xref: /haiku/headers/libs/agg/agg_math.h (revision 1d9d47fc72028bb71b5f232a877231e59cfe2438)
1 //----------------------------------------------------------------------------
2 // Anti-Grain Geometry - Version 2.4
3 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
4 //
5 // Permission to copy, use, modify, sell and distribute this software
6 // is granted provided this copyright notice appears in all copies.
7 // This software is provided "as is" without express or implied
8 // warranty, and with no claim as to its suitability for any purpose.
9 //
10 //----------------------------------------------------------------------------
11 // Contact: mcseem@antigrain.com
12 //          mcseemagg@yahoo.com
13 //          http://www.antigrain.com
14 //----------------------------------------------------------------------------
15 // Bessel function (besj) was adapted for use in AGG library by Andy Wilk
16 // Contact: castor.vulgaris@gmail.com
17 //----------------------------------------------------------------------------
18 
19 #ifndef AGG_MATH_INCLUDED
20 #define AGG_MATH_INCLUDED
21 
22 #include <math.h>
23 #include "agg_basics.h"
24 
25 namespace agg
26 {
27 
28     //------------------------------------------------------vertex_dist_epsilon
29     // Coinciding points maximal distance (Epsilon)
30     const double vertex_dist_epsilon = 1e-14;
31 
32     //-----------------------------------------------------intersection_epsilon
33     // See calc_intersection
34     const double intersection_epsilon = 1.0e-30;
35 
36     //------------------------------------------------------------cross_product
37     AGG_INLINE double cross_product(double x1, double y1,
38                                     double x2, double y2,
39                                     double x,  double y)
40     {
41         return (x - x2) * (y2 - y1) - (y - y2) * (x2 - x1);
42     }
43 
44     //--------------------------------------------------------point_in_triangle
45     AGG_INLINE bool point_in_triangle(double x1, double y1,
46                                       double x2, double y2,
47                                       double x3, double y3,
48                                       double x,  double y)
49     {
50         bool cp1 = cross_product(x1, y1, x2, y2, x, y) < 0.0;
51         bool cp2 = cross_product(x2, y2, x3, y3, x, y) < 0.0;
52         bool cp3 = cross_product(x3, y3, x1, y1, x, y) < 0.0;
53         return cp1 == cp2 && cp2 == cp3 && cp3 == cp1;
54     }
55 
56     //-----------------------------------------------------------calc_distance
57     AGG_INLINE double calc_distance(double x1, double y1, double x2, double y2)
58     {
59         double dx = x2-x1;
60         double dy = y2-y1;
61         return sqrt(dx * dx + dy * dy);
62     }
63 
64     //--------------------------------------------------------calc_sq_distance
65     AGG_INLINE double calc_sq_distance(double x1, double y1, double x2, double y2)
66     {
67         double dx = x2-x1;
68         double dy = y2-y1;
69         return dx * dx + dy * dy;
70     }
71 
72     //------------------------------------------------calc_line_point_distance
73     AGG_INLINE double calc_line_point_distance(double x1, double y1,
74                                                double x2, double y2,
75                                                double x,  double y)
76     {
77         double dx = x2-x1;
78         double dy = y2-y1;
79         double d = sqrt(dx * dx + dy * dy);
80         if(d < vertex_dist_epsilon)
81         {
82             return calc_distance(x1, y1, x, y);
83         }
84         return ((x - x2) * dy - (y - y2) * dx) / d;
85     }
86 
87     //-------------------------------------------------------calc_line_point_u
88     AGG_INLINE double calc_segment_point_u(double x1, double y1,
89                                            double x2, double y2,
90                                            double x,  double y)
91     {
92         double dx = x2 - x1;
93         double dy = y2 - y1;
94 
95         if(dx == 0 && dy == 0)
96         {
97 	        return 0;
98         }
99 
100         double pdx = x - x1;
101         double pdy = y - y1;
102 
103         return (pdx * dx + pdy * dy) / (dx * dx + dy * dy);
104     }
105 
106     //---------------------------------------------calc_line_point_sq_distance
107     AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1,
108                                                      double x2, double y2,
109                                                      double x,  double y,
110                                                      double u)
111     {
112         if(u <= 0)
113         {
114 	        return calc_sq_distance(x, y, x1, y1);
115         }
116         else
117         if(u >= 1)
118         {
119 	        return calc_sq_distance(x, y, x2, y2);
120         }
121         return calc_sq_distance(x, y, x1 + u * (x2 - x1), y1 + u * (y2 - y1));
122     }
123 
124     //---------------------------------------------calc_line_point_sq_distance
125     AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1,
126                                                      double x2, double y2,
127                                                      double x,  double y)
128     {
129         return
130             calc_segment_point_sq_distance(
131                 x1, y1, x2, y2, x, y,
132                 calc_segment_point_u(x1, y1, x2, y2, x, y));
133     }
134 
135     //-------------------------------------------------------calc_intersection
136     AGG_INLINE bool calc_intersection(double ax, double ay, double bx, double by,
137                                       double cx, double cy, double dx, double dy,
138                                       double* x, double* y)
139     {
140         double num = (ay-cy) * (dx-cx) - (ax-cx) * (dy-cy);
141         double den = (bx-ax) * (dy-cy) - (by-ay) * (dx-cx);
142         if(fabs(den) < intersection_epsilon) return false;
143         double r = num / den;
144         *x = ax + r * (bx-ax);
145         *y = ay + r * (by-ay);
146         return true;
147     }
148 
149     //-----------------------------------------------------intersection_exists
150     AGG_INLINE bool intersection_exists(double x1, double y1, double x2, double y2,
151                                         double x3, double y3, double x4, double y4)
152     {
153         // It's less expensive but you can't control the
154         // boundary conditions: Less or LessEqual
155         double dx1 = x2 - x1;
156         double dy1 = y2 - y1;
157         double dx2 = x4 - x3;
158         double dy2 = y4 - y3;
159         return ((x3 - x2) * dy1 - (y3 - y2) * dx1 < 0.0) !=
160                ((x4 - x2) * dy1 - (y4 - y2) * dx1 < 0.0) &&
161                ((x1 - x4) * dy2 - (y1 - y4) * dx2 < 0.0) !=
162                ((x2 - x4) * dy2 - (y2 - y4) * dx2 < 0.0);
163 
164         // It's is more expensive but more flexible
165         // in terms of boundary conditions.
166         //--------------------
167         //double den  = (x2-x1) * (y4-y3) - (y2-y1) * (x4-x3);
168         //if(fabs(den) < intersection_epsilon) return false;
169         //double nom1 = (x4-x3) * (y1-y3) - (y4-y3) * (x1-x3);
170         //double nom2 = (x2-x1) * (y1-y3) - (y2-y1) * (x1-x3);
171         //double ua = nom1 / den;
172         //double ub = nom2 / den;
173         //return ua >= 0.0 && ua <= 1.0 && ub >= 0.0 && ub <= 1.0;
174     }
175 
176     //--------------------------------------------------------calc_orthogonal
177     AGG_INLINE void calc_orthogonal(double thickness,
178                                     double x1, double y1,
179                                     double x2, double y2,
180                                     double* x, double* y)
181     {
182         double dx = x2 - x1;
183         double dy = y2 - y1;
184         double d = sqrt(dx*dx + dy*dy);
185         *x =  thickness * dy / d;
186         *y = -thickness * dx / d;
187     }
188 
189     //--------------------------------------------------------dilate_triangle
190     AGG_INLINE void dilate_triangle(double x1, double y1,
191                                     double x2, double y2,
192                                     double x3, double y3,
193                                     double *x, double* y,
194                                     double d)
195     {
196         double dx1=0.0;
197         double dy1=0.0;
198         double dx2=0.0;
199         double dy2=0.0;
200         double dx3=0.0;
201         double dy3=0.0;
202         double loc = cross_product(x1, y1, x2, y2, x3, y3);
203         if(fabs(loc) > intersection_epsilon)
204         {
205             if(cross_product(x1, y1, x2, y2, x3, y3) > 0.0)
206             {
207                 d = -d;
208             }
209             calc_orthogonal(d, x1, y1, x2, y2, &dx1, &dy1);
210             calc_orthogonal(d, x2, y2, x3, y3, &dx2, &dy2);
211             calc_orthogonal(d, x3, y3, x1, y1, &dx3, &dy3);
212         }
213         *x++ = x1 + dx1;  *y++ = y1 + dy1;
214         *x++ = x2 + dx1;  *y++ = y2 + dy1;
215         *x++ = x2 + dx2;  *y++ = y2 + dy2;
216         *x++ = x3 + dx2;  *y++ = y3 + dy2;
217         *x++ = x3 + dx3;  *y++ = y3 + dy3;
218         *x++ = x1 + dx3;  *y++ = y1 + dy3;
219     }
220 
221     //------------------------------------------------------calc_triangle_area
222     AGG_INLINE double calc_triangle_area(double x1, double y1,
223                                          double x2, double y2,
224                                          double x3, double y3)
225     {
226         return (x1*y2 - x2*y1 + x2*y3 - x3*y2 + x3*y1 - x1*y3) * 0.5;
227     }
228 
229     //-------------------------------------------------------calc_polygon_area
230     template<class Storage> double calc_polygon_area(const Storage& st)
231     {
232         unsigned i;
233         double sum = 0.0;
234         double x  = st[0].x;
235         double y  = st[0].y;
236         double xs = x;
237         double ys = y;
238 
239         for(i = 1; i < st.size(); i++)
240         {
241             const typename Storage::value_type& v = st[i];
242             sum += x * v.y - y * v.x;
243             x = v.x;
244             y = v.y;
245         }
246         return (sum + x * ys - y * xs) * 0.5;
247     }
248 
249     //------------------------------------------------------------------------
250     // Tables for fast sqrt
251     extern int16u g_sqrt_table[1024];
252     extern int8   g_elder_bit_table[256];
253 
254 
255     //---------------------------------------------------------------fast_sqrt
256     //Fast integer Sqrt - really fast: no cycles, divisions or multiplications
257     #if defined(_MSC_VER)
258     #pragma warning(push)
259     #pragma warning(disable : 4035) //Disable warning "no return value"
260     #endif
261     AGG_INLINE unsigned fast_sqrt(unsigned val)
262     {
263     #if defined(_M_IX86) && defined(_MSC_VER) && !defined(AGG_NO_ASM)
264         //For Ix86 family processors this assembler code is used.
265         //The key command here is bsr - determination the number of the most
266         //significant bit of the value. For other processors
267         //(and maybe compilers) the pure C "#else" section is used.
268         __asm
269         {
270             mov ebx, val
271             mov edx, 11
272             bsr ecx, ebx
273             sub ecx, 9
274             jle less_than_9_bits
275             shr ecx, 1
276             adc ecx, 0
277             sub edx, ecx
278             shl ecx, 1
279             shr ebx, cl
280     less_than_9_bits:
281             xor eax, eax
282             mov  ax, g_sqrt_table[ebx*2]
283             mov ecx, edx
284             shr eax, cl
285         }
286     #else
287 
288         //This code is actually pure C and portable to most
289         //arcitectures including 64bit ones.
290         unsigned t = val;
291         int bit=0;
292         unsigned shift = 11;
293 
294         //The following piece of code is just an emulation of the
295         //Ix86 assembler command "bsr" (see above). However on old
296         //Intels (like Intel MMX 233MHz) this code is about twice
297         //faster (sic!) then just one "bsr". On PIII and PIV the
298         //bsr is optimized quite well.
299         bit = t >> 24;
300         if(bit)
301         {
302             bit = g_elder_bit_table[bit] + 24;
303         }
304         else
305         {
306             bit = (t >> 16) & 0xFF;
307             if(bit)
308             {
309                 bit = g_elder_bit_table[bit] + 16;
310             }
311             else
312             {
313                 bit = (t >> 8) & 0xFF;
314                 if(bit)
315                 {
316                     bit = g_elder_bit_table[bit] + 8;
317                 }
318                 else
319                 {
320                     bit = g_elder_bit_table[t];
321                 }
322             }
323         }
324 
325         //This is calculation sqrt itself.
326         bit -= 9;
327         if(bit > 0)
328         {
329             bit = (bit >> 1) + (bit & 1);
330             shift -= bit;
331             val >>= (bit << 1);
332         }
333         return g_sqrt_table[val] >> shift;
334     #endif
335     }
336     #if defined(_MSC_VER)
337     #pragma warning(pop)
338     #endif
339 
340 
341 
342 
343     //--------------------------------------------------------------------besj
344     // Function BESJ calculates Bessel function of first kind of order n
345     // Arguments:
346     //     n - an integer (>=0), the order
347     //     x - value at which the Bessel function is required
348     //--------------------
349     // C++ Mathematical Library
350     // Convereted from equivalent FORTRAN library
351     // Converetd by Gareth Walker for use by course 392 computational project
352     // All functions tested and yield the same results as the corresponding
353     // FORTRAN versions.
354     //
355     // If you have any problems using these functions please report them to
356     // M.Muldoon@UMIST.ac.uk
357     //
358     // Documentation available on the web
359     // http://www.ma.umist.ac.uk/mrm/Teaching/392/libs/392.html
360     // Version 1.0   8/98
361     // 29 October, 1999
362     //--------------------
363     // Adapted for use in AGG library by Andy Wilk (castor.vulgaris@gmail.com)
364     //------------------------------------------------------------------------
365     inline double besj(double x, int n)
366     {
367         if(n < 0)
368         {
369             return 0;
370         }
371         double d = 1E-6;
372         double b = 0;
373         if(fabs(x) <= d)
374         {
375             if(n != 0) return 0;
376             return 1;
377         }
378         double b1 = 0; // b1 is the value from the previous iteration
379         // Set up a starting order for recurrence
380         int m1 = (int)fabs(x) + 6;
381         if(fabs(x) > 5)
382         {
383             m1 = (int)(fabs(1.4 * x + 60 / x));
384         }
385         int m2 = (int)(n + 2 + fabs(x) / 4);
386         if (m1 > m2)
387         {
388             m2 = m1;
389         }
390 
391         // Apply recurrence down from curent max order
392         for(;;)
393         {
394             double c3 = 0;
395             double c2 = 1E-30;
396             double c4 = 0;
397             int m8 = 1;
398             if (m2 / 2 * 2 == m2)
399             {
400                 m8 = -1;
401             }
402             int imax = m2 - 2;
403             for (int i = 1; i <= imax; i++)
404             {
405                 double c6 = 2 * (m2 - i) * c2 / x - c3;
406                 c3 = c2;
407                 c2 = c6;
408                 if(m2 - i - 1 == n)
409                 {
410                     b = c6;
411                 }
412                 m8 = -1 * m8;
413                 if (m8 > 0)
414                 {
415                     c4 = c4 + 2 * c6;
416                 }
417             }
418             double c6 = 2 * c2 / x - c3;
419             if(n == 0)
420             {
421                 b = c6;
422             }
423             c4 += c6;
424             b /= c4;
425             if(fabs(b - b1) < d)
426             {
427                 return b;
428             }
429             b1 = b;
430             m2 += 3;
431         }
432     }
433 
434 }
435 
436 
437 #endif
438