32(INTEL_DISPLAY_A_PIPE_CONTROL + fPipeOffset);
149 
150 	if (gInfo->shared_info->device_type.Generation() >= 6) {
151 		// According to SandyBridge modesetting sequence, pipe must be enabled
152 		// before PLL are configured.
153 		addr_t pipeReg = INTEL_DISPLAY_A_PIPE_CONTROL + fPipeOffset;
154 		write32(pipeReg, read32(pipeReg) | INTEL_PIPE_ENABLED);
155 	}
156 }
157 
158 
159 void
160 Pipe::_ConfigureTranscoder(display_mode* target)
161 {
162 	CALLED();
163 
164 	TRACE("%s: fPipeOffset: 0x%" B_PRIxADDR"\n", __func__, fPipeOffset);
165 
166 	if (gInfo->shared_info->device_type.Generation() < 9) {
167 		// update timing (fPipeOffset bumps the DISPLAY_A to B when needed)
168 		write32(INTEL_TRANSCODER_A_HTOTAL + fPipeOffset,
169 			((uint32)(target->timing.h_total - 1) << 16)
170 			| ((uint32)target->timing.h_display - 1));
171 		write32(INTEL_TRANSCODER_A_HBLANK + fPipeOffset,
172 			((uint32)(target->timing.h_total - 1) << 16)
173 			| ((uint32)target->timing.h_display - 1));
174 		write32(INTEL_TRANSCODER_A_HSYNC + fPipeOffset,
175 			((uint32)(target->timing.h_sync_end - 1) << 16)
176 			| ((uint32)target->timing.h_sync_start - 1));
177 
178 		write32(INTEL_TRANSCODER_A_VTOTAL + fPipeOffset,
179 			((uint32)(target->timing.v_total - 1) << 16)
180 			| ((uint32)target->timing.v_display - 1));
181 		write32(INTEL_TRANSCODER_A_VBLANK + fPipeOffset,
182 			((uint32)(target->timing.v_total - 1) << 16)
183 			| ((uint32)target->timing.v_display - 1));
184 		write32(INTEL_TRANSCODER_A_VSYNC + fPipeOffset,
185 			((uint32)(target->timing.v_sync_end - 1) << 16)
186 			| ((uint32)target->timing.v_sync_start - 1));
187 
188 		#if 0
189 		// XXX: Is it ok to do these on non-digital?
190 		write32(INTEL_TRANSCODER_A_POS + fPipeOffset, 0);
191 		write32(INTEL_TRANSCODER_A_IMAGE_SIZE + fPipeOffset,
192 			((uint32)(target->timing.h_display - 1) << 16)
193 				| ((uint32)target->timing.v_display - 1));
194 		#endif
195 	} else {
196 		// on Skylake and later, timing is already done in ConfigureTimings()
197 	}
198 }
199 
200 
201 uint32
202 Pipe::TranscoderMode()
203 {
204 	if (gInfo->shared_info->device_type.Generation() < 9) {
205 		ERROR("%s: Don't know how to get transcoder mode on older generations\n", __func__);
206 		return 0;
207 	}
208 
209 	TRACE("%s: trans conf reg: 0x%" B_PRIx32 "\n", __func__,
210 		read32(DDI_SKL_TRANS_CONF_A + fPipeOffset));
211 	TRACE("%s: trans DDI func ctl reg: 0x%" B_PRIx32 "\n", __func__,
212 		read32(PIPE_DDI_FUNC_CTL_A + fPipeOffset));
213 	uint32 value = (read32(PIPE_DDI_FUNC_CTL_A + fPipeOffset) & PIPE_DDI_MODESEL_MASK)
214 		>> PIPE_DDI_MODESEL_SHIFT;
215 	switch (value) {
216 		case PIPE_DDI_MODE_DVI:
217 			TRACE("%s: Transcoder uses DVI mode\n", __func__);
218 			break;
219 		case PIPE_DDI_MODE_DP_SST:
220 			TRACE("%s: Transcoder uses DP SST mode\n", __func__);
221 			break;
222 		case PIPE_DDI_MODE_DP_MST:
223 			TRACE("%s: Transcoder uses DP MST mode\n", __func__);
224 			break;
225 		default:
226 			TRACE("%s: Transcoder uses HDMI mode\n", __func__);
227 			break;
228 	}
229 	return value;
230 }
231 
232 
233 status_t
234 Pipe::SetFDILink(const display_timing& timing, uint32 linkBandwidth, uint32 lanes, uint32 bitsPerPixel)
235 {
236 	TRACE("%s: fPipeOffset: 0x%" B_PRIxADDR "\n", __func__, fPipeOffset);
237 	TRACE("%s: FDI/PIPE link reference clock is %gMhz\n", __func__, linkBandwidth / 1000.0f);
238 	TRACE("%s: FDI/PIPE M1 data before: 0x%" B_PRIx32 "\n", __func__, read32(PCH_FDI_PIPE_A_DATA_M1 + fPipeOffset));
239 	TRACE("%s: FDI/PIPE N1 data before: 0x%" B_PRIx32 "\n", __func__, read32(PCH_FDI_PIPE_A_DATA_N1 + fPipeOffset));
240 	TRACE("%s: FDI/PIPE M1 link before: 0x%" B_PRIx32 "\n", __func__, read32(PCH_FDI_PIPE_A_LINK_M1 + fPipeOffset));
241 	TRACE("%s: FDI/PIPE N1 link before: 0x%" B_PRIx32 "\n", __func__, read32(PCH_FDI_PIPE_A_LINK_N1 + fPipeOffset));
242 
243 	if ((bitsPerPixel < 18) || (bitsPerPixel > 36)) {
244 		ERROR("%s: FDI/PIPE illegal colordepth set.\n", __func__);
245 		return B_ERROR;
246 	}
247 	TRACE("%s: FDI/PIPE link colordepth: %" B_PRIu32 "\n", __func__, bitsPerPixel);
248 
249 	if (lanes > 4) {
250 		ERROR("%s: FDI/PIPE illegal number of lanes set.\n", __func__);
251 		return B_ERROR;
252 	}
253 	TRACE("%s: FDI/PIPE link with %" B_PRIx32 " lane(s) in use\n", __func__, lanes);
254 
255 	//Setup Data M/N
256 	uint64 linkspeed = lanes * linkBandwidth * 8;
257 	uint64 ret_n = 1;
258 	while(ret_n < linkspeed) {
259 		ret_n *= 2;
260 	}
261 	if (ret_n > 0x800000) {
262 		ret_n = 0x800000;
263 	}
264 	uint64 ret_m = timing.pixel_clock * ret_n * bitsPerPixel / linkspeed;
265 	while ((ret_n > 0xffffff) || (ret_m > 0xffffff)) {
266 		ret_m >>= 1;
267 		ret_n >>= 1;
268 	}
269 	//Set TU size bits (to default, max) before link training so that error detection works
270 	write32(PCH_FDI_PIPE_A_DATA_M1 + fPipeOffset, ret_m | FDI_PIPE_MN_TU_SIZE_MASK);
271 	write32(PCH_FDI_PIPE_A_DATA_N1 + fPipeOffset, ret_n);
272 
273 	//Setup Link M/N
274 	linkspeed = linkBandwidth;
275 	ret_n = 1;
276 	while(ret_n < linkspeed) {
277 		ret_n *= 2;
278 	}
279 	if (ret_n > 0x800000) {
280 		ret_n = 0x800000;
281 	}
282 	ret_m = timing.pixel_clock * ret_n / linkspeed;
283 	while ((ret_n > 0xffffff) || (ret_m > 0xffffff)) {
284 		ret_m >>= 1;
285 		ret_n >>= 1;
286 	}
287 	write32(PCH_FDI_PIPE_A_LINK_M1 + fPipeOffset, ret_m);
288 	//Writing Link N triggers all four registers to be activated also (on next VBlank)
289 	write32(PCH_FDI_PIPE_A_LINK_N1 + fPipeOffset, ret_n);
290 
291 	TRACE("%s: FDI/PIPE M1 data after: 0x%" B_PRIx32 "\n", __func__, read32(PCH_FDI_PIPE_A_DATA_M1 + fPipeOffset));
292 	TRACE("%s: FDI/PIPE N1 data after: 0x%" B_PRIx32 "\n", __func__, read32(PCH_FDI_PIPE_A_DATA_N1 + fPipeOffset));
293 	TRACE("%s: FDI/PIPE M1 link after: 0x%" B_PRIx32 "\n", __func__, read32(PCH_FDI_PIPE_A_LINK_M1 + fPipeOffset));
294 	TRACE("%s: FDI/PIPE N1 link after: 0x%" B_PRIx32 "\n", __func__, read32(PCH_FDI_PIPE_A_LINK_N1 + fPipeOffset));
295 
296 	return B_OK;
297 }
298 
299 
300 void
301 Pipe::ConfigureScalePos(display_mode* target)
302 {
303 	CALLED();
304 
305 	TRACE("%s: fPipeOffset: 0x%" B_PRIxADDR "\n", __func__, fPipeOffset);
306 
307 	if (target == NULL) {
308 		ERROR("%s: Invalid display mode!\n", __func__);
309 		return;
310 	}
311 
312 	if (gInfo->shared_info->device_type.Generation() < 6) {
313 		// FIXME check on which generations this register exists
314 		// (it appears it would be available only for cursor planes, not
315 		// display planes)
316 		// Since we set the plane to be the same size as the display, we can
317 		// just show it starting at top-left.
318 		write32(INTEL_DISPLAY_A_POS + fPipeOffset, 0);
319 	}
320 
321 	// The only thing that really matters: set the image size and let the
322 	// panel fitter or the transcoder worry about the rest
323 	write32(INTEL_DISPLAY_A_PIPE_SIZE + fPipeOffset,
324 		((uint32)(target->timing.h_display - 1) << 16)
325 			| ((uint32)target->timing.v_display - 1));
326 
327 	// Set the plane size as well while we're at it (this is independant, we
328 	// could have a larger plane and scroll through it).
329 	if ((gInfo->shared_info->device_type.Generation() <= 4)
330 		|| gInfo->shared_info->device_type.HasDDI()) {
331 		// This is "reserved" on G35 and GMA965, but needed on 945 (for which
332 		// there is no public documentation), and I assume earlier devices as
333 		// well.
334 		//
335 		// IMPORTANT WARNING: height and width are swapped when compared to the other registers!
336 		// Be careful when editing this code and don't accidentally swap them!
337 		write32(INTEL_DISPLAY_A_IMAGE_SIZE + fPipeOffset,
338 			((uint32)(target->timing.v_display - 1) << 16)
339 			| ((uint32)target->timing.h_display - 1));
340 	}
341 }
342 
343 
344 void
345 Pipe::ConfigureTimings(display_mode* target, bool hardware, port_index portIndex)
346 {
347 	CALLED();
348 
349 	TRACE("%s(%d): fPipeOffset: 0x%" B_PRIxADDR"\n", __func__, hardware,
350 		fPipeOffset);
351 
352 	if (target == NULL) {
353 		ERROR("%s: Invalid display mode!\n", __func__);
354 		return;
355 	}
356 
357 	/* If using the transcoder, leave the display at its native resolution,
358 	 * and configure only the transcoder (panel fitting will match them
359 	 * together). */
360 	if (!fHasTranscoder || hardware)
361 	{
362 		// update timing (fPipeOffset bumps the DISPLAY_A to B when needed)
363 		// Note: on Skylake below registers are part of the transcoder
364 		write32(INTEL_DISPLAY_A_HTOTAL + fPipeOffset,
365 			((uint32)(target->timing.h_total - 1) << 16)
366 			| ((uint32)target->timing.h_display - 1));
367 		write32(INTEL_DISPLAY_A_HBLANK + fPipeOffset,
368 			((uint32)(target->timing.h_total - 1) << 16)
369 			| ((uint32)target->timing.h_display - 1));
370 		write32(INTEL_DISPLAY_A_HSYNC + fPipeOffset,
371 			((uint32)(target->timing.h_sync_end - 1) << 16)
372 			| ((uint32)target->timing.h_sync_start - 1));
373 
374 		write32(INTEL_DISPLAY_A_VTOTAL + fPipeOffset,
375 			((uint32)(target->timing.v_total - 1) << 16)
376 			| ((uint32)target->timing.v_display - 1));
377 		write32(INTEL_DISPLAY_A_VBLANK + fPipeOffset,
378 			((uint32)(target->timing.v_total - 1) << 16)
379 			| ((uint32)target->timing.v_display - 1));
380 		write32(INTEL_DISPLAY_A_VSYNC + fPipeOffset,
381 			((uint32)(target->timing.v_sync_end - 1) << 16)
382 			| ((uint32)target->timing.v_sync_start - 1));
383 	}
384 
385 	ConfigureScalePos(target);
386 
387 	// transcoder is not applicable if eDP is targeted on Sandy- and IvyBridge
388 	if ((gInfo->shared_info->device_type.InGroup(INTEL_GROUP_SNB) ||
389 		 gInfo->shared_info->device_type.InGroup(INTEL_GROUP_IVB)) &&
390 		(portIndex == INTEL_PORT_A)) {
391 		return;
392 	}
393 
394 	if (fHasTranscoder && hardware) {
395 		_ConfigureTranscoder(target);
396 	}
397 }
398 
399 
400 void
401 Pipe::ConfigureClocks(const pll_divisors& divisors, uint32 pixelClock,
402 	uint32 extraFlags)
403 {
404 	CALLED();
405 
406 	addr_t pllDivisorA = INTEL_DISPLAY_A_PLL_DIVISOR_0;
407 	addr_t pllDivisorB = INTEL_DISPLAY_A_PLL_DIVISOR_1;
408 	addr_t pllControl = INTEL_DISPLAY_A_PLL;
409 	addr_t pllMD = INTEL_DISPLAY_A_PLL_MD;
410 
411 	if (fPipeIndex == INTEL_PIPE_B) {
412 		pllDivisorA = INTEL_DISPLAY_B_PLL_DIVISOR_0;
413 		pllDivisorB = INTEL_DISPLAY_B_PLL_DIVISOR_1;
414 		pllControl = INTEL_DISPLAY_B_PLL;
415 		pllMD = INTEL_DISPLAY_B_PLL_MD;
416 	}
417 
418 	// Disable DPLL first
419 	write32(pllControl, read32(pllControl) & ~DISPLAY_PLL_ENABLED);
420 	spin(150);
421 
422 	float refFreq = gInfo->shared_info->pll_info.reference_frequency / 1000.0f;
423 
424 	if (gInfo->shared_info->device_type.InGroup(INTEL_GROUP_96x)) {
425 		float adjusted = ((refFreq * divisors.m) / divisors.n) / divisors.p;
426 		uint32 pixelMultiply = uint32(adjusted / (pixelClock / 1000.0f));
427 		write32(pllMD, (0 << 24) | ((pixelMultiply - 1) << 8));
428 	}
429 
430 	// XXX: For now we assume no LVDS downclocking and program the same divisor
431 	// value to both divisor 0 (standard) and 1 (reduced divisor)
432 	if (gInfo->shared_info->device_type.InGroup(INTEL_GROUP_PIN)) {
433 		write32(pllDivisorA, (((1 << divisors.n) << DISPLAY_PLL_N_DIVISOR_SHIFT)
434 				& DISPLAY_PLL_IGD_N_DIVISOR_MASK)
435 			| (((divisors.m2 - 2) << DISPLAY_PLL_M2_DIVISOR_SHIFT)
436 				& DISPLAY_PLL_IGD_M2_DIVISOR_MASK));
437 		write32(pllDivisorB, (((1 << divisors.n) << DISPLAY_PLL_N_DIVISOR_SHIFT)
438 				& DISPLAY_PLL_IGD_N_DIVISOR_MASK)
439 			| (((divisors.m2 - 2) << DISPLAY_PLL_M2_DIVISOR_SHIFT)
440 				& DISPLAY_PLL_IGD_M2_DIVISOR_MASK));
441 	} else {
442 		write32(pllDivisorA, (((divisors.n - 2) << DISPLAY_PLL_N_DIVISOR_SHIFT)
443 				& DISPLAY_PLL_N_DIVISOR_MASK)
444 			| (((divisors.m1 - 2) << DISPLAY_PLL_M1_DIVISOR_SHIFT)
445 				& DISPLAY_PLL_M1_DIVISOR_MASK)
446 			| (((divisors.m2 - 2) << DISPLAY_PLL_M2_DIVISOR_SHIFT)
447 				& DISPLAY_PLL_M2_DIVISOR_MASK));
448 		write32(pllDivisorB, (((divisors.n - 2) << DISPLAY_PLL_N_DIVISOR_SHIFT)
449 				& DISPLAY_PLL_N_DIVISOR_MASK)
450 			| (((divisors.m1 - 2) << DISPLAY_PLL_M1_DIVISOR_SHIFT)
451 				& DISPLAY_PLL_M1_DIVISOR_MASK)
452 			| (((divisors.m2 - 2) << DISPLAY_PLL_M2_DIVISOR_SHIFT)
453 				& DISPLAY_PLL_M2_DIVISOR_MASK));
454 	}
455 
456 	//note: bit DISPLAY_PLL_NO_VGA_CONTROL does not exist on IvyBridge and should be left
457 	//      zero there. It does not influence it though.
458 	uint32 pll = DISPLAY_PLL_ENABLED | DISPLAY_PLL_NO_VGA_CONTROL | extraFlags;
459 
460 	if (gInfo->shared_info->device_type.Generation() >= 3) {
461 		// p1 divisor << 1 , 1-8
462 		if (gInfo->shared_info->device_type.InGroup(INTEL_GROUP_PIN)) {
463 			pll |= ((1 << (divisors.p1 - 1))
464 					<< DISPLAY_PLL_IGD_POST1_DIVISOR_SHIFT)
465 				& DISPLAY_PLL_IGD_POST1_DIVISOR_MASK;
466 		} else {
467 			pll |= ((1 << (divisors.p1 - 1))
468 					<< DISPLAY_PLL_POST1_DIVISOR_SHIFT)
469 				& DISPLAY_PLL_9xx_POST1_DIVISOR_MASK;
470 		//	pll |= ((divisors.p1 - 1) << DISPLAY_PLL_POST1_DIVISOR_SHIFT)
471 		//		& DISPLAY_PLL_9xx_POST1_DIVISOR_MASK;
472 		}
473 
474 		// Also configure the FP0 divisor on SandyBridge
475 		if (gInfo->shared_info->device_type.Generation() == 6) {
476 			pll |= ((1 << (divisors.p1 - 1))
477 					<< DISPLAY_PLL_SNB_FP0_POST1_DIVISOR_SHIFT)
478 				& DISPLAY_PLL_SNB_FP0_POST1_DIVISOR_MASK;
479 		}
480 
481 		if (divisors.p2 == 5 || divisors.p2 == 7)
482 			pll |= DISPLAY_PLL_DIVIDE_HIGH;
483 
484 		if (gInfo->shared_info->device_type.InGroup(INTEL_GROUP_96x))
485 			pll |= 6 << DISPLAY_PLL_PULSE_PHASE_SHIFT;
486 	} else {
487 		if (divisors.p2 != 5 && divisors.p2 != 7)
488 			pll |= DISPLAY_PLL_DIVIDE_4X;
489 
490 		pll |= DISPLAY_PLL_2X_CLOCK;
491 
492 		// TODO: Is this supposed to be DISPLAY_PLL_IGD_POST1_DIVISOR_MASK??
493 		if (divisors.p1 > 2) {
494 			pll |= ((divisors.p1 - 2) << DISPLAY_PLL_POST1_DIVISOR_SHIFT)
495 				& DISPLAY_PLL_POST1_DIVISOR_MASK;
496 		} else
497 			pll |= DISPLAY_PLL_POST1_DIVIDE_2;
498 	}
499 
500 	// Configure PLL while -keeping- it disabled
501 	//note: on older chipsets DISPLAY_PLL_NO_VGA_CONTROL probably enables the PLL and locks regs;
502 	//      on newer chipsets DISPLAY_PLL_ENABLED does this.
503 	write32(pllControl, pll & ~DISPLAY_PLL_ENABLED & ~DISPLAY_PLL_NO_VGA_CONTROL);
504 	read32(pllControl);
505 	spin(150);
506 
507 	// enable pre-configured PLL (locks PLL settings directly blocking changes in this write even)
508 	write32(pllControl, pll);
509 	read32(pllControl);
510 
511 	// Allow the PLL to warm up.
512 	spin(150);
513 
514 	if (gInfo->shared_info->device_type.Generation() >= 6) {
515 		// SandyBridge has 3 transcoders, but only 2 PLLs. So there is a new
516 		// register which routes the PLL output to the transcoder that we need
517 		// to configure
518 		uint32 pllSel = read32(SNB_DPLL_SEL);
519 		TRACE("Old PLL selection: 0x%" B_PRIx32 "\n", pllSel);
520 		uint32 shift = 0;
521 		uint32 pllIndex = 0;
522 
523 		// FIXME we assume that pipe A is used with transcoder A, and pipe B
524 		// with transcoder B, that may not always be the case
525 		if (fPipeIndex == INTEL_PIPE_A) {
526 			shift = 0;
527 			pllIndex = 0;
528 			TRACE("Route PLL A to transcoder A\n");
529 		} else if (fPipeIndex == INTEL_PIPE_B) {
530 			shift = 4;
531 			pllIndex = 1;
532 			TRACE("Route PLL B to transcoder B\n");
533 		} else {
534 			ERROR("Attempting to configure PLL for unhandled pipe");
535 			return;
536 		}
537 
538 		// Mask out the previous PLL configuration for this transcoder
539 		pllSel &= ~(0xF << shift);
540 
541 		// Set up the new configuration for this transcoder and enable it
542 		pllSel |= (8 | pllIndex) << shift;
543 
544 		TRACE("New PLL selection: 0x%" B_PRIx32 "\n", pllSel);
545 		write32(SNB_DPLL_SEL, pllSel);
546 	}
547 }
548 
549 void
550 Pipe::ConfigureClocksSKL(const skl_wrpll_params& wrpll_params, uint32 pixelClock,
551 	port_index pllForPort, uint32* pllSel)
552 {
553 	CALLED();
554 
555 	//find our PLL as set by the BIOS
556 	uint32 portSel = read32(SKL_DPLL_CTRL2);
557 	*pllSel = 0xff;
558 	switch (pllForPort) {
559 	case INTEL_PORT_A:
560 		*pllSel = (portSel & 0x0006) >> 1;
561 		break;
562 	case INTEL_PORT_B:
563 		*pllSel = (portSel & 0x0030) >> 4;
564 		break;
565 	case INTEL_PORT_C:
566 		*pllSel = (portSel & 0x0180) >> 7;
567 		break;
568 	case INTEL_PORT_D:
569 		*pllSel = (portSel & 0x0c00) >> 10;
570 		break;
571 	case INTEL_PORT_E:
572 		*pllSel = (portSel & 0x6000) >> 13;
573 		break;
574 	default:
575 		TRACE("No port selected!\n");
576 		return;
577 	}
578 	TRACE("PLL selected is %" B_PRIx32 "\n", *pllSel);
579 
580 	TRACE("Skylake DPLL_CFGCR1 0x%" B_PRIx32 "\n",
581 		read32(SKL_DPLL1_CFGCR1 + (*pllSel - 1) * 8));
582 	TRACE("Skylake DPLL_CFGCR2 0x%" B_PRIx32 "\n",
583 		read32(SKL_DPLL1_CFGCR2 + (*pllSel - 1) * 8));
584 
585 	// only program PLL's that are in non-DP mode (otherwise the linkspeed sets refresh)
586 	portSel = read32(SKL_DPLL_CTRL1);
587 	if ((portSel & (1 << (*pllSel * 6 + 5))) && *pllSel) { // DPLL0 might only know DP mode
588 		// enable pgm on our PLL in case that's currently disabled
589 		write32(SKL_DPLL_CTRL1, portSel | (1 << (*pllSel * 6)));
590 
591 		write32(SKL_DPLL1_CFGCR1 + (*pllSel - 1) * 8,
592 			1 << 31 |
593 			wrpll_params.dco_fraction << 9 |
594 			wrpll_params.dco_integer);
595 		write32(SKL_DPLL1_CFGCR2 + (*pllSel - 1) * 8,
596 			 wrpll_params.qdiv_ratio << 8 |
597 			 wrpll_params.qdiv_mode << 7 |
598 			 wrpll_params.kdiv << 5 |
599 			 wrpll_params.pdiv << 2 |
600 			 wrpll_params.central_freq);
601 		read32(SKL_DPLL1_CFGCR1 + (*pllSel - 1) * 8);
602 		read32(SKL_DPLL1_CFGCR2 + (*pllSel - 1) * 8);
603 
604 		//assuming DPLL0 and 1 are already enabled by the BIOS if in use (LCPLL1,2 regs)
605 
606 		spin(5);
607 		if (read32(SKL_DPLL_STATUS) & (1 << (*pllSel * 8))) {
608 			TRACE("Programmed PLL; PLL is locked\n");
609 		} else {
610 			TRACE("Programmed PLL; PLL did not lock\n");
611 		}
612 		TRACE("Skylake DPLL_CFGCR1 now: 0x%" B_PRIx32 "\n",
613 			read32(SKL_DPLL1_CFGCR1 + (*pllSel - 1) * 8));
614 		TRACE("Skylake DPLL_CFGCR2 now: 0x%" B_PRIx32 "\n",
615 			read32(SKL_DPLL1_CFGCR2 + (*pllSel - 1) * 8));
616 	} else {
617 		TRACE("PLL programming not needed, skipping.\n");
618 	}
619 
620 	TRACE("Skylake DPLL_CTRL1: 0x%" B_PRIx32 "\n", read32(SKL_DPLL_CTRL1));
621 	TRACE("Skylake DPLL_CTRL2: 0x%" B_PRIx32 "\n", read32(SKL_DPLL_CTRL2));
622 	TRACE("Skylake DPLL_STATUS: 0x%" B_PRIx32 "\n", read32(SKL_DPLL_STATUS));
623 }
624 
625 void
626 Pipe::Enable(bool enable)
627 {
628 	CALLED();
629 
630 	addr_t pipeReg = INTEL_DISPLAY_A_PIPE_CONTROL + fPipeOffset;
631 	addr_t planeReg = INTEL_DISPLAY_A_CONTROL + fPlaneOffset;
632 
633 	// Planes always have to operate on an enabled pipe
634 
635 	if (enable) {
636 		write32(pipeReg, read32(pipeReg) | INTEL_PIPE_ENABLED);
637 		wait_for_vblank();
638 		write32(planeReg, read32(planeReg) | DISPLAY_CONTROL_ENABLED);
639 
640 		//Enable default display main watermarks
641 		if (gInfo->shared_info->pch_info == INTEL_PCH_CPT) {
642 			if (fPipeOffset == 0)
643 				write32(INTEL_DISPLAY_A_PIPE_WATERMARK, 0x0783818);
644 			else
645 				write32(INTEL_DISPLAY_B_PIPE_WATERMARK, 0x0783818);
646 		}
647 	} else {
648 		write32(planeReg, read32(planeReg) & ~DISPLAY_CONTROL_ENABLED);
649 		wait_for_vblank();
650 		//Sandy+: when link training is to be done re-enable this line but otherwise don't touch!
651 		//GMA(Q45): must disable PIPE or DPLL programming fails.
652 		if (gInfo->shared_info->device_type.Generation() <= 5) {
653 			write32(pipeReg, read32(pipeReg) & ~INTEL_PIPE_ENABLED);
654 		}
655 	}
656 
657 	// flush the eventually cached PCI bus writes
658 	read32(INTEL_DISPLAY_A_BASE);
659 }
660