1 /* 2 * 3 * Copyright (c) 1994 4 * Hewlett-Packard Company 5 * 6 * Permission to use, copy, modify, distribute and sell this software 7 * and its documentation for any purpose is hereby granted without fee, 8 * provided that the above copyright notice appear in all copies and 9 * that both that copyright notice and this permission notice appear 10 * in supporting documentation. Hewlett-Packard Company makes no 11 * representations about the suitability of this software for any 12 * purpose. It is provided "as is" without express or implied warranty. 13 * 14 * 15 * Copyright (c) 1996-1998 16 * Silicon Graphics Computer Systems, Inc. 17 * 18 * Permission to use, copy, modify, distribute and sell this software 19 * and its documentation for any purpose is hereby granted without fee, 20 * provided that the above copyright notice appear in all copies and 21 * that both that copyright notice and this permission notice appear 22 * in supporting documentation. Silicon Graphics makes no 23 * representations about the suitability of this software for any 24 * purpose. It is provided "as is" without express or implied warranty. 25 */ 26 27 /* NOTE: This is an internal header file, included by other STL headers. 28 * You should not attempt to use it directly. 29 */ 30 31 #ifndef __SGI_STL_INTERNAL_FUNCTION_H 32 #define __SGI_STL_INTERNAL_FUNCTION_H 33 34 __STL_BEGIN_NAMESPACE 35 36 template <class _Arg, class _Result> 37 struct unary_function { 38 typedef _Arg argument_type; 39 typedef _Result result_type; 40 }; 41 42 template <class _Arg1, class _Arg2, class _Result> 43 struct binary_function { 44 typedef _Arg1 first_argument_type; 45 typedef _Arg2 second_argument_type; 46 typedef _Result result_type; 47 }; 48 49 template <class _Tp> 50 struct plus : public binary_function<_Tp,_Tp,_Tp> { 51 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; } 52 }; 53 54 template <class _Tp> 55 struct minus : public binary_function<_Tp,_Tp,_Tp> { 56 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; } 57 }; 58 59 template <class _Tp> 60 struct multiplies : public binary_function<_Tp,_Tp,_Tp> { 61 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; } 62 }; 63 64 template <class _Tp> 65 struct divides : public binary_function<_Tp,_Tp,_Tp> { 66 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; } 67 }; 68 69 // identity_element (not part of the C++ standard). 70 71 template <class _Tp> inline _Tp identity_element(plus<_Tp>) { 72 return _Tp(0); 73 } 74 template <class _Tp> inline _Tp identity_element(multiplies<_Tp>) { 75 return _Tp(1); 76 } 77 78 template <class _Tp> 79 struct modulus : public binary_function<_Tp,_Tp,_Tp> 80 { 81 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; } 82 }; 83 84 template <class _Tp> 85 struct negate : public unary_function<_Tp,_Tp> 86 { 87 _Tp operator()(const _Tp& __x) const { return -__x; } 88 }; 89 90 template <class _Tp> 91 struct equal_to : public binary_function<_Tp,_Tp,bool> 92 { 93 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; } 94 }; 95 96 template <class _Tp> 97 struct not_equal_to : public binary_function<_Tp,_Tp,bool> 98 { 99 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; } 100 }; 101 102 template <class _Tp> 103 struct greater : public binary_function<_Tp,_Tp,bool> 104 { 105 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; } 106 }; 107 108 template <class _Tp> 109 struct less : public binary_function<_Tp,_Tp,bool> 110 { 111 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; } 112 }; 113 114 template <class _Tp> 115 struct greater_equal : public binary_function<_Tp,_Tp,bool> 116 { 117 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; } 118 }; 119 120 template <class _Tp> 121 struct less_equal : public binary_function<_Tp,_Tp,bool> 122 { 123 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; } 124 }; 125 126 template <class _Tp> 127 struct logical_and : public binary_function<_Tp,_Tp,bool> 128 { 129 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; } 130 }; 131 132 template <class _Tp> 133 struct logical_or : public binary_function<_Tp,_Tp,bool> 134 { 135 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; } 136 }; 137 138 template <class _Tp> 139 struct logical_not : public unary_function<_Tp,bool> 140 { 141 bool operator()(const _Tp& __x) const { return !__x; } 142 }; 143 144 template <class _Predicate> 145 class unary_negate 146 : public unary_function<typename _Predicate::argument_type, bool> { 147 protected: 148 _Predicate _M_pred; 149 public: 150 explicit unary_negate(const _Predicate& __x) : _M_pred(__x) {} 151 bool operator()(const typename _Predicate::argument_type& __x) const { 152 return !_M_pred(__x); 153 } 154 }; 155 156 template <class _Predicate> 157 inline unary_negate<_Predicate> 158 not1(const _Predicate& __pred) 159 { 160 return unary_negate<_Predicate>(__pred); 161 } 162 163 template <class _Predicate> 164 class binary_negate 165 : public binary_function<typename _Predicate::first_argument_type, 166 typename _Predicate::second_argument_type, 167 bool> { 168 protected: 169 _Predicate _M_pred; 170 public: 171 explicit binary_negate(const _Predicate& __x) : _M_pred(__x) {} 172 bool operator()(const typename _Predicate::first_argument_type& __x, 173 const typename _Predicate::second_argument_type& __y) const 174 { 175 return !_M_pred(__x, __y); 176 } 177 }; 178 179 template <class _Predicate> 180 inline binary_negate<_Predicate> 181 not2(const _Predicate& __pred) 182 { 183 return binary_negate<_Predicate>(__pred); 184 } 185 186 template <class _Operation> 187 class binder1st 188 : public unary_function<typename _Operation::second_argument_type, 189 typename _Operation::result_type> { 190 protected: 191 _Operation op; 192 typename _Operation::first_argument_type value; 193 public: 194 binder1st(const _Operation& __x, 195 const typename _Operation::first_argument_type& __y) 196 : op(__x), value(__y) {} 197 typename _Operation::result_type 198 operator()(const typename _Operation::second_argument_type& __x) const { 199 return op(value, __x); 200 } 201 }; 202 203 template <class _Operation, class _Tp> 204 inline binder1st<_Operation> 205 bind1st(const _Operation& __oper, const _Tp& __x) 206 { 207 typedef typename _Operation::first_argument_type _Arg1_type; 208 return binder1st<_Operation>(__oper, _Arg1_type(__x)); 209 } 210 211 template <class _Operation> 212 class binder2nd 213 : public unary_function<typename _Operation::first_argument_type, 214 typename _Operation::result_type> { 215 protected: 216 _Operation op; 217 typename _Operation::second_argument_type value; 218 public: 219 binder2nd(const _Operation& __x, 220 const typename _Operation::second_argument_type& __y) 221 : op(__x), value(__y) {} 222 typename _Operation::result_type 223 operator()(const typename _Operation::first_argument_type& __x) const { 224 return op(__x, value); 225 } 226 }; 227 228 template <class _Operation, class _Tp> 229 inline binder2nd<_Operation> 230 bind2nd(const _Operation& __oper, const _Tp& __x) 231 { 232 typedef typename _Operation::second_argument_type _Arg2_type; 233 return binder2nd<_Operation>(__oper, _Arg2_type(__x)); 234 } 235 236 // unary_compose and binary_compose (extensions, not part of the standard). 237 238 template <class _Operation1, class _Operation2> 239 class unary_compose 240 : public unary_function<typename _Operation2::argument_type, 241 typename _Operation1::result_type> 242 { 243 protected: 244 _Operation1 __op1; 245 _Operation2 __op2; 246 public: 247 unary_compose(const _Operation1& __x, const _Operation2& __y) 248 : __op1(__x), __op2(__y) {} 249 typename _Operation1::result_type 250 operator()(const typename _Operation2::argument_type& __x) const { 251 return __op1(__op2(__x)); 252 } 253 }; 254 255 template <class _Operation1, class _Operation2> 256 inline unary_compose<_Operation1,_Operation2> 257 compose1(const _Operation1& __op1, const _Operation2& __op2) 258 { 259 return unary_compose<_Operation1,_Operation2>(__op1, __op2); 260 } 261 262 template <class _Operation1, class _Operation2, class _Operation3> 263 class binary_compose 264 : public unary_function<typename _Operation2::argument_type, 265 typename _Operation1::result_type> { 266 protected: 267 _Operation1 _M_op1; 268 _Operation2 _M_op2; 269 _Operation3 _M_op3; 270 public: 271 binary_compose(const _Operation1& __x, const _Operation2& __y, 272 const _Operation3& __z) 273 : _M_op1(__x), _M_op2(__y), _M_op3(__z) { } 274 typename _Operation1::result_type 275 operator()(const typename _Operation2::argument_type& __x) const { 276 return _M_op1(_M_op2(__x), _M_op3(__x)); 277 } 278 }; 279 280 template <class _Operation1, class _Operation2, class _Operation3> 281 inline binary_compose<_Operation1, _Operation2, _Operation3> 282 compose2(const _Operation1& __op1, const _Operation2& __op2, 283 const _Operation3& __op3) 284 { 285 return binary_compose<_Operation1,_Operation2,_Operation3> 286 (__op1, __op2, __op3); 287 } 288 289 template <class _Arg, class _Result> 290 class pointer_to_unary_function : public unary_function<_Arg, _Result> { 291 protected: 292 _Result (*_M_ptr)(_Arg); 293 public: 294 pointer_to_unary_function() {} 295 explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) {} 296 _Result operator()(_Arg __x) const { return _M_ptr(__x); } 297 }; 298 299 template <class _Arg, class _Result> 300 inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg)) 301 { 302 return pointer_to_unary_function<_Arg, _Result>(__x); 303 } 304 305 template <class _Arg1, class _Arg2, class _Result> 306 class pointer_to_binary_function : 307 public binary_function<_Arg1,_Arg2,_Result> { 308 protected: 309 _Result (*_M_ptr)(_Arg1, _Arg2); 310 public: 311 pointer_to_binary_function() {} 312 explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2)) 313 : _M_ptr(__x) {} 314 _Result operator()(_Arg1 __x, _Arg2 __y) const { 315 return _M_ptr(__x, __y); 316 } 317 }; 318 319 template <class _Arg1, class _Arg2, class _Result> 320 inline pointer_to_binary_function<_Arg1,_Arg2,_Result> 321 ptr_fun(_Result (*__x)(_Arg1, _Arg2)) { 322 return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__x); 323 } 324 325 // identity is an extensions: it is not part of the standard. 326 template <class _Tp> 327 struct _Identity : public unary_function<_Tp,_Tp> { 328 const _Tp& operator()(const _Tp& __x) const { return __x; } 329 }; 330 331 template <class _Tp> struct identity : public _Identity<_Tp> {}; 332 333 // select1st and select2nd are extensions: they are not part of the standard. 334 template <class _Pair> 335 struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> { 336 const typename _Pair::first_type& operator()(const _Pair& __x) const { 337 return __x.first; 338 } 339 }; 340 341 template <class _Pair> 342 struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type> 343 { 344 const typename _Pair::second_type& operator()(const _Pair& __x) const { 345 return __x.second; 346 } 347 }; 348 349 template <class _Pair> struct select1st : public _Select1st<_Pair> {}; 350 template <class _Pair> struct select2nd : public _Select2nd<_Pair> {}; 351 352 // project1st and project2nd are extensions: they are not part of the standard 353 template <class _Arg1, class _Arg2> 354 struct _Project1st : public binary_function<_Arg1, _Arg2, _Arg1> { 355 _Arg1 operator()(const _Arg1& __x, const _Arg2&) const { return __x; } 356 }; 357 358 template <class _Arg1, class _Arg2> 359 struct _Project2nd : public binary_function<_Arg1, _Arg2, _Arg2> { 360 _Arg2 operator()(const _Arg1&, const _Arg2& __y) const { return __y; } 361 }; 362 363 template <class _Arg1, class _Arg2> 364 struct project1st : public _Project1st<_Arg1, _Arg2> {}; 365 366 template <class _Arg1, class _Arg2> 367 struct project2nd : public _Project2nd<_Arg1, _Arg2> {}; 368 369 // constant_void_fun, constant_unary_fun, and constant_binary_fun are 370 // extensions: they are not part of the standard. (The same, of course, 371 // is true of the helper functions constant0, constant1, and constant2.) 372 template <class _Result> 373 struct constant_void_fun 374 { 375 typedef _Result result_type; 376 result_type __val; 377 constant_void_fun(const result_type& __v) : __val(__v) {} 378 const result_type& operator()() const { return __val; } 379 }; 380 381 #ifndef __STL_LIMITED_DEFAULT_TEMPLATES 382 template <class _Result, class _Argument = _Result> 383 #else 384 template <class _Result, class _Argument> 385 #endif 386 struct constant_unary_fun : public unary_function<_Argument, _Result> { 387 _Result _M_val; 388 constant_unary_fun(const _Result& __v) : _M_val(__v) {} 389 const _Result& operator()(const _Argument&) const { return _M_val; } 390 }; 391 392 #ifndef __STL_LIMITED_DEFAULT_TEMPLATES 393 template <class _Result, class _Arg1 = _Result, class _Arg2 = _Arg1> 394 #else 395 template <class _Result, class _Arg1, class _Arg2> 396 #endif 397 struct constant_binary_fun : public binary_function<_Arg1, _Arg2, _Result> { 398 _Result _M_val; 399 constant_binary_fun(const _Result& __v) : _M_val(__v) {} 400 const _Result& operator()(const _Arg1&, const _Arg2&) const { 401 return _M_val; 402 } 403 }; 404 405 template <class _Result> 406 inline constant_void_fun<_Result> constant0(const _Result& __val) 407 { 408 return constant_void_fun<_Result>(__val); 409 } 410 411 template <class _Result> 412 inline constant_unary_fun<_Result,_Result> constant1(const _Result& __val) 413 { 414 return constant_unary_fun<_Result,_Result>(__val); 415 } 416 417 template <class _Result> 418 inline constant_binary_fun<_Result,_Result,_Result> 419 constant2(const _Result& __val) 420 { 421 return constant_binary_fun<_Result,_Result,_Result>(__val); 422 } 423 424 // subtractive_rng is an extension: it is not part of the standard. 425 // Note: this code assumes that int is 32 bits. 426 class subtractive_rng : public unary_function<unsigned int, unsigned int> { 427 private: 428 unsigned int _M_table[55]; 429 size_t _M_index1; 430 size_t _M_index2; 431 public: 432 unsigned int operator()(unsigned int __limit) { 433 _M_index1 = (_M_index1 + 1) % 55; 434 _M_index2 = (_M_index2 + 1) % 55; 435 _M_table[_M_index1] = _M_table[_M_index1] - _M_table[_M_index2]; 436 return _M_table[_M_index1] % __limit; 437 } 438 439 void _M_initialize(unsigned int __seed) 440 { 441 unsigned int __k = 1; 442 _M_table[54] = __seed; 443 size_t __i; 444 for (__i = 0; __i < 54; __i++) { 445 size_t __ii = (21 * (__i + 1) % 55) - 1; 446 _M_table[__ii] = __k; 447 __k = __seed - __k; 448 __seed = _M_table[__ii]; 449 } 450 for (int __loop = 0; __loop < 4; __loop++) { 451 for (__i = 0; __i < 55; __i++) 452 _M_table[__i] = _M_table[__i] - _M_table[(1 + __i + 30) % 55]; 453 } 454 _M_index1 = 0; 455 _M_index2 = 31; 456 } 457 458 subtractive_rng(unsigned int __seed) { _M_initialize(__seed); } 459 subtractive_rng() { _M_initialize(161803398u); } 460 }; 461 462 463 // Adaptor function objects: pointers to member functions. 464 465 // There are a total of 16 = 2^4 function objects in this family. 466 // (1) Member functions taking no arguments vs member functions taking 467 // one argument. 468 // (2) Call through pointer vs call through reference. 469 // (3) Member function with void return type vs member function with 470 // non-void return type. 471 // (4) Const vs non-const member function. 472 473 // Note that choice (3) is nothing more than a workaround: according 474 // to the draft, compilers should handle void and non-void the same way. 475 // This feature is not yet widely implemented, though. You can only use 476 // member functions returning void if your compiler supports partial 477 // specialization. 478 479 // All of this complexity is in the function objects themselves. You can 480 // ignore it by using the helper function mem_fun and mem_fun_ref, 481 // which create whichever type of adaptor is appropriate. 482 // (mem_fun1 and mem_fun1_ref are no longer part of the C++ standard, 483 // but they are provided for backward compatibility.) 484 485 486 template <class _Ret, class _Tp> 487 class mem_fun_t : public unary_function<_Tp*,_Ret> { 488 public: 489 explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {} 490 _Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); } 491 private: 492 _Ret (_Tp::*_M_f)(); 493 }; 494 495 template <class _Ret, class _Tp> 496 class const_mem_fun_t : public unary_function<const _Tp*,_Ret> { 497 public: 498 explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {} 499 _Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); } 500 private: 501 _Ret (_Tp::*_M_f)() const; 502 }; 503 504 505 template <class _Ret, class _Tp> 506 class mem_fun_ref_t : public unary_function<_Tp,_Ret> { 507 public: 508 explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {} 509 _Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); } 510 private: 511 _Ret (_Tp::*_M_f)(); 512 }; 513 514 template <class _Ret, class _Tp> 515 class const_mem_fun_ref_t : public unary_function<_Tp,_Ret> { 516 public: 517 explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {} 518 _Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); } 519 private: 520 _Ret (_Tp::*_M_f)() const; 521 }; 522 523 template <class _Ret, class _Tp, class _Arg> 524 class mem_fun1_t : public binary_function<_Tp*,_Arg,_Ret> { 525 public: 526 explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {} 527 _Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); } 528 private: 529 _Ret (_Tp::*_M_f)(_Arg); 530 }; 531 532 template <class _Ret, class _Tp, class _Arg> 533 class const_mem_fun1_t : public binary_function<const _Tp*,_Arg,_Ret> { 534 public: 535 explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {} 536 _Ret operator()(const _Tp* __p, _Arg __x) const 537 { return (__p->*_M_f)(__x); } 538 private: 539 _Ret (_Tp::*_M_f)(_Arg) const; 540 }; 541 542 template <class _Ret, class _Tp, class _Arg> 543 class mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> { 544 public: 545 explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {} 546 _Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); } 547 private: 548 _Ret (_Tp::*_M_f)(_Arg); 549 }; 550 551 template <class _Ret, class _Tp, class _Arg> 552 class const_mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> { 553 public: 554 explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {} 555 _Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); } 556 private: 557 _Ret (_Tp::*_M_f)(_Arg) const; 558 }; 559 560 #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION 561 562 template <class _Tp> 563 class mem_fun_t<void, _Tp> : public unary_function<_Tp*,void> { 564 public: 565 explicit mem_fun_t(void (_Tp::*__pf)()) : _M_f(__pf) {} 566 void operator()(_Tp* __p) const { (__p->*_M_f)(); } 567 private: 568 void (_Tp::*_M_f)(); 569 }; 570 571 template <class _Tp> 572 class const_mem_fun_t<void, _Tp> : public unary_function<const _Tp*,void> { 573 public: 574 explicit const_mem_fun_t(void (_Tp::*__pf)() const) : _M_f(__pf) {} 575 void operator()(const _Tp* __p) const { (__p->*_M_f)(); } 576 private: 577 void (_Tp::*_M_f)() const; 578 }; 579 580 template <class _Tp> 581 class mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> { 582 public: 583 explicit mem_fun_ref_t(void (_Tp::*__pf)()) : _M_f(__pf) {} 584 void operator()(_Tp& __r) const { (__r.*_M_f)(); } 585 private: 586 void (_Tp::*_M_f)(); 587 }; 588 589 template <class _Tp> 590 class const_mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> { 591 public: 592 explicit const_mem_fun_ref_t(void (_Tp::*__pf)() const) : _M_f(__pf) {} 593 void operator()(const _Tp& __r) const { (__r.*_M_f)(); } 594 private: 595 void (_Tp::*_M_f)() const; 596 }; 597 598 template <class _Tp, class _Arg> 599 class mem_fun1_t<void, _Tp, _Arg> : public binary_function<_Tp*,_Arg,void> { 600 public: 601 explicit mem_fun1_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {} 602 void operator()(_Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); } 603 private: 604 void (_Tp::*_M_f)(_Arg); 605 }; 606 607 template <class _Tp, class _Arg> 608 class const_mem_fun1_t<void, _Tp, _Arg> 609 : public binary_function<const _Tp*,_Arg,void> { 610 public: 611 explicit const_mem_fun1_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {} 612 void operator()(const _Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); } 613 private: 614 void (_Tp::*_M_f)(_Arg) const; 615 }; 616 617 template <class _Tp, class _Arg> 618 class mem_fun1_ref_t<void, _Tp, _Arg> 619 : public binary_function<_Tp,_Arg,void> { 620 public: 621 explicit mem_fun1_ref_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {} 622 void operator()(_Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); } 623 private: 624 void (_Tp::*_M_f)(_Arg); 625 }; 626 627 template <class _Tp, class _Arg> 628 class const_mem_fun1_ref_t<void, _Tp, _Arg> 629 : public binary_function<_Tp,_Arg,void> { 630 public: 631 explicit const_mem_fun1_ref_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {} 632 void operator()(const _Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); } 633 private: 634 void (_Tp::*_M_f)(_Arg) const; 635 }; 636 637 #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ 638 639 // Mem_fun adaptor helper functions. There are only two: 640 // mem_fun and mem_fun_ref. (mem_fun1 and mem_fun1_ref 641 // are provided for backward compatibility, but they are no longer 642 // part of the C++ standard.) 643 644 template <class _Ret, class _Tp> 645 inline mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)()) 646 { return mem_fun_t<_Ret,_Tp>(__f); } 647 648 template <class _Ret, class _Tp> 649 inline const_mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)() const) 650 { return const_mem_fun_t<_Ret,_Tp>(__f); } 651 652 template <class _Ret, class _Tp> 653 inline mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)()) 654 { return mem_fun_ref_t<_Ret,_Tp>(__f); } 655 656 template <class _Ret, class _Tp> 657 inline const_mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)() const) 658 { return const_mem_fun_ref_t<_Ret,_Tp>(__f); } 659 660 template <class _Ret, class _Tp, class _Arg> 661 inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg)) 662 { return mem_fun1_t<_Ret,_Tp,_Arg>(__f); } 663 664 template <class _Ret, class _Tp, class _Arg> 665 inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const) 666 { return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); } 667 668 template <class _Ret, class _Tp, class _Arg> 669 inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg)) 670 { return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); } 671 672 template <class _Ret, class _Tp, class _Arg> 673 inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg> 674 mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const) 675 { return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); } 676 677 template <class _Ret, class _Tp, class _Arg> 678 inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg)) 679 { return mem_fun1_t<_Ret,_Tp,_Arg>(__f); } 680 681 template <class _Ret, class _Tp, class _Arg> 682 inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg) const) 683 { return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); } 684 685 template <class _Ret, class _Tp, class _Arg> 686 inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun1_ref(_Ret (_Tp::*__f)(_Arg)) 687 { return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); } 688 689 template <class _Ret, class _Tp, class _Arg> 690 inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg> 691 mem_fun1_ref(_Ret (_Tp::*__f)(_Arg) const) 692 { return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); } 693 694 __STL_END_NAMESPACE 695 696 #endif /* __SGI_STL_INTERNAL_FUNCTION_H */ 697 698 // Local Variables: 699 // mode:C++ 700 // End: 701