xref: /haiku/headers/os/device/USBKit.h (revision 02354704729d38c3b078c696adc1bbbd33cbcf72)
1 /*
2  * Copyright 2007-2008, Haiku Inc. All rights reserved.
3  * Distributed under the terms of the MIT License.
4  */
5 #ifndef _USBKIT_H
6 #define _USBKIT_H
7 
8 #include <SupportDefs.h>
9 #include <USB_spec.h>
10 #include <USB_isochronous.h>
11 
12 
13 class BUSBRoster;
14 class BUSBDevice;
15 class BUSBConfiguration;
16 class BUSBInterface;
17 class BUSBEndpoint;
18 
19 
20 /*	The BUSBRoster class can be used to watch for devices that get attached or
21 	removed from the USB bus.
22 	You subclass the roster and implement the pure virtual DeviceAdded() and
23 	DeviceRemoved() hooks. */
24 class BUSBRoster {
25 public:
26 									BUSBRoster();
27 virtual								~BUSBRoster();
28 
29 		// The DeviceAdded() hook will be called when a new device gets
30 		// attached to the USB bus. The hook is called with an initialized
31 		// BUSBDevice object. If you return B_OK from your hook the object
32 		// will stay valid and the DeviceRemoved() hook will be called for
33 		// it. Otherwise the object is deleted and DeviceRemoved() is not
34 		// called.
35 virtual	status_t					DeviceAdded(BUSBDevice *device) = 0;
36 
37 		// When a device gets detached from the bus that you hold a
38 		// BUSBDevice object for (gotten through DeviceAdded()) the
39 		// DeviceRemoved() hook will be called. The device object gets
40 		// invalid and will be deleted as soon as you return from the hook
41 		// so be sure to remove all references to it.
42 virtual	void						DeviceRemoved(BUSBDevice *device) = 0;
43 
44 		void						Start();
45 		void						Stop();
46 
47 private:
48 virtual	void						_ReservedUSBRoster1();
49 virtual	void						_ReservedUSBRoster2();
50 virtual	void						_ReservedUSBRoster3();
51 virtual	void						_ReservedUSBRoster4();
52 virtual	void						_ReservedUSBRoster5();
53 
54 		void *						fLooper;
55 		uint32						fReserved[10];
56 };
57 
58 
59 /*	The BUSBDevice presents an interface to a USB device. You can either get
60 	it through the BUSBRoster or by creating one yourself and setting it to
61 	a valid raw usb device (with a path of "/dev/bus/usb/x").
62 	The device class provides direct accessors for descriptor fields as well
63 	as convenience functions to directly get string representations of fields.
64 	The BUSBDevice also provides access for the BUSBConfiguration objects of
65 	a device. These objects and all of their child objects depend on the
66 	parent device and will be deleted as soon as the device object is
67 	destroyed. */
68 class BUSBDevice {
69 public:
70 									BUSBDevice(const char *path = NULL);
71 virtual								~BUSBDevice();
72 
73 virtual	status_t					InitCheck();
74 
75 		status_t					SetTo(const char *path);
76 		void						Unset();
77 
78 		// Returns the location on the bus represented as hub/device sequence.
79 		const char *				Location() const;
80 		bool						IsHub() const;
81 
82 		// These are direct accessors to descriptor fields.
83 		uint16						USBVersion() const;
84 		uint8						Class() const;
85 		uint8						Subclass() const;
86 		uint8						Protocol() const;
87 		uint8						MaxEndpoint0PacketSize() const;
88 		uint16						VendorID() const;
89 		uint16						ProductID() const;
90 		uint16						Version() const;
91 
92 		// The string functions return the string representation of the
93 		// descriptor data. The strings are decoded to normal 0 terminated
94 		// C strings and are cached and owned by the object.
95 		// If a string is not available an empty string is returned.
96 		const char *				ManufacturerString() const;
97 		const char *				ProductString() const;
98 		const char *				SerialNumberString() const;
99 
100 		const usb_device_descriptor *
101 									Descriptor() const;
102 
103 		// GetStringDescriptor() can be used to retrieve the raw
104 		// usb_string_descriptor with a given index. The strings contained
105 		// in these descriptors are usually two-byte unicode encoded.
106 		size_t						GetStringDescriptor(uint32 index,
107 										usb_string_descriptor *descriptor,
108 										size_t length) const;
109 
110 		// Use the DecodeStringDescriptor() convenience function to get a
111 		// 0-terminated c string for a given string index. Note that this
112 		// will allocate the string as "new char[];" and needs to be deleted
113 		// like "delete[] string;" by the caller.
114 		char *						DecodeStringDescriptor(uint32 index) const;
115 
116 		size_t						GetDescriptor(uint8 type, uint8 index,
117 										uint16 languageID, void *data,
118 										size_t length) const;
119 
120 		// With ConfigurationAt() or ActiveConfiguration() you can get an
121 		// object that represents the configuration at a certain index or at
122 		// the index that is currently configured. Note that the index does not
123 		// necessarily correspond to the configuration_value present in the
124 		// configuration descriptor.
125 		// Use the returned object as an argument to SetConfiguration() to
126 		// change the active configuration of a device.
127 		uint32						CountConfigurations() const;
128 		const BUSBConfiguration *	ConfigurationAt(uint32 index) const;
129 
130 		const BUSBConfiguration *	ActiveConfiguration() const;
131 		status_t					SetConfiguration(
132 										const BUSBConfiguration *configuration);
133 
134 		// ControlTransfer() sends requests using the default pipe.
135 		ssize_t						ControlTransfer(uint8 requestType,
136 										uint8 request, uint16 value,
137 										uint16 index, uint16 length,
138 										void *data) const;
139 
140 private:
141 virtual	void						_ReservedUSBDevice1();
142 virtual	void						_ReservedUSBDevice2();
143 virtual	void						_ReservedUSBDevice3();
144 virtual	void						_ReservedUSBDevice4();
145 virtual	void						_ReservedUSBDevice5();
146 
147 		char *						fPath;
148 		int							fRawFD;
149 
150 		usb_device_descriptor		fDescriptor;
151 		BUSBConfiguration **		fConfigurations;
152 		uint32						fActiveConfiguration;
153 
154 mutable	char *						fManufacturerString;
155 mutable	char *						fProductString;
156 mutable	char *						fSerialNumberString;
157 
158 		uint32						fReserved[10];
159 };
160 
161 
162 /*	A BUSBConfiguration object represents one of possibly multiple
163 	configurations a device might have. A valid object can only be gotten
164 	through the ConfigurationAt() or ActiveConfiguration() methods of a
165 	BUSBDevice.
166 	The BUSBConfiguration provides further access into the configuration by
167 	providing CountInterfaces() and InterfaceAt() to retrieve BUSBInterface
168 	objects. */
169 class BUSBConfiguration {
170 public:
171 		// Device() returns the parent device of this configuration. This
172 		// configuration is located at the index returned by Index() within
173 		// that parent device.
174 		uint32						Index() const;
175 		const BUSBDevice *			Device() const;
176 
177 		// Gets a descriptive string for this configuration, if available.
178 		// Otherwise an empty string is returned.
179 		const char *				ConfigurationString() const;
180 
181 		const usb_configuration_descriptor *
182 									Descriptor() const;
183 
184 		// With CountInterfaces() and InterfaceAt() you can iterate through
185 		// the child interfaces of this configuration. It is the only valid
186 		// way to get a BUSBInterface object.
187 		// Note that the interface objects retrieved using InterfaceAt() will
188 		// be invalid and deleted as soon as this configuration gets deleted.
189 		uint32						CountInterfaces() const;
190 		const BUSBInterface *		InterfaceAt(uint32 index) const;
191 
192 private:
193 friend	class BUSBDevice;
194 									BUSBConfiguration(BUSBDevice *device,
195 										uint32 index, int rawFD);
196 									~BUSBConfiguration();
197 
198 		BUSBDevice *				fDevice;
199 		uint32						fIndex;
200 		int							fRawFD;
201 
202 		usb_configuration_descriptor fDescriptor;
203 		BUSBInterface **			fInterfaces;
204 
205 mutable	char *						fConfigurationString;
206 
207 		uint32						fReserved[10];
208 };
209 
210 
211 /*	The BUSBInterface class can be used to access the descriptor fields of
212 	an underleying USB interface. Most importantly though it can be used to
213 	iterate over and retrieve BUSBEndpoint objects that can be used to
214 	transfer data over the bus. */
215 class BUSBInterface {
216 public:
217 		// Configuration() returns the parent configuration of this interface.
218 		// This interface is located at the index returned by Index() in that
219 		// parent configuration and represents the alternate interface returned
220 		// by AlternateIndex().
221 		// Device() is a convenience function to directly reach the parent
222 		// device of this interface instead of going through the configuration.
223 		uint32						Index() const;
224 		uint32						AlternateIndex() const;
225 		const BUSBConfiguration *	Configuration() const;
226 		const BUSBDevice *			Device() const;
227 
228 		// These are accessors to descriptor fields. InterfaceString() tries
229 		// to return a descriptive string for the interface. If no string is
230 		// available an empty string is returned.
231 		uint8						Class() const;
232 		uint8						Subclass() const;
233 		uint8						Protocol() const;
234 		const char *				InterfaceString() const;
235 
236 		const usb_interface_descriptor *
237 									Descriptor() const;
238 
239 		// Use OtherDescriptorAt() to get generic descriptors of an interface.
240 		// These are usually device/interface class specific or they may
241 		// represent vendor specific extensions.
242 		status_t					OtherDescriptorAt(uint32 index,
243 										usb_descriptor *descriptor,
244 										size_t length) const;
245 
246 		// CountEndpoints() and EndpointAt() can be used to iterate over the
247 		// available endpoints within an interface. EndpointAt() is the only
248 		// valid way to get BUSBEndpoint object. Note that these objects will
249 		// get invalid and deleted as soon as the parent interface is deleted.
250 		uint32						CountEndpoints() const;
251 		const BUSBEndpoint *		EndpointAt(uint32 index) const;
252 
253 		// Using CountAlternates() you can retrieve the number of alternate
254 		// interfaces for this interface. Note that this interface itself
255 		// counts as an alternate so an alternate count of one really means
256 		// that you are currently using the sole interface present.
257 		// AlternateAt() returns the interface descriptor of the alternate
258 		// interface with the specified index. Using that you can peek at the
259 		// attributes of that alternate (including endpoints) without having to
260 		// switch to this alternate interface.
261 		// Note that you cannot use any endpoint you retrieve through an
262 		// interface you get through AlternateAt(). Even if you switch to that
263 		// alternate later on, you cannot use an interface returned by
264 		// AlternateAt(). Instead switch to that alternate using the interface
265 		// you got from the configuration and then use this switched interface
266 		// to enumerate the endpoints.
267 		// ActiveAlternateIndex() returns the index of the currently active
268 		// alternate interface.
269 		// With SetAlternate() you can switch this BUSBInterface object to the
270 		// alternate interface at the specified index. Note that all endpoints
271 		// retrieved through EndpointAt() will become invalid and will be
272 		// deleted as soon as you set an alternate interface (even if the
273 		// resulting interface is the same you were using before).
274 		uint32						CountAlternates() const;
275 		uint32						ActiveAlternateIndex() const;
276 		const BUSBInterface *		AlternateAt(uint32 alternateIndex) const;
277 		status_t					SetAlternate(uint32 alternateIndex);
278 
279 private:
280 friend	class BUSBConfiguration;
281 									BUSBInterface(BUSBConfiguration *config,
282 										uint32 index, uint32 alternate,
283 										int rawFD);
284 									~BUSBInterface();
285 
286 		void						_UpdateDescriptorAndEndpoints();
287 
288 		BUSBConfiguration *			fConfiguration;
289 		uint32						fIndex;
290 		uint32						fAlternate;
291 		int							fRawFD;
292 
293 		usb_interface_descriptor	fDescriptor;
294 		BUSBEndpoint **				fEndpoints;
295 
296 mutable	uint32						fAlternateCount;
297 mutable	BUSBInterface **			fAlternates;
298 
299 mutable	char *						fInterfaceString;
300 
301 		uint32						fReserved[10];
302 };
303 
304 
305 /*	The BUSBEndpoint represent a device endpoint that can be used to send or
306 	receive data. It also allows to query endpoint characteristics like
307 	endpoint type or direction. */
308 class BUSBEndpoint {
309 public:
310 		// Interface() returns the parent interface of this endpoint.
311 		// This endpoint is located at the index returned by Index() in the
312 		// parent interface.
313 		// Configuration() and Device() are convenience functions to directly
314 		// reach the parent configuration or device of this endpoint instead
315 		// of going through the parent objects.
316 		uint32						Index() const;
317 		const BUSBInterface *		Interface() const;
318 		const BUSBConfiguration *	Configuration() const;
319 		const BUSBDevice *			Device() const;
320 
321 		// These methods can be used to check for endpoint characteristics.
322 		bool						IsBulk() const;
323 		bool						IsInterrupt() const;
324 		bool						IsIsochronous() const;
325 		bool						IsControl() const;
326 
327 		bool						IsInput() const;
328 		bool						IsOutput() const;
329 
330 		uint16						MaxPacketSize() const;
331 		uint8						Interval() const;
332 
333 		const usb_endpoint_descriptor *
334 									Descriptor() const;
335 
336 		// These methods initiate transfers to or from the endpoint. All
337 		// transfers are synchronous and the actually transfered amount of
338 		// data is returned as a result. A negative value indicates an error.
339 		// Which transfer type to use depends on the endpoint type.
340 		ssize_t						ControlTransfer(uint8 requestType,
341 										uint8 request, uint16 value,
342 										uint16 index, uint16 length,
343 										void *data) const;
344 		ssize_t						InterruptTransfer(void *data,
345 										size_t length) const;
346 		ssize_t						BulkTransfer(void *data,
347 										size_t length) const;
348 		ssize_t						IsochronousTransfer(void *data,
349 										size_t length,
350 										usb_iso_packet_descriptor *packetDescriptors,
351 										uint32 packetCount)	const;
352 
353 		// These are convenience methods for getting and clearing the halt
354 		// state of an endpoint. They use the control pipe of the device to
355 		// send the corresponding requests.
356 		bool						IsStalled() const;
357 		status_t					ClearStall() const;
358 
359 private:
360 friend	class BUSBInterface;
361 									BUSBEndpoint(BUSBInterface *interface,
362 										uint32 index, int rawFD);
363 									~BUSBEndpoint();
364 
365 		BUSBInterface *				fInterface;
366 		uint32						fIndex;
367 		int							fRawFD;
368 
369 		usb_endpoint_descriptor		fDescriptor;
370 
371 		uint32						fReserved[10];
372 };
373 
374 #endif // _USB_KIT_H
375