xref: /haiku/headers/libs/agg/agg_conv_curve.h (revision 529cd177b573aaba391c8adc9c9f5ad76a14bf81)
1 //----------------------------------------------------------------------------
2 // Anti-Grain Geometry - Version 2.4
3 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
4 //
5 // Permission to copy, use, modify, sell and distribute this software
6 // is granted provided this copyright notice appears in all copies.
7 // This software is provided "as is" without express or implied
8 // warranty, and with no claim as to its suitability for any purpose.
9 //
10 //----------------------------------------------------------------------------
11 // Contact: mcseem@antigrain.com
12 //          mcseemagg@yahoo.com
13 //          http://www.antigrain.com
14 //----------------------------------------------------------------------------
15 //
16 // classes conv_curve
17 //
18 //----------------------------------------------------------------------------
19 
20 #ifndef AGG_CONV_CURVE_INCLUDED
21 #define AGG_CONV_CURVE_INCLUDED
22 
23 #include "agg_basics.h"
24 #include "agg_curves.h"
25 
26 namespace agg
27 {
28 
29 
30     //---------------------------------------------------------------conv_curve
31     // Curve converter class. Any path storage can have Bezier curves defined
32     // by their control points. There're two types of curves supported: curve3
33     // and curve4. Curve3 is a conic Bezier curve with 2 endpoints and 1 control
34     // point. Curve4 has 2 control points (4 points in total) and can be used
35     // to interpolate more complicated curves. Curve4, unlike curve3 can be used
36     // to approximate arcs, both circular and elliptical. Curves are approximated
37     // with straight lines and one of the approaches is just to store the whole
38     // sequence of vertices that approximate our curve. It takes additional
39     // memory, and at the same time the consecutive vertices can be calculated
40     // on demand.
41     //
42     // Initially, path storages are not suppose to keep all the vertices of the
43     // curves (although, nothing prevents us from doing so). Instead, path_storage
44     // keeps only vertices, needed to calculate a curve on demand. Those vertices
45     // are marked with special commands. So, if the path_storage contains curves
46     // (which are not real curves yet), and we render this storage directly,
47     // all we will see is only 2 or 3 straight line segments (for curve3 and
48     // curve4 respectively). If we need to see real curves drawn we need to
49     // include this class into the conversion pipeline.
50     //
51     // Class conv_curve recognizes commands path_cmd_curve3 and path_cmd_curve4
52     // and converts these vertices into a move_to/line_to sequence.
53     //-----------------------------------------------------------------------
54     template<class VertexSource,
55              class Curve3=curve3,
56              class Curve4=curve4> class conv_curve
57     {
58     public:
59         typedef Curve3 curve3_type;
60         typedef Curve4 curve4_type;
61         typedef conv_curve<VertexSource, Curve3, Curve4> self_type;
62 
63         conv_curve(VertexSource& source) :
64           m_source(&source), m_last_x(0.0), m_last_y(0.0) {}
65         void attach(VertexSource& source) { m_source = &source; }
66 
67         void approximation_method(curve_approximation_method_e v)
68         {
69             m_curve3.approximation_method(v);
70             m_curve4.approximation_method(v);
71         }
72 
73         curve_approximation_method_e approximation_method() const
74         {
75             return m_curve4.approximation_method();
76         }
77 
78         void approximation_scale(double s)
79         {
80             m_curve3.approximation_scale(s);
81             m_curve4.approximation_scale(s);
82         }
83 
84         double approximation_scale() const
85         {
86             return m_curve4.approximation_scale();
87         }
88 
89         void angle_tolerance(double v)
90         {
91             m_curve3.angle_tolerance(v);
92             m_curve4.angle_tolerance(v);
93         }
94 
95         double angle_tolerance() const
96         {
97             return m_curve4.angle_tolerance();
98         }
99 
100         void cusp_limit(double v)
101         {
102             m_curve3.cusp_limit(v);
103             m_curve4.cusp_limit(v);
104         }
105 
106         double cusp_limit() const
107         {
108             return m_curve4.cusp_limit();
109         }
110 
111         void     rewind(unsigned path_id);
112         unsigned vertex(double* x, double* y);
113 
114     private:
115         conv_curve(const self_type&);
116         const self_type& operator = (const self_type&);
117 
118         VertexSource* m_source;
119         double        m_last_x;
120         double        m_last_y;
121         curve3_type   m_curve3;
122         curve4_type   m_curve4;
123     };
124 
125 
126 
127     //------------------------------------------------------------------------
128     template<class VertexSource, class Curve3, class Curve4>
129     void conv_curve<VertexSource, Curve3, Curve4>::rewind(unsigned path_id)
130     {
131         m_source->rewind(path_id);
132         m_last_x = 0.0;
133         m_last_y = 0.0;
134         m_curve3.reset();
135         m_curve4.reset();
136     }
137 
138 
139     //------------------------------------------------------------------------
140     template<class VertexSource, class Curve3, class Curve4>
141     unsigned conv_curve<VertexSource, Curve3, Curve4>::vertex(double* x, double* y)
142     {
143         if(!is_stop(m_curve3.vertex(x, y)))
144         {
145             m_last_x = *x;
146             m_last_y = *y;
147             return path_cmd_line_to;
148         }
149 
150         if(!is_stop(m_curve4.vertex(x, y)))
151         {
152             m_last_x = *x;
153             m_last_y = *y;
154             return path_cmd_line_to;
155         }
156 
157         double ct2_x = 0;
158         double ct2_y = 0;
159         double end_x = 0;
160         double end_y = 0;
161 
162         unsigned cmd = m_source->vertex(x, y);
163         switch(cmd)
164         {
165         case path_cmd_curve3:
166             m_source->vertex(&end_x, &end_y);
167 
168 			if (!isnan(m_last_x) && !isnan(m_last_y) && !isnan(*x) && !isnan(*y)
169 				&& !isnan(end_x) && !isnan(end_y)) {
170 				m_curve3.init(m_last_x, m_last_y,
171 						*x,       *y,
172 						end_x,     end_y);
173 
174 				m_curve3.vertex(x, y);    // First call returns path_cmd_move_to
175 				m_curve3.vertex(x, y);    // This is the first vertex of the curve
176 			}
177             cmd = path_cmd_line_to;
178             break;
179 
180         case path_cmd_curve4:
181             m_source->vertex(&ct2_x, &ct2_y);
182             m_source->vertex(&end_x, &end_y);
183 
184 			if (!isnan(m_last_x) && !isnan(m_last_y) && !isnan(*x) && !isnan(*y)
185 				&& !isnan(end_x) && !isnan(end_y)) {
186 				m_curve4.init(m_last_x, m_last_y,
187 						*x,       *y,
188 						ct2_x,    ct2_y,
189 						end_x,    end_y);
190 
191 				m_curve4.vertex(x, y);    // First call returns path_cmd_move_to
192 				m_curve4.vertex(x, y);    // This is the first vertex of the curve
193 			}
194             cmd = path_cmd_line_to;
195             break;
196         }
197         m_last_x = *x;
198         m_last_y = *y;
199         return cmd;
200     }
201 
202 
203 }
204 
205 
206 
207 #endif
208