xref: /haiku/src/system/libroot/posix/musl/math/jn.c (revision f504f61099b010fbfa94b1cc63d2e9072c7f7185)
1 /* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /*
13  * jn(n, x), yn(n, x)
14  * floating point Bessel's function of the 1st and 2nd kind
15  * of order n
16  *
17  * Special cases:
18  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
19  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
20  * Note 2. About jn(n,x), yn(n,x)
21  *      For n=0, j0(x) is called,
22  *      for n=1, j1(x) is called,
23  *      for n<=x, forward recursion is used starting
24  *      from values of j0(x) and j1(x).
25  *      for n>x, a continued fraction approximation to
26  *      j(n,x)/j(n-1,x) is evaluated and then backward
27  *      recursion is used starting from a supposed value
28  *      for j(n,x). The resulting value of j(0,x) is
29  *      compared with the actual value to correct the
30  *      supposed value of j(n,x).
31  *
32  *      yn(n,x) is similar in all respects, except
33  *      that forward recursion is used for all
34  *      values of n>1.
35  */
36 
37 #include "libm.h"
38 
39 static const double invsqrtpi = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
40 
jn(int n,double x)41 double jn(int n, double x)
42 {
43 	uint32_t ix, lx;
44 	int nm1, i, sign;
45 	double a, b, temp;
46 
47 	EXTRACT_WORDS(ix, lx, x);
48 	sign = ix>>31;
49 	ix &= 0x7fffffff;
50 
51 	if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
52 		return x;
53 
54 	/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
55 	 * Thus, J(-n,x) = J(n,-x)
56 	 */
57 	/* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
58 	if (n == 0)
59 		return j0(x);
60 	if (n < 0) {
61 		nm1 = -(n+1);
62 		x = -x;
63 		sign ^= 1;
64 	} else
65 		nm1 = n-1;
66 	if (nm1 == 0)
67 		return j1(x);
68 
69 	sign &= n;  /* even n: 0, odd n: signbit(x) */
70 	x = fabs(x);
71 	if ((ix|lx) == 0 || ix == 0x7ff00000)  /* if x is 0 or inf */
72 		b = 0.0;
73 	else if (nm1 < x) {
74 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
75 		if (ix >= 0x52d00000) { /* x > 2**302 */
76 			/* (x >> n**2)
77 			 *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
78 			 *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
79 			 *      Let s=sin(x), c=cos(x),
80 			 *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
81 			 *
82 			 *             n    sin(xn)*sqt2    cos(xn)*sqt2
83 			 *          ----------------------------------
84 			 *             0     s-c             c+s
85 			 *             1    -s-c            -c+s
86 			 *             2    -s+c            -c-s
87 			 *             3     s+c             c-s
88 			 */
89 			switch(nm1&3) {
90 			case 0: temp = -cos(x)+sin(x); break;
91 			case 1: temp = -cos(x)-sin(x); break;
92 			case 2: temp =  cos(x)-sin(x); break;
93 			default:
94 			case 3: temp =  cos(x)+sin(x); break;
95 			}
96 			b = invsqrtpi*temp/sqrt(x);
97 		} else {
98 			a = j0(x);
99 			b = j1(x);
100 			for (i=0; i<nm1; ) {
101 				i++;
102 				temp = b;
103 				b = b*(2.0*i/x) - a; /* avoid underflow */
104 				a = temp;
105 			}
106 		}
107 	} else {
108 		if (ix < 0x3e100000) { /* x < 2**-29 */
109 			/* x is tiny, return the first Taylor expansion of J(n,x)
110 			 * J(n,x) = 1/n!*(x/2)^n  - ...
111 			 */
112 			if (nm1 > 32)  /* underflow */
113 				b = 0.0;
114 			else {
115 				temp = x*0.5;
116 				b = temp;
117 				a = 1.0;
118 				for (i=2; i<=nm1+1; i++) {
119 					a *= (double)i; /* a = n! */
120 					b *= temp;      /* b = (x/2)^n */
121 				}
122 				b = b/a;
123 			}
124 		} else {
125 			/* use backward recurrence */
126 			/*                      x      x^2      x^2
127 			 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
128 			 *                      2n  - 2(n+1) - 2(n+2)
129 			 *
130 			 *                      1      1        1
131 			 *  (for large x)   =  ----  ------   ------   .....
132 			 *                      2n   2(n+1)   2(n+2)
133 			 *                      -- - ------ - ------ -
134 			 *                       x     x         x
135 			 *
136 			 * Let w = 2n/x and h=2/x, then the above quotient
137 			 * is equal to the continued fraction:
138 			 *                  1
139 			 *      = -----------------------
140 			 *                     1
141 			 *         w - -----------------
142 			 *                        1
143 			 *              w+h - ---------
144 			 *                     w+2h - ...
145 			 *
146 			 * To determine how many terms needed, let
147 			 * Q(0) = w, Q(1) = w(w+h) - 1,
148 			 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
149 			 * When Q(k) > 1e4      good for single
150 			 * When Q(k) > 1e9      good for double
151 			 * When Q(k) > 1e17     good for quadruple
152 			 */
153 			/* determine k */
154 			double t,q0,q1,w,h,z,tmp,nf;
155 			int k;
156 
157 			nf = nm1 + 1.0;
158 			w = 2*nf/x;
159 			h = 2/x;
160 			z = w+h;
161 			q0 = w;
162 			q1 = w*z - 1.0;
163 			k = 1;
164 			while (q1 < 1.0e9) {
165 				k += 1;
166 				z += h;
167 				tmp = z*q1 - q0;
168 				q0 = q1;
169 				q1 = tmp;
170 			}
171 			for (t=0.0, i=k; i>=0; i--)
172 				t = 1/(2*(i+nf)/x - t);
173 			a = t;
174 			b = 1.0;
175 			/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
176 			 *  Hence, if n*(log(2n/x)) > ...
177 			 *  single 8.8722839355e+01
178 			 *  double 7.09782712893383973096e+02
179 			 *  long double 1.1356523406294143949491931077970765006170e+04
180 			 *  then recurrent value may overflow and the result is
181 			 *  likely underflow to zero
182 			 */
183 			tmp = nf*log(fabs(w));
184 			if (tmp < 7.09782712893383973096e+02) {
185 				for (i=nm1; i>0; i--) {
186 					temp = b;
187 					b = b*(2.0*i)/x - a;
188 					a = temp;
189 				}
190 			} else {
191 				for (i=nm1; i>0; i--) {
192 					temp = b;
193 					b = b*(2.0*i)/x - a;
194 					a = temp;
195 					/* scale b to avoid spurious overflow */
196 					if (b > 0x1p500) {
197 						a /= b;
198 						t /= b;
199 						b  = 1.0;
200 					}
201 				}
202 			}
203 			z = j0(x);
204 			w = j1(x);
205 			if (fabs(z) >= fabs(w))
206 				b = t*z/b;
207 			else
208 				b = t*w/a;
209 		}
210 	}
211 	return sign ? -b : b;
212 }
213 
214 
yn(int n,double x)215 double yn(int n, double x)
216 {
217 	uint32_t ix, lx, ib;
218 	int nm1, sign, i;
219 	double a, b, temp;
220 
221 	EXTRACT_WORDS(ix, lx, x);
222 	sign = ix>>31;
223 	ix &= 0x7fffffff;
224 
225 	if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
226 		return x;
227 	if (sign && (ix|lx)!=0) /* x < 0 */
228 		return 0/0.0;
229 	if (ix == 0x7ff00000)
230 		return 0.0;
231 
232 	if (n == 0)
233 		return y0(x);
234 	if (n < 0) {
235 		nm1 = -(n+1);
236 		sign = n&1;
237 	} else {
238 		nm1 = n-1;
239 		sign = 0;
240 	}
241 	if (nm1 == 0)
242 		return sign ? -y1(x) : y1(x);
243 
244 	if (ix >= 0x52d00000) { /* x > 2**302 */
245 		/* (x >> n**2)
246 		 *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
247 		 *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
248 		 *      Let s=sin(x), c=cos(x),
249 		 *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
250 		 *
251 		 *             n    sin(xn)*sqt2    cos(xn)*sqt2
252 		 *          ----------------------------------
253 		 *             0     s-c             c+s
254 		 *             1    -s-c            -c+s
255 		 *             2    -s+c            -c-s
256 		 *             3     s+c             c-s
257 		 */
258 		switch(nm1&3) {
259 		case 0: temp = -sin(x)-cos(x); break;
260 		case 1: temp = -sin(x)+cos(x); break;
261 		case 2: temp =  sin(x)+cos(x); break;
262 		default:
263 		case 3: temp =  sin(x)-cos(x); break;
264 		}
265 		b = invsqrtpi*temp/sqrt(x);
266 	} else {
267 		a = y0(x);
268 		b = y1(x);
269 		/* quit if b is -inf */
270 		GET_HIGH_WORD(ib, b);
271 		for (i=0; i<nm1 && ib!=0xfff00000; ){
272 			i++;
273 			temp = b;
274 			b = (2.0*i/x)*b - a;
275 			GET_HIGH_WORD(ib, b);
276 			a = temp;
277 		}
278 	}
279 	return sign ? -b : b;
280 }
281