xref: /haiku/headers/libs/agg/agg_span_gradient.h (revision e81a954787e50e56a7f06f72705b7859b6ab06d1)
1 //----------------------------------------------------------------------------
2 // Anti-Grain Geometry - Version 2.4
3 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
4 //
5 // Permission to copy, use, modify, sell and distribute this software
6 // is granted provided this copyright notice appears in all copies.
7 // This software is provided "as is" without express or implied
8 // warranty, and with no claim as to its suitability for any purpose.
9 //
10 //----------------------------------------------------------------------------
11 // Contact: mcseem@antigrain.com
12 //          mcseemagg@yahoo.com
13 //          http://www.antigrain.com
14 //----------------------------------------------------------------------------
15 
16 #ifndef AGG_SPAN_GRADIENT_INCLUDED
17 #define AGG_SPAN_GRADIENT_INCLUDED
18 
19 #include <math.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include "agg_basics.h"
23 #include "agg_math.h"
24 #include "agg_array.h"
25 
26 
27 namespace agg
28 {
29 
30     enum gradient_subpixel_scale_e
31     {
32         gradient_subpixel_shift = 4,                              //-----gradient_subpixel_shift
33         gradient_subpixel_scale = 1 << gradient_subpixel_shift,   //-----gradient_subpixel_scale
34         gradient_subpixel_mask  = gradient_subpixel_scale - 1     //-----gradient_subpixel_mask
35     };
36 
37 
38 
39     //==========================================================span_gradient
40     template<class ColorT,
41              class Interpolator,
42              class GradientF,
43              class ColorF>
44     class span_gradient
45     {
46     public:
47         typedef Interpolator interpolator_type;
48         typedef ColorT color_type;
49 
50         enum downscale_shift_e
51         {
52             downscale_shift = interpolator_type::subpixel_shift -
53                               gradient_subpixel_shift
54         };
55 
56         //--------------------------------------------------------------------
57         span_gradient() {}
58 
59         //--------------------------------------------------------------------
60         span_gradient(interpolator_type& inter,
61                       const GradientF& gradient_function,
62                       const ColorF& color_function,
63                       double d1, double d2) :
64             m_interpolator(&inter),
65             m_gradient_function(&gradient_function),
66             m_color_function(&color_function),
67             m_d1(iround(d1 * gradient_subpixel_scale)),
68             m_d2(iround(d2 * gradient_subpixel_scale))
69         {}
70 
71         //--------------------------------------------------------------------
72         interpolator_type& interpolator() { return *m_interpolator; }
73         const GradientF& gradient_function() const { return *m_gradient_function; }
74         const ColorF& color_function() const { return *m_color_function; }
75         double d1() const { return double(m_d1) / gradient_subpixel_scale; }
76         double d2() const { return double(m_d2) / gradient_subpixel_scale; }
77 
78         //--------------------------------------------------------------------
79         void interpolator(interpolator_type& i) { m_interpolator = &i; }
80         void gradient_function(const GradientF& gf) { m_gradient_function = &gf; }
81         void color_function(const ColorF& cf) { m_color_function = &cf; }
82         void d1(double v) { m_d1 = iround(v * gradient_subpixel_scale); }
83         void d2(double v) { m_d2 = iround(v * gradient_subpixel_scale); }
84 
85         //--------------------------------------------------------------------
86         void prepare() {}
87 
88         //--------------------------------------------------------------------
89         void generate(color_type* span, int x, int y, unsigned len)
90         {
91             int dd = m_d2 - m_d1;
92             if(dd < 1) dd = 1;
93             m_interpolator->begin(x+0.5, y+0.5, len);
94             do
95             {
96                 m_interpolator->coordinates(&x, &y);
97                 int d = m_gradient_function->calculate(x >> downscale_shift,
98                                                        y >> downscale_shift, m_d2);
99                 d = ((d - m_d1) * (int)m_color_function->size()) / dd;
100                 if(d < 0) d = 0;
101                 if(d >= (int)m_color_function->size()) d = m_color_function->size() - 1;
102                 *span++ = (*m_color_function)[d];
103                 ++(*m_interpolator);
104             }
105             while(--len);
106         }
107 
108     private:
109         interpolator_type* m_interpolator;
110         const GradientF*   m_gradient_function;
111         const ColorF*      m_color_function;
112         int                m_d1;
113         int                m_d2;
114     };
115 
116 
117 
118 
119     //=====================================================gradient_linear_color
120     template<class ColorT>
121     struct gradient_linear_color
122     {
123         typedef ColorT color_type;
124 
125         gradient_linear_color() {}
126         gradient_linear_color(const color_type& c1, const color_type& c2,
127                               unsigned size = 256) :
128             m_c1(c1), m_c2(c2), m_size(size) {}
129 
130         unsigned size() const { return m_size; }
131         color_type operator [] (unsigned v) const
132         {
133             return m_c1.gradient(m_c2, double(v) / double(m_size - 1));
134         }
135 
136         void colors(const color_type& c1, const color_type& c2, unsigned size = 256)
137         {
138             m_c1 = c1;
139             m_c2 = c2;
140             m_size = size;
141         }
142 
143         color_type m_c1;
144         color_type m_c2;
145         unsigned m_size;
146     };
147 
148 
149     //==========================================================gradient_circle
150     class gradient_circle
151     {
152         // Actually the same as radial. Just for compatibility
153     public:
154         static AGG_INLINE int calculate(int x, int y, int)
155         {
156             return int(fast_sqrt(x*x + y*y));
157         }
158     };
159 
160 
161     //==========================================================gradient_radial
162     class gradient_radial
163     {
164     public:
165         static AGG_INLINE int calculate(int x, int y, int)
166         {
167             return int(fast_sqrt(x*x + y*y));
168         }
169     };
170 
171 
172     //========================================================gradient_radial_d
173     class gradient_radial_d
174     {
175     public:
176         static AGG_INLINE int calculate(int x, int y, int)
177         {
178             return uround(sqrt(double(x)*double(x) + double(y)*double(y)));
179         }
180     };
181 
182 
183     //====================================================gradient_radial_focus
184     class gradient_radial_focus
185     {
186     public:
187         //---------------------------------------------------------------------
188         gradient_radial_focus() :
189             m_radius(100 * gradient_subpixel_scale),
190             m_focus_x(0),
191             m_focus_y(0)
192         {
193             update_values();
194         }
195 
196         //---------------------------------------------------------------------
197         gradient_radial_focus(double r, double fx, double fy) :
198             m_radius (iround(r  * gradient_subpixel_scale)),
199             m_focus_x(iround(fx * gradient_subpixel_scale)),
200             m_focus_y(iround(fy * gradient_subpixel_scale))
201         {
202             update_values();
203         }
204 
205         //---------------------------------------------------------------------
206         void init(double r, double fx, double fy)
207         {
208             m_radius  = iround(r  * gradient_subpixel_scale);
209             m_focus_x = iround(fx * gradient_subpixel_scale);
210             m_focus_y = iround(fy * gradient_subpixel_scale);
211             update_values();
212         }
213 
214         //---------------------------------------------------------------------
215         double radius()  const { return double(m_radius)  / gradient_subpixel_scale; }
216         double focus_x() const { return double(m_focus_x) / gradient_subpixel_scale; }
217         double focus_y() const { return double(m_focus_y) / gradient_subpixel_scale; }
218 
219         //---------------------------------------------------------------------
220         int calculate(int x, int y, int) const
221         {
222             double solution_x;
223             double solution_y;
224 
225             // Special case to avoid divide by zero or very near zero
226             //---------------------------------
227             if(x == iround(m_focus_x))
228             {
229                 solution_x = m_focus_x;
230                 solution_y = 0.0;
231                 solution_y += (y > m_focus_y) ? m_trivial : -m_trivial;
232             }
233             else
234             {
235                 // Slope of the focus-current line
236                 //-------------------------------
237                 double slope = double(y - m_focus_y) / double(x - m_focus_x);
238 
239                 // y-intercept of that same line
240                 //--------------------------------
241                 double yint  = double(y) - (slope * x);
242 
243                 // Use the classical quadratic formula to calculate
244                 // the intersection point
245                 //--------------------------------
246                 double a = (slope * slope) + 1;
247                 double b =  2 * slope * yint;
248                 double c =  yint * yint - m_radius2;
249                 double det = sqrt((b * b) - (4.0 * a * c));
250 		        solution_x = -b;
251 
252                 // Choose the positive or negative root depending
253                 // on where the X coord lies with respect to the focus.
254                 solution_x += (x < m_focus_x) ? -det : det;
255 		        solution_x /= 2.0 * a;
256 
257                 // Calculating of Y is trivial
258                 solution_y  = (slope * solution_x) + yint;
259             }
260 
261             // Calculate the percentage (0...1) of the current point along the
262             // focus-circumference line and return the normalized (0...d) value
263             //-------------------------------
264             solution_x -= double(m_focus_x);
265             solution_y -= double(m_focus_y);
266             double int_to_focus = solution_x * solution_x + solution_y * solution_y;
267             double cur_to_focus = double(x - m_focus_x) * double(x - m_focus_x) +
268                                   double(y - m_focus_y) * double(y - m_focus_y);
269 
270             return iround(sqrt(cur_to_focus / int_to_focus) * m_radius);
271         }
272 
273     private:
274         //---------------------------------------------------------------------
275         void update_values()
276         {
277             // For use in the quadratic equation
278             //-------------------------------
279             m_radius2 = double(m_radius) * double(m_radius);
280 
281             double dist = sqrt(double(m_focus_x) * double(m_focus_x) +
282                                double(m_focus_y) * double(m_focus_y));
283 
284             // Test if distance from focus to center is greater than the radius
285             // For the sake of assurance factor restrict the point to be
286             // no further than 99% of the radius.
287             //-------------------------------
288             double r = m_radius * 0.99;
289             if(dist > r)
290             {
291                 // clamp focus to radius
292                 // x = r cos theta, y = r sin theta
293                 //------------------------
294                 double a = atan2(double(m_focus_y), double(m_focus_x));
295                 m_focus_x = iround(r * cos(a));
296                 m_focus_y = iround(r * sin(a));
297             }
298 
299             // Calculate the solution to be used in the case where x == focus_x
300             //------------------------------
301             m_trivial = sqrt(m_radius2 - (m_focus_x * m_focus_x));
302         }
303 
304         int m_radius;
305         int m_focus_x;
306         int m_focus_y;
307         double m_radius2;
308         double m_trivial;
309     };
310 
311 
312 
313     //==============================================================gradient_x
314     class gradient_x
315     {
316     public:
317         static int calculate(int x, int, int) { return x; }
318     };
319 
320 
321     //==============================================================gradient_y
322     class gradient_y
323     {
324     public:
325         static int calculate(int, int y, int) { return y; }
326     };
327 
328 
329     //========================================================gradient_diamond
330     class gradient_diamond
331     {
332     public:
333         static AGG_INLINE int calculate(int x, int y, int)
334         {
335             int ax = abs(x);
336             int ay = abs(y);
337             return ax > ay ? ax : ay;
338         }
339     };
340 
341 
342     //=============================================================gradient_xy
343     class gradient_xy
344     {
345     public:
346         static AGG_INLINE int calculate(int x, int y, int d)
347         {
348             return abs(x) * abs(y) / d;
349         }
350     };
351 
352 
353     //========================================================gradient_sqrt_xy
354     class gradient_sqrt_xy
355     {
356     public:
357         static AGG_INLINE int calculate(int x, int y, int)
358         {
359             return fast_sqrt(abs(x) * abs(y));
360         }
361     };
362 
363 
364     //==========================================================gradient_conic
365     class gradient_conic
366     {
367     public:
368         static AGG_INLINE int calculate(int x, int y, int d)
369         {
370             return uround(fabs(atan2(double(y), double(x))) * double(d) / pi);
371         }
372     };
373 
374 
375     //=================================================gradient_repeat_adaptor
376     template<class GradientF> class gradient_repeat_adaptor
377     {
378     public:
379         gradient_repeat_adaptor(const GradientF& gradient) :
380             m_gradient(&gradient) {}
381 
382         AGG_INLINE int calculate(int x, int y, int d) const
383         {
384             int ret = m_gradient->calculate(x, y, d) % d;
385             if(ret < 0) ret += d;
386             return ret;
387         }
388 
389     private:
390         const GradientF* m_gradient;
391     };
392 
393 
394     //================================================gradient_reflect_adaptor
395     template<class GradientF> class gradient_reflect_adaptor
396     {
397     public:
398         gradient_reflect_adaptor(const GradientF& gradient) :
399             m_gradient(&gradient) {}
400 
401         AGG_INLINE int calculate(int x, int y, int d) const
402         {
403             int d2 = d << 1;
404             int ret = m_gradient->calculate(x, y, d) % d2;
405             if(ret <  0) ret += d2;
406             if(ret >= d) ret  = d2 - ret;
407             return ret;
408         }
409 
410     private:
411         const GradientF* m_gradient;
412     };
413 
414 
415 }
416 
417 #endif
418