xref: /haiku/headers/private/kernel/thread.h (revision 9a6a20d4689307142a7ed26a1437ba47e244e73f)
1 /*
2  * Copyright 2014, Paweł Dziepak, pdziepak@quarnos.org.
3  * Copyright 2008-2011, Ingo Weinhold, ingo_weinhold@gmx.de.
4  * Copyright 2002-2007, Axel Dörfler, axeld@pinc-software.de.
5  * Distributed under the terms of the MIT License.
6  *
7  * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
8  * Distributed under the terms of the NewOS License.
9  */
10 #ifndef _THREAD_H
11 #define _THREAD_H
12 
13 
14 #include <OS.h>
15 
16 #include <arch/atomic.h>
17 #include <arch/thread.h>
18 // For the thread blocking inline functions only.
19 #include <kscheduler.h>
20 #include <ksignal.h>
21 #include <thread_types.h>
22 
23 
24 struct arch_fork_arg;
25 struct kernel_args;
26 struct select_info;
27 struct thread_creation_attributes;
28 
29 
30 // thread notifications
31 #define THREAD_MONITOR		'_tm_'
32 #define THREAD_ADDED		0x01
33 #define THREAD_REMOVED		0x02
34 #define THREAD_NAME_CHANGED	0x04
35 
36 
37 namespace BKernel {
38 
39 
40 struct ThreadCreationAttributes : thread_creation_attributes {
41 	// when calling from kernel only
42 	team_id			team;
43 	Thread*			thread;
44 	sigset_t		signal_mask;
45 	size_t			additional_stack_size;	// additional space in the stack
46 											// area after the TLS region, not
47 											// used as thread stack
48 	thread_func		kernelEntry;
49 	void*			kernelArgument;
50 	arch_fork_arg*	forkArgs;				// If non-NULL, the userland thread
51 											// will be started with this
52 											// register context.
53 
54 public:
55 								ThreadCreationAttributes() {}
56 									// no-init constructor
57 								ThreadCreationAttributes(
58 									thread_func function, const char* name,
59 									int32 priority, void* arg,
60 									team_id team = -1, Thread* thread = NULL);
61 
62 			status_t			InitFromUserAttributes(
63 									const thread_creation_attributes*
64 										userAttributes,
65 									char* nameBuffer);
66 };
67 
68 
69 }	// namespace BKernel
70 
71 using BKernel::ThreadCreationAttributes;
72 
73 
74 extern spinlock gThreadCreationLock;
75 
76 
77 #ifdef __cplusplus
78 extern "C" {
79 #endif
80 
81 void thread_at_kernel_entry(bigtime_t now);
82 	// called when the thread enters the kernel on behalf of the thread
83 void thread_at_kernel_exit(void);
84 void thread_at_kernel_exit_no_signals(void);
85 void thread_reset_for_exec(void);
86 
87 status_t thread_init(struct kernel_args *args);
88 status_t thread_preboot_init_percpu(struct kernel_args *args, int32 cpuNum);
89 void thread_yield(void);
90 void thread_exit(void);
91 
92 void thread_map(void (*function)(Thread* thread, void* data), void* data);
93 
94 int32 thread_max_threads(void);
95 int32 thread_used_threads(void);
96 
97 const char* thread_state_to_text(Thread* thread, int32 state);
98 
99 int32 thread_get_io_priority(thread_id id);
100 void thread_set_io_priority(int32 priority);
101 
102 #define thread_get_current_thread arch_thread_get_current_thread
103 
104 static thread_id thread_get_current_thread_id(void);
105 static inline thread_id
106 thread_get_current_thread_id(void)
107 {
108 	Thread *thread = thread_get_current_thread();
109 	return thread ? thread->id : 0;
110 }
111 
112 static inline bool
113 thread_is_idle_thread(Thread *thread)
114 {
115 	return thread->priority == B_IDLE_PRIORITY;
116 }
117 
118 thread_id allocate_thread_id();
119 thread_id peek_next_thread_id();
120 
121 status_t thread_enter_userspace_new_team(Thread* thread, addr_t entryFunction,
122 	void* argument1, void* argument2);
123 status_t thread_create_user_stack(Team* team, Thread* thread, void* stackBase,
124 	size_t stackSize, size_t additionalSize);
125 thread_id thread_create_thread(const ThreadCreationAttributes& attributes,
126 	bool kernel);
127 
128 thread_id spawn_kernel_thread_etc(thread_func, const char *name, int32 priority,
129 	void *args, team_id team);
130 
131 status_t select_thread(int32 object, struct select_info *info, bool kernel);
132 status_t deselect_thread(int32 object, struct select_info *info, bool kernel);
133 
134 #define syscall_64_bit_return_value() arch_syscall_64_bit_return_value()
135 
136 status_t thread_block();
137 status_t thread_block_with_timeout(uint32 timeoutFlags, bigtime_t timeout);
138 void thread_unblock(Thread* thread, status_t status);
139 
140 // used in syscalls.c
141 status_t _user_set_thread_priority(thread_id thread, int32 newPriority);
142 status_t _user_rename_thread(thread_id thread, const char *name);
143 status_t _user_suspend_thread(thread_id thread);
144 status_t _user_resume_thread(thread_id thread);
145 thread_id _user_spawn_thread(struct thread_creation_attributes* attributes);
146 status_t _user_wait_for_thread(thread_id id, status_t *_returnCode);
147 status_t _user_wait_for_thread_etc(thread_id id, uint32 flags, bigtime_t timeout,
148 	status_t *_returnCode);
149 status_t _user_snooze_etc(bigtime_t timeout, int timebase, uint32 flags,
150 	bigtime_t* _remainingTime);
151 status_t _user_kill_thread(thread_id thread);
152 status_t _user_cancel_thread(thread_id threadID, void (*cancelFunction)(int));
153 void _user_thread_yield(void);
154 void _user_exit_thread(status_t return_value);
155 bool _user_has_data(thread_id thread);
156 status_t _user_send_data(thread_id thread, int32 code, const void *buffer, size_t buffer_size);
157 status_t _user_receive_data(thread_id *_sender, void *buffer, size_t buffer_size);
158 thread_id _user_find_thread(const char *name);
159 status_t _user_get_thread_info(thread_id id, thread_info *info);
160 status_t _user_get_next_thread_info(team_id team, int32 *cookie, thread_info *info);
161 int _user_get_cpu();
162 status_t _user_get_thread_affinity(thread_id id, void* userMask, size_t size);
163 status_t _user_set_thread_affinity(thread_id id, const void* userMask, size_t size);
164 
165 
166 status_t _user_block_thread(uint32 flags, bigtime_t timeout);
167 status_t _user_unblock_thread(thread_id thread, status_t status);
168 status_t _user_unblock_threads(thread_id* threads, uint32 count,
169 	status_t status);
170 
171 // ToDo: these don't belong here
172 struct rlimit;
173 int _user_getrlimit(int resource, struct rlimit * rlp);
174 int _user_setrlimit(int resource, const struct rlimit * rlp);
175 
176 #ifdef __cplusplus
177 }
178 #endif
179 
180 
181 /*!	Checks whether the current thread would immediately be interrupted when
182 	blocking it with the given wait/interrupt flags.
183 
184 	The caller must hold the scheduler lock.
185 
186 	\param thread The current thread.
187 	\param flags Wait/interrupt flags to be considered. Relevant are:
188 		- \c B_CAN_INTERRUPT: The thread can be interrupted by any non-blocked
189 			signal. Implies \c B_KILL_CAN_INTERRUPT (specified or not).
190 		- \c B_KILL_CAN_INTERRUPT: The thread can be interrupted by a kill
191 			signal.
192 	\return \c true, if the thread would be interrupted, \c false otherwise.
193 */
194 static inline bool
195 thread_is_interrupted(Thread* thread, uint32 flags)
196 {
197 	sigset_t pendingSignals = thread->AllPendingSignals();
198 	return ((flags & B_CAN_INTERRUPT) != 0
199 			&& (pendingSignals & ~thread->sig_block_mask) != 0)
200 		|| ((flags & B_KILL_CAN_INTERRUPT) != 0
201 			&& (pendingSignals & KILL_SIGNALS) != 0);
202 }
203 
204 
205 /*!	Checks whether the given thread is currently blocked (i.e. still waiting
206 	for something).
207 
208 	If a stable answer is required, the caller must hold the scheduler lock.
209 	Alternatively, if waiting is not interruptible and cannot time out, holding
210 	the client lock held when calling thread_prepare_to_block() and the
211 	unblocking functions works as well.
212 
213 	\param thread The thread in question.
214 	\return \c true, if the thread is blocked, \c false otherwise.
215 */
216 static inline bool
217 thread_is_blocked(Thread* thread)
218 {
219 	return atomic_get(&thread->wait.status) == 1;
220 }
221 
222 
223 /*!	Prepares the current thread for waiting.
224 
225 	This is the first of two steps necessary to block the current thread
226 	(IOW, to let it wait for someone else to unblock it or optionally time out
227 	after a specified delay). The process consists of two steps to avoid race
228 	conditions in case a lock other than the scheduler lock is involved.
229 
230 	Usually the thread waits for some condition to change and this condition is
231 	something reflected in the caller's data structures which should be
232 	protected by a client lock the caller knows about. E.g. in the semaphore
233 	code that lock is a per-semaphore spinlock that protects the semaphore data,
234 	including the semaphore count and the queue of waiting threads. For certain
235 	low-level locking primitives (e.g. mutexes) that client lock is the
236 	scheduler lock itself, which simplifies things a bit.
237 
238 	If a client lock other than the scheduler lock is used, this function must
239 	be called with that lock being held. Afterwards that lock should be dropped
240 	and the function that actually blocks the thread shall be invoked
241 	(thread_block[_locked]() or thread_block_with_timeout()). In between these
242 	two steps no functionality that uses the thread blocking API for this thread
243 	shall be used.
244 
245 	When the caller determines that the condition for unblocking the thread
246 	occurred, it calls thread_unblock_locked() to unblock the thread. At that
247 	time one of locks that are held when calling thread_prepare_to_block() must
248 	be held. Usually that would be the client lock. In two cases it generally
249 	isn't, however, since the unblocking code doesn't know about the client
250 	lock: 1. When thread_block_with_timeout() had been used and the timeout
251 	occurs. 2. When thread_prepare_to_block() had been called with one or both
252 	of the \c B_CAN_INTERRUPT or \c B_KILL_CAN_INTERRUPT flags specified and
253 	someone calls thread_interrupt() that is supposed to wake up the thread.
254 	In either of these two cases only the scheduler lock is held by the
255 	unblocking code. A timeout can only happen after
256 	thread_block_with_timeout() has been called, but an interruption is
257 	possible at any time. The client code must deal with those situations.
258 
259 	Generally blocking and unblocking threads proceed in the following manner:
260 
261 	Blocking thread:
262 	- Acquire client lock.
263 	- Check client condition and decide whether blocking is necessary.
264 	- Modify some client data structure to indicate that this thread is now
265 		waiting.
266 	- Release client lock (unless client lock is the scheduler lock).
267 	- Block.
268 	- Acquire client lock (unless client lock is the scheduler lock).
269 	- Check client condition and compare with block result. E.g. if the wait was
270 		interrupted or timed out, but the client condition indicates success, it
271 		may be considered a success after all, since usually that happens when
272 		another thread concurrently changed the client condition and also tried
273 		to unblock the waiting thread. It is even necessary when that other
274 		thread changed the client data structures in a way that associate some
275 		resource with the unblocked thread, or otherwise the unblocked thread
276 		would have to reverse that here.
277 	- If still necessary -- i.e. not already taken care of by an unblocking
278 		thread -- modify some client structure to indicate that the thread is no
279 		longer waiting, so it isn't erroneously unblocked later.
280 
281 	Unblocking thread:
282 	- Acquire client lock.
283 	- Check client condition and decide whether a blocked thread can be woken
284 		up.
285 	- Check the client data structure that indicates whether one or more threads
286 		are waiting and which thread(s) need(s) to be woken up.
287 	- Unblock respective thread(s).
288 	- Possibly change some client structure, so that an unblocked thread can
289 		decide whether a concurrent timeout/interruption can be ignored, or
290 		simply so that it doesn't have to do any more cleanup.
291 
292 	Note that in the blocking thread the steps after blocking are strictly
293 	required only if timeouts or interruptions are possible. If they are not,
294 	the blocking thread can only be woken up explicitly by an unblocking thread,
295 	which could already take care of all the necessary client data structure
296 	modifications, so that the blocking thread wouldn't have to do that.
297 
298 	Note that the client lock can but does not have to be a spinlock.
299 	A mutex, a semaphore, or anything that doesn't try to use the thread
300 	blocking API for the calling thread when releasing the lock is fine.
301 	In particular that means in principle thread_prepare_to_block() can be
302 	called with interrupts enabled.
303 
304 	Care must be taken when the wait can be interrupted or can time out,
305 	especially with a client lock that uses the thread blocking API. After a
306 	blocked thread has been interrupted or the the time out occurred it cannot
307 	acquire the client lock (or any other lock using the thread blocking API)
308 	without first making sure that the thread doesn't still appear to be
309 	waiting to other client code. Otherwise another thread could try to unblock
310 	it which could erroneously unblock the thread while already waiting on the
311 	client lock. So usually when interruptions or timeouts are possible a
312 	spinlock needs to be involved.
313 
314 	\param thread The current thread.
315 	\param flags The blocking flags. Relevant are:
316 		- \c B_CAN_INTERRUPT: The thread can be interrupted by any non-blocked
317 			signal. Implies \c B_KILL_CAN_INTERRUPT (specified or not).
318 		- \c B_KILL_CAN_INTERRUPT: The thread can be interrupted by a kill
319 			signal.
320 	\param type The type of object the thread will be blocked at. Informative/
321 		for debugging purposes. Must be one of the \c THREAD_BLOCK_TYPE_*
322 		constants. \c THREAD_BLOCK_TYPE_OTHER implies that \a object is a
323 		string.
324 	\param object The object the thread will be blocked at.  Informative/for
325 		debugging purposes.
326 */
327 static inline void
328 thread_prepare_to_block(Thread* thread, uint32 flags, uint32 type,
329 	const void* object)
330 {
331 	thread->wait.flags = flags;
332 	thread->wait.type = type;
333 	thread->wait.object = object;
334 	atomic_set(&thread->wait.status, 1);
335 		// Set status last to guarantee that the other fields are initialized
336 		// when a thread is waiting.
337 }
338 
339 
340 /*!	Unblocks the specified blocked thread.
341 
342 	If the thread is no longer waiting (e.g. because thread_unblock_locked() has
343 	already been called in the meantime), this function does not have any
344 	effect.
345 
346 	The caller must hold the scheduler lock and the client lock (might be the
347 	same).
348 
349 	\param thread The thread to be unblocked.
350 	\param status The unblocking status. That's what the unblocked thread's
351 		call to thread_block_locked() will return.
352 */
353 static inline void
354 thread_unblock_locked(Thread* thread, status_t status)
355 {
356 	if (atomic_test_and_set(&thread->wait.status, status, 1) != 1)
357 		return;
358 
359 	// wake up the thread, if it is sleeping
360 	if (thread->state == B_THREAD_WAITING)
361 		scheduler_enqueue_in_run_queue(thread);
362 }
363 
364 
365 /*!	Interrupts the specified blocked thread, if possible.
366 
367 	The function checks whether the thread can be interrupted and, if so, calls
368 	\code thread_unblock_locked(thread, B_INTERRUPTED) \endcode. Otherwise the
369 	function is a no-op.
370 
371 	The caller must hold the scheduler lock. Normally thread_unblock_locked()
372 	also requires the client lock to be held, but in this case the caller
373 	usually doesn't know it. This implies that the client code needs to take
374 	special care, if waits are interruptible. See thread_prepare_to_block() for
375 	more information.
376 
377 	\param thread The thread to be interrupted.
378 	\param kill If \c false, the blocked thread is only interrupted, when the
379 		flag \c B_CAN_INTERRUPT was specified for the blocked thread. If
380 		\c true, it is only interrupted, when at least one of the flags
381 		\c B_CAN_INTERRUPT or \c B_KILL_CAN_INTERRUPT was specified for the
382 		blocked thread.
383 	\return \c B_OK, if the thread is interruptible and thread_unblock_locked()
384 		was called, \c B_NOT_ALLOWED otherwise. \c B_OK doesn't imply that the
385 		thread actually has been interrupted -- it could have been unblocked
386 		before already.
387 */
388 static inline status_t
389 thread_interrupt(Thread* thread, bool kill)
390 {
391 	if (thread_is_blocked(thread)) {
392 		if ((thread->wait.flags & B_CAN_INTERRUPT) != 0
393 			|| (kill && (thread->wait.flags & B_KILL_CAN_INTERRUPT) != 0)) {
394 			thread_unblock_locked(thread, B_INTERRUPTED);
395 			return B_OK;
396 		}
397 	}
398 
399 	return B_NOT_ALLOWED;
400 }
401 
402 
403 static inline void
404 thread_pin_to_current_cpu(Thread* thread)
405 {
406 	thread->pinned_to_cpu++;
407 }
408 
409 
410 static inline void
411 thread_unpin_from_current_cpu(Thread* thread)
412 {
413 	thread->pinned_to_cpu--;
414 }
415 
416 
417 static inline void
418 thread_prepare_suspend()
419 {
420 	Thread* thread = thread_get_current_thread();
421 	thread->going_to_suspend = true;
422 }
423 
424 
425 static inline void
426 thread_suspend(bool alreadyPrepared = false)
427 {
428 	Thread* thread = thread_get_current_thread();
429 	if (!alreadyPrepared)
430 		thread_prepare_suspend();
431 
432 	cpu_status state = disable_interrupts();
433 	acquire_spinlock(&thread->scheduler_lock);
434 
435 	if (thread->going_to_suspend)
436 		scheduler_reschedule(B_THREAD_SUSPENDED);
437 
438 	release_spinlock(&thread->scheduler_lock);
439 	restore_interrupts(state);
440 }
441 
442 
443 static inline void
444 thread_continue(Thread* thread)
445 {
446 	thread->going_to_suspend = false;
447 
448 	cpu_status state = disable_interrupts();
449 	acquire_spinlock(&thread->scheduler_lock);
450 
451 	if (thread->state == B_THREAD_SUSPENDED)
452 		scheduler_enqueue_in_run_queue(thread);
453 
454 	release_spinlock(&thread->scheduler_lock);
455 	restore_interrupts(state);
456 }
457 
458 
459 #endif /* _THREAD_H */
460