1 /*
2 *
3 * Copyright (c) 1996,1997
4 * Silicon Graphics Computer Systems, Inc.
5 *
6 * Permission to use, copy, modify, distribute and sell this software
7 * and its documentation for any purpose is hereby granted without fee,
8 * provided that the above copyright notice appear in all copies and
9 * that both that copyright notice and this permission notice appear
10 * in supporting documentation. Silicon Graphics makes no
11 * representations about the suitability of this software for any
12 * purpose. It is provided "as is" without express or implied warranty.
13 *
14 *
15 * Copyright (c) 1994
16 * Hewlett-Packard Company
17 *
18 * Permission to use, copy, modify, distribute and sell this software
19 * and its documentation for any purpose is hereby granted without fee,
20 * provided that the above copyright notice appear in all copies and
21 * that both that copyright notice and this permission notice appear
22 * in supporting documentation. Hewlett-Packard Company makes no
23 * representations about the suitability of this software for any
24 * purpose. It is provided "as is" without express or implied warranty.
25 *
26 *
27 */
28
29 /* NOTE: This is an internal header file, included by other STL headers.
30 * You should not attempt to use it directly.
31 */
32
33 #ifndef __SGI_STL_INTERNAL_TREE_H
34 #define __SGI_STL_INTERNAL_TREE_H
35
36 /*
37
38 Red-black tree class, designed for use in implementing STL
39 associative containers (set, multiset, map, and multimap). The
40 insertion and deletion algorithms are based on those in Cormen,
41 Leiserson, and Rivest, Introduction to Algorithms (MIT Press, 1990),
42 except that
43
44 (1) the header cell is maintained with links not only to the root
45 but also to the leftmost node of the tree, to enable constant time
46 begin(), and to the rightmost node of the tree, to enable linear time
47 performance when used with the generic set algorithms (set_union,
48 etc.);
49
50 (2) when a node being deleted has two children its successor node is
51 relinked into its place, rather than copied, so that the only
52 iterators invalidated are those referring to the deleted node.
53
54 */
55
56 #include <stl_algobase.h>
57 #include <stl_alloc.h>
58 #include <stl_construct.h>
59 #include <stl_function.h>
60
61 __STL_BEGIN_NAMESPACE
62
63 #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
64 #pragma set woff 1375
65 #endif
66
67 typedef bool _Rb_tree_Color_type;
68 const _Rb_tree_Color_type _S_rb_tree_red = false;
69 const _Rb_tree_Color_type _S_rb_tree_black = true;
70
71 struct _Rb_tree_node_base
72 {
73 typedef _Rb_tree_Color_type _Color_type;
74 typedef _Rb_tree_node_base* _Base_ptr;
75
76 _Color_type _M_color;
77 _Base_ptr _M_parent;
78 _Base_ptr _M_left;
79 _Base_ptr _M_right;
80
_S_minimum_Rb_tree_node_base81 static _Base_ptr _S_minimum(_Base_ptr __x)
82 {
83 while (__x->_M_left != 0) __x = __x->_M_left;
84 return __x;
85 }
86
_S_maximum_Rb_tree_node_base87 static _Base_ptr _S_maximum(_Base_ptr __x)
88 {
89 while (__x->_M_right != 0) __x = __x->_M_right;
90 return __x;
91 }
92 };
93
94 template <class _Value>
95 struct _Rb_tree_node : public _Rb_tree_node_base
96 {
97 typedef _Rb_tree_node<_Value>* _Link_type;
98 _Value _M_value_field;
99 };
100
101
102 struct _Rb_tree_base_iterator
103 {
104 typedef _Rb_tree_node_base::_Base_ptr _Base_ptr;
105 typedef bidirectional_iterator_tag iterator_category;
106 typedef ptrdiff_t difference_type;
107 _Base_ptr _M_node;
108
_M_increment_Rb_tree_base_iterator109 void _M_increment()
110 {
111 if (_M_node->_M_right != 0) {
112 _M_node = _M_node->_M_right;
113 while (_M_node->_M_left != 0)
114 _M_node = _M_node->_M_left;
115 }
116 else {
117 _Base_ptr __y = _M_node->_M_parent;
118 while (_M_node == __y->_M_right) {
119 _M_node = __y;
120 __y = __y->_M_parent;
121 }
122 if (_M_node->_M_right != __y)
123 _M_node = __y;
124 }
125 }
126
_M_decrement_Rb_tree_base_iterator127 void _M_decrement()
128 {
129 if (_M_node->_M_color == _S_rb_tree_red &&
130 _M_node->_M_parent->_M_parent == _M_node)
131 _M_node = _M_node->_M_right;
132 else if (_M_node->_M_left != 0) {
133 _Base_ptr __y = _M_node->_M_left;
134 while (__y->_M_right != 0)
135 __y = __y->_M_right;
136 _M_node = __y;
137 }
138 else {
139 _Base_ptr __y = _M_node->_M_parent;
140 while (_M_node == __y->_M_left) {
141 _M_node = __y;
142 __y = __y->_M_parent;
143 }
144 _M_node = __y;
145 }
146 }
147 };
148
149 template <class _Value, class _Ref, class _Ptr>
150 struct _Rb_tree_iterator : public _Rb_tree_base_iterator
151 {
152 typedef _Value value_type;
153 typedef _Ref reference;
154 typedef _Ptr pointer;
155 typedef _Rb_tree_iterator<_Value, _Value&, _Value*>
156 iterator;
157 typedef _Rb_tree_iterator<_Value, const _Value&, const _Value*>
158 const_iterator;
159 typedef _Rb_tree_iterator<_Value, _Ref, _Ptr>
160 _Self;
161 typedef _Rb_tree_node<_Value>* _Link_type;
162
_Rb_tree_iterator_Rb_tree_iterator163 _Rb_tree_iterator() {}
_Rb_tree_iterator_Rb_tree_iterator164 _Rb_tree_iterator(_Link_type __x) { _M_node = __x; }
_Rb_tree_iterator_Rb_tree_iterator165 _Rb_tree_iterator(const iterator& __it) { _M_node = __it._M_node; }
166
167 reference operator*() const { return _Link_type(_M_node)->_M_value_field; }
168 #ifndef __SGI_STL_NO_ARROW_OPERATOR
169 pointer operator->() const { return &(operator*()); }
170 #endif /* __SGI_STL_NO_ARROW_OPERATOR */
171
172 _Self& operator++() { _M_increment(); return *this; }
173 _Self operator++(int) {
174 _Self __tmp = *this;
175 _M_increment();
176 return __tmp;
177 }
178
179 _Self& operator--() { _M_decrement(); return *this; }
180 _Self operator--(int) {
181 _Self __tmp = *this;
182 _M_decrement();
183 return __tmp;
184 }
185 };
186
187 inline bool operator==(const _Rb_tree_base_iterator& __x,
188 const _Rb_tree_base_iterator& __y) {
189 return __x._M_node == __y._M_node;
190 }
191
192 inline bool operator!=(const _Rb_tree_base_iterator& __x,
193 const _Rb_tree_base_iterator& __y) {
194 return __x._M_node != __y._M_node;
195 }
196
197 #ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
198
199 inline bidirectional_iterator_tag
iterator_category(const _Rb_tree_base_iterator &)200 iterator_category(const _Rb_tree_base_iterator&) {
201 return bidirectional_iterator_tag();
202 }
203
204 inline _Rb_tree_base_iterator::difference_type*
distance_type(const _Rb_tree_base_iterator &)205 distance_type(const _Rb_tree_base_iterator&) {
206 return (_Rb_tree_base_iterator::difference_type*) 0;
207 }
208
209 template <class _Value, class _Ref, class _Ptr>
value_type(const _Rb_tree_iterator<_Value,_Ref,_Ptr> &)210 inline _Value* value_type(const _Rb_tree_iterator<_Value, _Ref, _Ptr>&) {
211 return (_Value*) 0;
212 }
213
214 #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
215
216 inline void
_Rb_tree_rotate_left(_Rb_tree_node_base * __x,_Rb_tree_node_base * & __root)217 _Rb_tree_rotate_left(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
218 {
219 _Rb_tree_node_base* __y = __x->_M_right;
220 __x->_M_right = __y->_M_left;
221 if (__y->_M_left !=0)
222 __y->_M_left->_M_parent = __x;
223 __y->_M_parent = __x->_M_parent;
224
225 if (__x == __root)
226 __root = __y;
227 else if (__x == __x->_M_parent->_M_left)
228 __x->_M_parent->_M_left = __y;
229 else
230 __x->_M_parent->_M_right = __y;
231 __y->_M_left = __x;
232 __x->_M_parent = __y;
233 }
234
235 inline void
_Rb_tree_rotate_right(_Rb_tree_node_base * __x,_Rb_tree_node_base * & __root)236 _Rb_tree_rotate_right(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
237 {
238 _Rb_tree_node_base* __y = __x->_M_left;
239 __x->_M_left = __y->_M_right;
240 if (__y->_M_right != 0)
241 __y->_M_right->_M_parent = __x;
242 __y->_M_parent = __x->_M_parent;
243
244 if (__x == __root)
245 __root = __y;
246 else if (__x == __x->_M_parent->_M_right)
247 __x->_M_parent->_M_right = __y;
248 else
249 __x->_M_parent->_M_left = __y;
250 __y->_M_right = __x;
251 __x->_M_parent = __y;
252 }
253
254 inline void
_Rb_tree_rebalance(_Rb_tree_node_base * __x,_Rb_tree_node_base * & __root)255 _Rb_tree_rebalance(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
256 {
257 __x->_M_color = _S_rb_tree_red;
258 while (__x != __root && __x->_M_parent->_M_color == _S_rb_tree_red) {
259 if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left) {
260 _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right;
261 if (__y && __y->_M_color == _S_rb_tree_red) {
262 __x->_M_parent->_M_color = _S_rb_tree_black;
263 __y->_M_color = _S_rb_tree_black;
264 __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
265 __x = __x->_M_parent->_M_parent;
266 }
267 else {
268 if (__x == __x->_M_parent->_M_right) {
269 __x = __x->_M_parent;
270 _Rb_tree_rotate_left(__x, __root);
271 }
272 __x->_M_parent->_M_color = _S_rb_tree_black;
273 __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
274 _Rb_tree_rotate_right(__x->_M_parent->_M_parent, __root);
275 }
276 }
277 else {
278 _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left;
279 if (__y && __y->_M_color == _S_rb_tree_red) {
280 __x->_M_parent->_M_color = _S_rb_tree_black;
281 __y->_M_color = _S_rb_tree_black;
282 __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
283 __x = __x->_M_parent->_M_parent;
284 }
285 else {
286 if (__x == __x->_M_parent->_M_left) {
287 __x = __x->_M_parent;
288 _Rb_tree_rotate_right(__x, __root);
289 }
290 __x->_M_parent->_M_color = _S_rb_tree_black;
291 __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
292 _Rb_tree_rotate_left(__x->_M_parent->_M_parent, __root);
293 }
294 }
295 }
296 __root->_M_color = _S_rb_tree_black;
297 }
298
299 inline _Rb_tree_node_base*
_Rb_tree_rebalance_for_erase(_Rb_tree_node_base * __z,_Rb_tree_node_base * & __root,_Rb_tree_node_base * & __leftmost,_Rb_tree_node_base * & __rightmost)300 _Rb_tree_rebalance_for_erase(_Rb_tree_node_base* __z,
301 _Rb_tree_node_base*& __root,
302 _Rb_tree_node_base*& __leftmost,
303 _Rb_tree_node_base*& __rightmost)
304 {
305 _Rb_tree_node_base* __y = __z;
306 _Rb_tree_node_base* __x = 0;
307 _Rb_tree_node_base* __x_parent = 0;
308 if (__y->_M_left == 0) // __z has at most one non-null child. y == z.
309 __x = __y->_M_right; // __x might be null.
310 else
311 if (__y->_M_right == 0) // __z has exactly one non-null child. y == z.
312 __x = __y->_M_left; // __x is not null.
313 else { // __z has two non-null children. Set __y to
314 __y = __y->_M_right; // __z's successor. __x might be null.
315 while (__y->_M_left != 0)
316 __y = __y->_M_left;
317 __x = __y->_M_right;
318 }
319 if (__y != __z) { // relink y in place of z. y is z's successor
320 __z->_M_left->_M_parent = __y;
321 __y->_M_left = __z->_M_left;
322 if (__y != __z->_M_right) {
323 __x_parent = __y->_M_parent;
324 if (__x) __x->_M_parent = __y->_M_parent;
325 __y->_M_parent->_M_left = __x; // __y must be a child of _M_left
326 __y->_M_right = __z->_M_right;
327 __z->_M_right->_M_parent = __y;
328 }
329 else
330 __x_parent = __y;
331 if (__root == __z)
332 __root = __y;
333 else if (__z->_M_parent->_M_left == __z)
334 __z->_M_parent->_M_left = __y;
335 else
336 __z->_M_parent->_M_right = __y;
337 __y->_M_parent = __z->_M_parent;
338 __STD::swap(__y->_M_color, __z->_M_color);
339 __y = __z;
340 // __y now points to node to be actually deleted
341 }
342 else { // __y == __z
343 __x_parent = __y->_M_parent;
344 if (__x) __x->_M_parent = __y->_M_parent;
345 if (__root == __z)
346 __root = __x;
347 else
348 if (__z->_M_parent->_M_left == __z)
349 __z->_M_parent->_M_left = __x;
350 else
351 __z->_M_parent->_M_right = __x;
352 if (__leftmost == __z)
353 if (__z->_M_right == 0) // __z->_M_left must be null also
354 __leftmost = __z->_M_parent;
355 // makes __leftmost == _M_header if __z == __root
356 else
357 __leftmost = _Rb_tree_node_base::_S_minimum(__x);
358 if (__rightmost == __z)
359 if (__z->_M_left == 0) // __z->_M_right must be null also
360 __rightmost = __z->_M_parent;
361 // makes __rightmost == _M_header if __z == __root
362 else // __x == __z->_M_left
363 __rightmost = _Rb_tree_node_base::_S_maximum(__x);
364 }
365 if (__y->_M_color != _S_rb_tree_red) {
366 while (__x != __root && (__x == 0 || __x->_M_color == _S_rb_tree_black))
367 if (__x == __x_parent->_M_left) {
368 _Rb_tree_node_base* __w = __x_parent->_M_right;
369 if (__w->_M_color == _S_rb_tree_red) {
370 __w->_M_color = _S_rb_tree_black;
371 __x_parent->_M_color = _S_rb_tree_red;
372 _Rb_tree_rotate_left(__x_parent, __root);
373 __w = __x_parent->_M_right;
374 }
375 if ((__w->_M_left == 0 ||
376 __w->_M_left->_M_color == _S_rb_tree_black) &&
377 (__w->_M_right == 0 ||
378 __w->_M_right->_M_color == _S_rb_tree_black)) {
379 __w->_M_color = _S_rb_tree_red;
380 __x = __x_parent;
381 __x_parent = __x_parent->_M_parent;
382 } else {
383 if (__w->_M_right == 0 ||
384 __w->_M_right->_M_color == _S_rb_tree_black) {
385 if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
386 __w->_M_color = _S_rb_tree_red;
387 _Rb_tree_rotate_right(__w, __root);
388 __w = __x_parent->_M_right;
389 }
390 __w->_M_color = __x_parent->_M_color;
391 __x_parent->_M_color = _S_rb_tree_black;
392 if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
393 _Rb_tree_rotate_left(__x_parent, __root);
394 break;
395 }
396 } else { // same as above, with _M_right <-> _M_left.
397 _Rb_tree_node_base* __w = __x_parent->_M_left;
398 if (__w->_M_color == _S_rb_tree_red) {
399 __w->_M_color = _S_rb_tree_black;
400 __x_parent->_M_color = _S_rb_tree_red;
401 _Rb_tree_rotate_right(__x_parent, __root);
402 __w = __x_parent->_M_left;
403 }
404 if ((__w->_M_right == 0 ||
405 __w->_M_right->_M_color == _S_rb_tree_black) &&
406 (__w->_M_left == 0 ||
407 __w->_M_left->_M_color == _S_rb_tree_black)) {
408 __w->_M_color = _S_rb_tree_red;
409 __x = __x_parent;
410 __x_parent = __x_parent->_M_parent;
411 } else {
412 if (__w->_M_left == 0 ||
413 __w->_M_left->_M_color == _S_rb_tree_black) {
414 if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
415 __w->_M_color = _S_rb_tree_red;
416 _Rb_tree_rotate_left(__w, __root);
417 __w = __x_parent->_M_left;
418 }
419 __w->_M_color = __x_parent->_M_color;
420 __x_parent->_M_color = _S_rb_tree_black;
421 if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
422 _Rb_tree_rotate_right(__x_parent, __root);
423 break;
424 }
425 }
426 if (__x) __x->_M_color = _S_rb_tree_black;
427 }
428 return __y;
429 }
430
431 // Base class to encapsulate the differences between old SGI-style
432 // allocators and standard-conforming allocators. In order to avoid
433 // having an empty base class, we arbitrarily move one of rb_tree's
434 // data members into the base class.
435
436 #ifdef __STL_USE_STD_ALLOCATORS
437
438 // _Base for general standard-conforming allocators.
439 template <class _Tp, class _Alloc, bool _S_instanceless>
440 class _Rb_tree_alloc_base {
441 public:
442 typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
get_allocator()443 allocator_type get_allocator() const { return _M_node_allocator; }
444
_Rb_tree_alloc_base(const allocator_type & __a)445 _Rb_tree_alloc_base(const allocator_type& __a)
446 : _M_node_allocator(__a), _M_header(0) {}
447
448 protected:
449 typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::allocator_type
450 _M_node_allocator;
451 _Rb_tree_node<_Tp>* _M_header;
452
_M_get_node()453 _Rb_tree_node<_Tp>* _M_get_node()
454 { return _M_node_allocator.allocate(1); }
_M_put_node(_Rb_tree_node<_Tp> * __p)455 void _M_put_node(_Rb_tree_node<_Tp>* __p)
456 { _M_node_allocator.deallocate(__p, 1); }
457 };
458
459 // Specialization for instanceless allocators.
460 template <class _Tp, class _Alloc>
461 class _Rb_tree_alloc_base<_Tp, _Alloc, true> {
462 public:
463 typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
get_allocator()464 allocator_type get_allocator() const { return allocator_type(); }
465
_Rb_tree_alloc_base(const allocator_type &)466 _Rb_tree_alloc_base(const allocator_type&) : _M_header(0) {}
467
468 protected:
469 _Rb_tree_node<_Tp>* _M_header;
470
471 typedef typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::_Alloc_type
472 _Alloc_type;
473
_M_get_node()474 _Rb_tree_node<_Tp>* _M_get_node()
475 { return _Alloc_type::allocate(1); }
_M_put_node(_Rb_tree_node<_Tp> * __p)476 void _M_put_node(_Rb_tree_node<_Tp>* __p)
477 { _Alloc_type::deallocate(__p, 1); }
478 };
479
480 template <class _Tp, class _Alloc>
481 struct _Rb_tree_base
482 : public _Rb_tree_alloc_base<_Tp, _Alloc,
483 _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
484 {
485 typedef _Rb_tree_alloc_base<_Tp, _Alloc,
486 _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
487 _Base;
488 typedef typename _Base::allocator_type allocator_type;
489
_Rb_tree_base_Rb_tree_base490 _Rb_tree_base(const allocator_type& __a)
491 : _Base(__a) { _M_header = _M_get_node(); }
~_Rb_tree_base_Rb_tree_base492 ~_Rb_tree_base() { _M_put_node(_M_header); }
493
494 };
495
496 #else /* __STL_USE_STD_ALLOCATORS */
497
498 template <class _Tp, class _Alloc>
499 struct _Rb_tree_base
500 {
501 typedef _Alloc allocator_type;
get_allocator_Rb_tree_base502 allocator_type get_allocator() const { return allocator_type(); }
503
_Rb_tree_base_Rb_tree_base504 _Rb_tree_base(const allocator_type&)
505 : _M_header(0) { _M_header = _M_get_node(); }
~_Rb_tree_base_Rb_tree_base506 ~_Rb_tree_base() { _M_put_node(_M_header); }
507
508 protected:
509 _Rb_tree_node<_Tp>* _M_header;
510
511 typedef simple_alloc<_Rb_tree_node<_Tp>, _Alloc> _Alloc_type;
512
_M_get_node_Rb_tree_base513 _Rb_tree_node<_Tp>* _M_get_node()
514 { return _Alloc_type::allocate(1); }
_M_put_node_Rb_tree_base515 void _M_put_node(_Rb_tree_node<_Tp>* __p)
516 { _Alloc_type::deallocate(__p, 1); }
517 };
518
519 #endif /* __STL_USE_STD_ALLOCATORS */
520
521 template <class _Key, class _Value, class _KeyOfValue, class _Compare,
522 class _Alloc = __STL_DEFAULT_ALLOCATOR(_Value) >
523 class _Rb_tree : protected _Rb_tree_base<_Value, _Alloc> {
524 typedef _Rb_tree_base<_Value, _Alloc> _Base;
525 protected:
526 typedef _Rb_tree_node_base* _Base_ptr;
527 typedef _Rb_tree_node<_Value> _Rb_tree_node;
528 typedef _Rb_tree_Color_type _Color_type;
529 public:
530 typedef _Key key_type;
531 typedef _Value value_type;
532 typedef value_type* pointer;
533 typedef const value_type* const_pointer;
534 typedef value_type& reference;
535 typedef const value_type& const_reference;
536 typedef _Rb_tree_node* _Link_type;
537 typedef size_t size_type;
538 typedef ptrdiff_t difference_type;
539
540 typedef typename _Base::allocator_type allocator_type;
get_allocator()541 allocator_type get_allocator() const { return _Base::get_allocator(); }
542
543 protected:
544 #ifdef __STL_USE_NAMESPACES
545 using _Base::_M_get_node;
546 using _Base::_M_put_node;
547 using _Base::_M_header;
548 #endif /* __STL_USE_NAMESPACES */
549
550 protected:
551
_M_create_node(const value_type & __x)552 _Link_type _M_create_node(const value_type& __x)
553 {
554 _Link_type __tmp = _M_get_node();
555 __STL_TRY {
556 construct(&__tmp->_M_value_field, __x);
557 }
558 __STL_UNWIND(_M_put_node(__tmp));
559 return __tmp;
560 }
561
_M_clone_node(_Link_type __x)562 _Link_type _M_clone_node(_Link_type __x)
563 {
564 _Link_type __tmp = _M_create_node(__x->_M_value_field);
565 __tmp->_M_color = __x->_M_color;
566 __tmp->_M_left = 0;
567 __tmp->_M_right = 0;
568 return __tmp;
569 }
570
destroy_node(_Link_type __p)571 void destroy_node(_Link_type __p)
572 {
573 destroy(&__p->_M_value_field);
574 _M_put_node(__p);
575 }
576
577 protected:
578 size_type _M_node_count; // keeps track of size of tree
579 _Compare _M_key_compare;
580
_M_root()581 _Link_type& _M_root() const
582 { return (_Link_type&) _M_header->_M_parent; }
_M_leftmost()583 _Link_type& _M_leftmost() const
584 { return (_Link_type&) _M_header->_M_left; }
_M_rightmost()585 _Link_type& _M_rightmost() const
586 { return (_Link_type&) _M_header->_M_right; }
587
_S_left(_Link_type __x)588 static _Link_type& _S_left(_Link_type __x)
589 { return (_Link_type&)(__x->_M_left); }
_S_right(_Link_type __x)590 static _Link_type& _S_right(_Link_type __x)
591 { return (_Link_type&)(__x->_M_right); }
_S_parent(_Link_type __x)592 static _Link_type& _S_parent(_Link_type __x)
593 { return (_Link_type&)(__x->_M_parent); }
_S_value(_Link_type __x)594 static reference _S_value(_Link_type __x)
595 { return __x->_M_value_field; }
_S_key(_Link_type __x)596 static const _Key& _S_key(_Link_type __x)
597 { return _KeyOfValue()(_S_value(__x)); }
_S_color(_Link_type __x)598 static _Color_type& _S_color(_Link_type __x)
599 { return (_Color_type&)(__x->_M_color); }
600
_S_left(_Base_ptr __x)601 static _Link_type& _S_left(_Base_ptr __x)
602 { return (_Link_type&)(__x->_M_left); }
_S_right(_Base_ptr __x)603 static _Link_type& _S_right(_Base_ptr __x)
604 { return (_Link_type&)(__x->_M_right); }
_S_parent(_Base_ptr __x)605 static _Link_type& _S_parent(_Base_ptr __x)
606 { return (_Link_type&)(__x->_M_parent); }
_S_value(_Base_ptr __x)607 static reference _S_value(_Base_ptr __x)
608 { return ((_Link_type)__x)->_M_value_field; }
_S_key(_Base_ptr __x)609 static const _Key& _S_key(_Base_ptr __x)
610 { return _KeyOfValue()(_S_value(_Link_type(__x)));}
_S_color(_Base_ptr __x)611 static _Color_type& _S_color(_Base_ptr __x)
612 { return (_Color_type&)(_Link_type(__x)->_M_color); }
613
_S_minimum(_Link_type __x)614 static _Link_type _S_minimum(_Link_type __x)
615 { return (_Link_type) _Rb_tree_node_base::_S_minimum(__x); }
616
_S_maximum(_Link_type __x)617 static _Link_type _S_maximum(_Link_type __x)
618 { return (_Link_type) _Rb_tree_node_base::_S_maximum(__x); }
619
620 public:
621 typedef _Rb_tree_iterator<value_type, reference, pointer> iterator;
622 typedef _Rb_tree_iterator<value_type, const_reference, const_pointer>
623 const_iterator;
624
625 #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
626 typedef reverse_iterator<const_iterator> const_reverse_iterator;
627 typedef reverse_iterator<iterator> reverse_iterator;
628 #else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
629 typedef reverse_bidirectional_iterator<iterator, value_type, reference,
630 difference_type>
631 reverse_iterator;
632 typedef reverse_bidirectional_iterator<const_iterator, value_type,
633 const_reference, difference_type>
634 const_reverse_iterator;
635 #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
636
637 private:
638 iterator _M_insert(_Base_ptr __x, _Base_ptr __y, const value_type& __v);
639 _Link_type _M_copy(_Link_type __x, _Link_type __p);
640 void _M_erase(_Link_type __x);
641
642 public:
643 // allocation/deallocation
_Rb_tree()644 _Rb_tree()
645 : _Base(allocator_type()), _M_node_count(0), _M_key_compare()
646 { _M_empty_initialize(); }
647
_Rb_tree(const _Compare & __comp)648 _Rb_tree(const _Compare& __comp)
649 : _Base(allocator_type()), _M_node_count(0), _M_key_compare(__comp)
650 { _M_empty_initialize(); }
651
_Rb_tree(const _Compare & __comp,const allocator_type & __a)652 _Rb_tree(const _Compare& __comp, const allocator_type& __a)
653 : _Base(__a), _M_node_count(0), _M_key_compare(__comp)
654 { _M_empty_initialize(); }
655
_Rb_tree(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> & __x)656 _Rb_tree(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x)
657 : _Base(__x.get_allocator()),
658 _M_node_count(0), _M_key_compare(__x._M_key_compare)
659 {
660 if (__x._M_root() == 0)
661 _M_empty_initialize();
662 else {
663 _S_color(_M_header) = _S_rb_tree_red;
664 _M_root() = _M_copy(__x._M_root(), _M_header);
665 _M_leftmost() = _S_minimum(_M_root());
666 _M_rightmost() = _S_maximum(_M_root());
667 }
668 _M_node_count = __x._M_node_count;
669 }
~_Rb_tree()670 ~_Rb_tree() { clear(); }
671 _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>&
672 operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x);
673
674 private:
_M_empty_initialize()675 void _M_empty_initialize() {
676 _S_color(_M_header) = _S_rb_tree_red; // used to distinguish header from
677 // __root, in iterator.operator++
678 _M_root() = 0;
679 _M_leftmost() = _M_header;
680 _M_rightmost() = _M_header;
681 }
682
683 public:
684 // accessors:
key_comp()685 _Compare key_comp() const { return _M_key_compare; }
begin()686 iterator begin() { return _M_leftmost(); }
begin()687 const_iterator begin() const { return _M_leftmost(); }
end()688 iterator end() { return _M_header; }
end()689 const_iterator end() const { return _M_header; }
rbegin()690 reverse_iterator rbegin() { return reverse_iterator(end()); }
rbegin()691 const_reverse_iterator rbegin() const {
692 return const_reverse_iterator(end());
693 }
rend()694 reverse_iterator rend() { return reverse_iterator(begin()); }
rend()695 const_reverse_iterator rend() const {
696 return const_reverse_iterator(begin());
697 }
empty()698 bool empty() const { return _M_node_count == 0; }
size()699 size_type size() const { return _M_node_count; }
max_size()700 size_type max_size() const { return size_type(-1); }
701
swap(_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> & __t)702 void swap(_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __t) {
703 __STD::swap(_M_header, __t._M_header);
704 __STD::swap(_M_node_count, __t._M_node_count);
705 __STD::swap(_M_key_compare, __t._M_key_compare);
706 }
707
708 public:
709 // insert/erase
710 pair<iterator,bool> insert_unique(const value_type& __x);
711 iterator insert_equal(const value_type& __x);
712
713 iterator insert_unique(iterator __position, const value_type& __x);
714 iterator insert_equal(iterator __position, const value_type& __x);
715
716 #ifdef __STL_MEMBER_TEMPLATES
717 template <class _InputIterator>
718 void insert_unique(_InputIterator __first, _InputIterator __last);
719 template <class _InputIterator>
720 void insert_equal(_InputIterator __first, _InputIterator __last);
721 #else /* __STL_MEMBER_TEMPLATES */
722 void insert_unique(const_iterator __first, const_iterator __last);
723 void insert_unique(const value_type* __first, const value_type* __last);
724 void insert_equal(const_iterator __first, const_iterator __last);
725 void insert_equal(const value_type* __first, const value_type* __last);
726 #endif /* __STL_MEMBER_TEMPLATES */
727
728 void erase(iterator __position);
729 size_type erase(const key_type& __x);
730 void erase(iterator __first, iterator __last);
731 void erase(const key_type* __first, const key_type* __last);
clear()732 void clear() {
733 if (_M_node_count != 0) {
734 _M_erase(_M_root());
735 _M_leftmost() = _M_header;
736 _M_root() = 0;
737 _M_rightmost() = _M_header;
738 _M_node_count = 0;
739 }
740 }
741
742 public:
743 // set operations:
744 iterator find(const key_type& __x);
745 const_iterator find(const key_type& __x) const;
746 size_type count(const key_type& __x) const;
747 iterator lower_bound(const key_type& __x);
748 const_iterator lower_bound(const key_type& __x) const;
749 iterator upper_bound(const key_type& __x);
750 const_iterator upper_bound(const key_type& __x) const;
751 pair<iterator,iterator> equal_range(const key_type& __x);
752 pair<const_iterator, const_iterator> equal_range(const key_type& __x) const;
753
754 public:
755 // Debugging.
756 bool __rb_verify() const;
757 };
758
759 template <class _Key, class _Value, class _KeyOfValue,
760 class _Compare, class _Alloc>
761 inline bool
762 operator==(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
763 const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
764 {
765 return __x.size() == __y.size() &&
766 equal(__x.begin(), __x.end(), __y.begin());
767 }
768
769 template <class _Key, class _Value, class _KeyOfValue,
770 class _Compare, class _Alloc>
771 inline bool
772 operator<(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
773 const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
774 {
775 return lexicographical_compare(__x.begin(), __x.end(),
776 __y.begin(), __y.end());
777 }
778
779 #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
780
781 template <class _Key, class _Value, class _KeyOfValue,
782 class _Compare, class _Alloc>
783 inline void
swap(_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> & __x,_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> & __y)784 swap(_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
785 _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
786 {
787 __x.swap(__y);
788 }
789
790 #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
791
792
793 template <class _Key, class _Value, class _KeyOfValue,
794 class _Compare, class _Alloc>
795 _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>&
796 _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
797 ::operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x)
798 {
799 if (this != &__x) {
800 // Note that _Key may be a constant type.
801 clear();
802 _M_node_count = 0;
803 _M_key_compare = __x._M_key_compare;
804 if (__x._M_root() == 0) {
805 _M_root() = 0;
806 _M_leftmost() = _M_header;
807 _M_rightmost() = _M_header;
808 }
809 else {
810 _M_root() = _M_copy(__x._M_root(), _M_header);
811 _M_leftmost() = _S_minimum(_M_root());
812 _M_rightmost() = _S_maximum(_M_root());
813 _M_node_count = __x._M_node_count;
814 }
815 }
816 return *this;
817 }
818
819 template <class _Key, class _Value, class _KeyOfValue,
820 class _Compare, class _Alloc>
821 typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
822 _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
_M_insert(_Base_ptr __x_,_Base_ptr __y_,const _Value & __v)823 ::_M_insert(_Base_ptr __x_, _Base_ptr __y_, const _Value& __v)
824 {
825 _Link_type __x = (_Link_type) __x_;
826 _Link_type __y = (_Link_type) __y_;
827 _Link_type __z;
828
829 if (__y == _M_header || __x != 0 ||
830 _M_key_compare(_KeyOfValue()(__v), _S_key(__y))) {
831 __z = _M_create_node(__v);
832 _S_left(__y) = __z; // also makes _M_leftmost() = __z
833 // when __y == _M_header
834 if (__y == _M_header) {
835 _M_root() = __z;
836 _M_rightmost() = __z;
837 }
838 else if (__y == _M_leftmost())
839 _M_leftmost() = __z; // maintain _M_leftmost() pointing to min node
840 }
841 else {
842 __z = _M_create_node(__v);
843 _S_right(__y) = __z;
844 if (__y == _M_rightmost())
845 _M_rightmost() = __z; // maintain _M_rightmost() pointing to max node
846 }
847 _S_parent(__z) = __y;
848 _S_left(__z) = 0;
849 _S_right(__z) = 0;
850 _Rb_tree_rebalance(__z, _M_header->_M_parent);
851 ++_M_node_count;
852 return iterator(__z);
853 }
854
855 template <class _Key, class _Value, class _KeyOfValue,
856 class _Compare, class _Alloc>
857 typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
858 _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
insert_equal(const _Value & __v)859 ::insert_equal(const _Value& __v)
860 {
861 _Link_type __y = _M_header;
862 _Link_type __x = _M_root();
863 while (__x != 0) {
864 __y = __x;
865 __x = _M_key_compare(_KeyOfValue()(__v), _S_key(__x)) ?
866 _S_left(__x) : _S_right(__x);
867 }
868 return _M_insert(__x, __y, __v);
869 }
870
871
872 template <class _Key, class _Value, class _KeyOfValue,
873 class _Compare, class _Alloc>
874 pair<typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator,
875 bool>
876 _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
insert_unique(const _Value & __v)877 ::insert_unique(const _Value& __v)
878 {
879 _Link_type __y = _M_header;
880 _Link_type __x = _M_root();
881 bool __comp = true;
882 while (__x != 0) {
883 __y = __x;
884 __comp = _M_key_compare(_KeyOfValue()(__v), _S_key(__x));
885 __x = __comp ? _S_left(__x) : _S_right(__x);
886 }
887 iterator __j = iterator(__y);
888 if (__comp)
889 if (__j == begin())
890 return pair<iterator,bool>(_M_insert(__x, __y, __v), true);
891 else
892 --__j;
893 if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__v)))
894 return pair<iterator,bool>(_M_insert(__x, __y, __v), true);
895 return pair<iterator,bool>(__j, false);
896 }
897
898
899 template <class _Key, class _Val, class _KeyOfValue,
900 class _Compare, class _Alloc>
901 typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
902 _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>
insert_unique(iterator __position,const _Val & __v)903 ::insert_unique(iterator __position, const _Val& __v)
904 {
905 if (__position._M_node == _M_header->_M_left) { // begin()
906 if (size() > 0 &&
907 _M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node)))
908 return _M_insert(__position._M_node, __position._M_node, __v);
909 // first argument just needs to be non-null
910 else
911 return insert_unique(__v).first;
912 } else if (__position._M_node == _M_header) { // end()
913 if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__v)))
914 return _M_insert(0, _M_rightmost(), __v);
915 else
916 return insert_unique(__v).first;
917 } else {
918 iterator __before = __position;
919 --__before;
920 if (_M_key_compare(_S_key(__before._M_node), _KeyOfValue()(__v))
921 && _M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node))) {
922 if (_S_right(__before._M_node) == 0)
923 return _M_insert(0, __before._M_node, __v);
924 else
925 return _M_insert(__position._M_node, __position._M_node, __v);
926 // first argument just needs to be non-null
927 } else
928 return insert_unique(__v).first;
929 }
930 }
931
932 template <class _Key, class _Val, class _KeyOfValue,
933 class _Compare, class _Alloc>
934 typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
935 _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>
insert_equal(iterator __position,const _Val & __v)936 ::insert_equal(iterator __position, const _Val& __v)
937 {
938 if (__position._M_node == _M_header->_M_left) { // begin()
939 if (size() > 0 &&
940 _M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node)))
941 return _M_insert(__position._M_node, __position._M_node, __v);
942 // first argument just needs to be non-null
943 else
944 return insert_equal(__v);
945 } else if (__position._M_node == _M_header) {// end()
946 if (!_M_key_compare(_KeyOfValue()(__v), _S_key(_M_rightmost())))
947 return _M_insert(0, _M_rightmost(), __v);
948 else
949 return insert_equal(__v);
950 } else {
951 iterator __before = __position;
952 --__before;
953 if (!_M_key_compare(_KeyOfValue()(__v), _S_key(__before._M_node))
954 && !_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v))) {
955 if (_S_right(__before._M_node) == 0)
956 return _M_insert(0, __before._M_node, __v);
957 else
958 return _M_insert(__position._M_node, __position._M_node, __v);
959 // first argument just needs to be non-null
960 } else
961 return insert_equal(__v);
962 }
963 }
964
965 #ifdef __STL_MEMBER_TEMPLATES
966
967 template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
968 template<class _II>
969 void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
insert_equal(_II __first,_II __last)970 ::insert_equal(_II __first, _II __last)
971 {
972 for ( ; __first != __last; ++__first)
973 insert_equal(*__first);
974 }
975
976 template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
977 template<class _II>
978 void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
insert_unique(_II __first,_II __last)979 ::insert_unique(_II __first, _II __last) {
980 for ( ; __first != __last; ++__first)
981 insert_unique(*__first);
982 }
983
984 #else /* __STL_MEMBER_TEMPLATES */
985
986 template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
987 void
988 _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
insert_equal(const _Val * __first,const _Val * __last)989 ::insert_equal(const _Val* __first, const _Val* __last)
990 {
991 for ( ; __first != __last; ++__first)
992 insert_equal(*__first);
993 }
994
995 template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
996 void
997 _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
insert_equal(const_iterator __first,const_iterator __last)998 ::insert_equal(const_iterator __first, const_iterator __last)
999 {
1000 for ( ; __first != __last; ++__first)
1001 insert_equal(*__first);
1002 }
1003
1004 template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
1005 void
1006 _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
insert_unique(const _Val * __first,const _Val * __last)1007 ::insert_unique(const _Val* __first, const _Val* __last)
1008 {
1009 for ( ; __first != __last; ++__first)
1010 insert_unique(*__first);
1011 }
1012
1013 template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
1014 void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
insert_unique(const_iterator __first,const_iterator __last)1015 ::insert_unique(const_iterator __first, const_iterator __last)
1016 {
1017 for ( ; __first != __last; ++__first)
1018 insert_unique(*__first);
1019 }
1020
1021 #endif /* __STL_MEMBER_TEMPLATES */
1022
1023 template <class _Key, class _Value, class _KeyOfValue,
1024 class _Compare, class _Alloc>
1025 inline void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
erase(iterator __position)1026 ::erase(iterator __position)
1027 {
1028 _Link_type __y =
1029 (_Link_type) _Rb_tree_rebalance_for_erase(__position._M_node,
1030 _M_header->_M_parent,
1031 _M_header->_M_left,
1032 _M_header->_M_right);
1033 destroy_node(__y);
1034 --_M_node_count;
1035 }
1036
1037 template <class _Key, class _Value, class _KeyOfValue,
1038 class _Compare, class _Alloc>
1039 typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::size_type
erase(const _Key & __x)1040 _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::erase(const _Key& __x)
1041 {
1042 pair<iterator,iterator> __p = equal_range(__x);
1043 size_type __n = 0;
1044 distance(__p.first, __p.second, __n);
1045 erase(__p.first, __p.second);
1046 return __n;
1047 }
1048
1049 template <class _Key, class _Val, class _KoV, class _Compare, class _Alloc>
1050 typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::_Link_type
1051 _Rb_tree<_Key,_Val,_KoV,_Compare,_Alloc>
_M_copy(_Link_type __x,_Link_type __p)1052 ::_M_copy(_Link_type __x, _Link_type __p)
1053 {
1054 // structural copy. __x and __p must be non-null.
1055 _Link_type __top = _M_clone_node(__x);
1056 __top->_M_parent = __p;
1057
1058 __STL_TRY {
1059 if (__x->_M_right)
1060 __top->_M_right = _M_copy(_S_right(__x), __top);
1061 __p = __top;
1062 __x = _S_left(__x);
1063
1064 while (__x != 0) {
1065 _Link_type __y = _M_clone_node(__x);
1066 __p->_M_left = __y;
1067 __y->_M_parent = __p;
1068 if (__x->_M_right)
1069 __y->_M_right = _M_copy(_S_right(__x), __y);
1070 __p = __y;
1071 __x = _S_left(__x);
1072 }
1073 }
1074 __STL_UNWIND(_M_erase(__top));
1075
1076 return __top;
1077 }
1078
1079 template <class _Key, class _Value, class _KeyOfValue,
1080 class _Compare, class _Alloc>
1081 void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
_M_erase(_Link_type __x)1082 ::_M_erase(_Link_type __x)
1083 {
1084 // erase without rebalancing
1085 while (__x != 0) {
1086 _M_erase(_S_right(__x));
1087 _Link_type __y = _S_left(__x);
1088 destroy_node(__x);
1089 __x = __y;
1090 }
1091 }
1092
1093 template <class _Key, class _Value, class _KeyOfValue,
1094 class _Compare, class _Alloc>
1095 void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
erase(iterator __first,iterator __last)1096 ::erase(iterator __first, iterator __last)
1097 {
1098 if (__first == begin() && __last == end())
1099 clear();
1100 else
1101 while (__first != __last) erase(__first++);
1102 }
1103
1104 template <class _Key, class _Value, class _KeyOfValue,
1105 class _Compare, class _Alloc>
1106 void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
erase(const _Key * __first,const _Key * __last)1107 ::erase(const _Key* __first, const _Key* __last)
1108 {
1109 while (__first != __last) erase(*__first++);
1110 }
1111
1112 template <class _Key, class _Value, class _KeyOfValue,
1113 class _Compare, class _Alloc>
1114 typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
find(const _Key & __k)1115 _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k)
1116 {
1117 _Link_type __y = _M_header; // Last node which is not less than __k.
1118 _Link_type __x = _M_root(); // Current node.
1119
1120 while (__x != 0)
1121 if (!_M_key_compare(_S_key(__x), __k))
1122 __y = __x, __x = _S_left(__x);
1123 else
1124 __x = _S_right(__x);
1125
1126 iterator __j = iterator(__y);
1127 return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ?
1128 end() : __j;
1129 }
1130
1131 template <class _Key, class _Value, class _KeyOfValue,
1132 class _Compare, class _Alloc>
1133 typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator
find(const _Key & __k)1134 _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k) const
1135 {
1136 _Link_type __y = _M_header; /* Last node which is not less than __k. */
1137 _Link_type __x = _M_root(); /* Current node. */
1138
1139 while (__x != 0) {
1140 if (!_M_key_compare(_S_key(__x), __k))
1141 __y = __x, __x = _S_left(__x);
1142 else
1143 __x = _S_right(__x);
1144 }
1145 const_iterator __j = const_iterator(__y);
1146 return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ?
1147 end() : __j;
1148 }
1149
1150 template <class _Key, class _Value, class _KeyOfValue,
1151 class _Compare, class _Alloc>
1152 typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::size_type
1153 _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
count(const _Key & __k)1154 ::count(const _Key& __k) const
1155 {
1156 pair<const_iterator, const_iterator> __p = equal_range(__k);
1157 size_type __n = 0;
1158 distance(__p.first, __p.second, __n);
1159 return __n;
1160 }
1161
1162 template <class _Key, class _Value, class _KeyOfValue,
1163 class _Compare, class _Alloc>
1164 typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
1165 _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
lower_bound(const _Key & __k)1166 ::lower_bound(const _Key& __k)
1167 {
1168 _Link_type __y = _M_header; /* Last node which is not less than __k. */
1169 _Link_type __x = _M_root(); /* Current node. */
1170
1171 while (__x != 0)
1172 if (!_M_key_compare(_S_key(__x), __k))
1173 __y = __x, __x = _S_left(__x);
1174 else
1175 __x = _S_right(__x);
1176
1177 return iterator(__y);
1178 }
1179
1180 template <class _Key, class _Value, class _KeyOfValue,
1181 class _Compare, class _Alloc>
1182 typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator
1183 _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
lower_bound(const _Key & __k)1184 ::lower_bound(const _Key& __k) const
1185 {
1186 _Link_type __y = _M_header; /* Last node which is not less than __k. */
1187 _Link_type __x = _M_root(); /* Current node. */
1188
1189 while (__x != 0)
1190 if (!_M_key_compare(_S_key(__x), __k))
1191 __y = __x, __x = _S_left(__x);
1192 else
1193 __x = _S_right(__x);
1194
1195 return const_iterator(__y);
1196 }
1197
1198 template <class _Key, class _Value, class _KeyOfValue,
1199 class _Compare, class _Alloc>
1200 typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
1201 _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
upper_bound(const _Key & __k)1202 ::upper_bound(const _Key& __k)
1203 {
1204 _Link_type __y = _M_header; /* Last node which is greater than __k. */
1205 _Link_type __x = _M_root(); /* Current node. */
1206
1207 while (__x != 0)
1208 if (_M_key_compare(__k, _S_key(__x)))
1209 __y = __x, __x = _S_left(__x);
1210 else
1211 __x = _S_right(__x);
1212
1213 return iterator(__y);
1214 }
1215
1216 template <class _Key, class _Value, class _KeyOfValue,
1217 class _Compare, class _Alloc>
1218 typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator
1219 _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
upper_bound(const _Key & __k)1220 ::upper_bound(const _Key& __k) const
1221 {
1222 _Link_type __y = _M_header; /* Last node which is greater than __k. */
1223 _Link_type __x = _M_root(); /* Current node. */
1224
1225 while (__x != 0)
1226 if (_M_key_compare(__k, _S_key(__x)))
1227 __y = __x, __x = _S_left(__x);
1228 else
1229 __x = _S_right(__x);
1230
1231 return const_iterator(__y);
1232 }
1233
1234 template <class _Key, class _Value, class _KeyOfValue,
1235 class _Compare, class _Alloc>
1236 inline
1237 pair<typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator,
1238 typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator>
1239 _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
equal_range(const _Key & __k)1240 ::equal_range(const _Key& __k)
1241 {
1242 return pair<iterator, iterator>(lower_bound(__k), upper_bound(__k));
1243 }
1244
1245 template <class _Key, class _Value, class _KoV, class _Compare, class _Alloc>
1246 inline
1247 pair<typename _Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>::const_iterator,
1248 typename _Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>::const_iterator>
1249 _Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>
equal_range(const _Key & __k)1250 ::equal_range(const _Key& __k) const
1251 {
1252 return pair<const_iterator,const_iterator>(lower_bound(__k),
1253 upper_bound(__k));
1254 }
1255
1256 inline int
__black_count(_Rb_tree_node_base * __node,_Rb_tree_node_base * __root)1257 __black_count(_Rb_tree_node_base* __node, _Rb_tree_node_base* __root)
1258 {
1259 if (__node == 0)
1260 return 0;
1261 else {
1262 int __bc = __node->_M_color == _S_rb_tree_black ? 1 : 0;
1263 if (__node == __root)
1264 return __bc;
1265 else
1266 return __bc + __black_count(__node->_M_parent, __root);
1267 }
1268 }
1269
1270 template <class _Key, class _Value, class _KeyOfValue,
1271 class _Compare, class _Alloc>
__rb_verify()1272 bool _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::__rb_verify() const
1273 {
1274 if (_M_node_count == 0 || begin() == end())
1275 return _M_node_count == 0 && begin() == end() &&
1276 _M_header->_M_left == _M_header && _M_header->_M_right == _M_header;
1277
1278 int __len = __black_count(_M_leftmost(), _M_root());
1279 for (const_iterator __it = begin(); __it != end(); ++__it) {
1280 _Link_type __x = (_Link_type) __it._M_node;
1281 _Link_type __L = _S_left(__x);
1282 _Link_type __R = _S_right(__x);
1283
1284 if (__x->_M_color == _S_rb_tree_red)
1285 if ((__L && __L->_M_color == _S_rb_tree_red) ||
1286 (__R && __R->_M_color == _S_rb_tree_red))
1287 return false;
1288
1289 if (__L && _M_key_compare(_S_key(__x), _S_key(__L)))
1290 return false;
1291 if (__R && _M_key_compare(_S_key(__R), _S_key(__x)))
1292 return false;
1293
1294 if (!__L && !__R && __black_count(__x, _M_root()) != __len)
1295 return false;
1296 }
1297
1298 if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root()))
1299 return false;
1300 if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root()))
1301 return false;
1302
1303 return true;
1304 }
1305
1306 // Class rb_tree is not part of the C++ standard. It is provided for
1307 // compatibility with the HP STL.
1308
1309 template <class _Key, class _Value, class _KeyOfValue, class _Compare,
1310 class _Alloc = __STL_DEFAULT_ALLOCATOR(_Value) >
1311 struct rb_tree : public _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc>
1312 {
1313 typedef _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc> _Base;
1314 typedef typename _Base::allocator_type allocator_type;
1315
1316 rb_tree(const _Compare& __comp = _Compare(),
1317 const allocator_type& __a = allocator_type())
_Baserb_tree1318 : _Base(__comp, __a) {}
1319
~rb_treerb_tree1320 ~rb_tree() {}
1321 };
1322
1323 #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
1324 #pragma reset woff 1375
1325 #endif
1326
1327 __STL_END_NAMESPACE
1328
1329 #endif /* __SGI_STL_INTERNAL_TREE_H */
1330
1331 // Local Variables:
1332 // mode:C++
1333 // End:
1334