xref: /haiku/src/add-ons/kernel/busses/usb/xhci.cpp (revision f8a8e56595d56f7c48dfa6da35ba2a40822a8d93)
1 /*
2  * Copyright 2011-2021, Haiku, Inc. All rights reserved.
3  * Distributed under the terms of the MIT License.
4  *
5  * Authors:
6  *		Augustin Cavalier <waddlesplash>
7  *		Jian Chiang <j.jian.chiang@gmail.com>
8  *		Jérôme Duval <jerome.duval@gmail.com>
9  *		Akshay Jaggi <akshay1994.leo@gmail.com>
10  *		Michael Lotz <mmlr@mlotz.ch>
11  *		Alexander von Gluck <kallisti5@unixzen.com>
12  */
13 
14 
15 #include <stdio.h>
16 
17 #include <bus/PCI.h>
18 #include <USB3.h>
19 #include <KernelExport.h>
20 
21 #include <ByteOrder.h>
22 #include <util/AutoLock.h>
23 
24 #include "xhci.h"
25 
26 
27 #define CALLED(x...)	TRACE_MODULE("CALLED %s\n", __PRETTY_FUNCTION__)
28 
29 
30 #define USB_MODULE_NAME	"xhci"
31 
32 device_manager_info* gDeviceManager;
33 static usb_for_controller_interface* gUSB;
34 
35 
36 #define XHCI_PCI_DEVICE_MODULE_NAME "busses/usb/xhci/pci/driver_v1"
37 #define XHCI_PCI_USB_BUS_MODULE_NAME "busses/usb/xhci/device_v1"
38 
39 
40 typedef struct {
41 	XHCI* xhci;
42 	pci_device_module_info* pci;
43 	pci_device* device;
44 
45 	pci_info pciinfo;
46 
47 	device_node* node;
48 	device_node* driver_node;
49 } xhci_pci_sim_info;
50 
51 
52 //	#pragma mark -
53 
54 
55 static status_t
init_bus(device_node * node,void ** bus_cookie)56 init_bus(device_node* node, void** bus_cookie)
57 {
58 	CALLED();
59 
60 	driver_module_info* driver;
61 	xhci_pci_sim_info* bus;
62 	device_node* parent = gDeviceManager->get_parent_node(node);
63 	gDeviceManager->get_driver(parent, &driver, (void**)&bus);
64 	gDeviceManager->put_node(parent);
65 
66 	Stack *stack;
67 	if (gUSB->get_stack((void**)&stack) != B_OK)
68 		return B_ERROR;
69 
70 	XHCI *xhci = new(std::nothrow) XHCI(&bus->pciinfo, bus->pci, bus->device, stack, node);
71 	if (xhci == NULL) {
72 		return B_NO_MEMORY;
73 	}
74 
75 	if (xhci->InitCheck() < B_OK) {
76 		TRACE_MODULE_ERROR("bus failed init check\n");
77 		delete xhci;
78 		return B_ERROR;
79 	}
80 
81 	if (xhci->Start() != B_OK) {
82 		delete xhci;
83 		return B_ERROR;
84 	}
85 
86 	*bus_cookie = xhci;
87 
88 	return B_OK;
89 }
90 
91 
92 static void
uninit_bus(void * bus_cookie)93 uninit_bus(void* bus_cookie)
94 {
95 	CALLED();
96 	XHCI* xhci = (XHCI*)bus_cookie;
97 	delete xhci;
98 }
99 
100 
101 static status_t
register_child_devices(void * cookie)102 register_child_devices(void* cookie)
103 {
104 	CALLED();
105 	xhci_pci_sim_info* bus = (xhci_pci_sim_info*)cookie;
106 	device_node* node = bus->driver_node;
107 
108 	char prettyName[25];
109 	sprintf(prettyName, "XHCI Controller %" B_PRIu16, 0);
110 
111 	device_attr attrs[] = {
112 		// properties of this controller for the usb bus manager
113 		{ B_DEVICE_PRETTY_NAME, B_STRING_TYPE,
114 			{ .string = prettyName }},
115 		{ B_DEVICE_FIXED_CHILD, B_STRING_TYPE,
116 			{ .string = USB_FOR_CONTROLLER_MODULE_NAME }},
117 
118 		// private data to identify the device
119 		{ NULL }
120 	};
121 
122 	return gDeviceManager->register_node(node, XHCI_PCI_USB_BUS_MODULE_NAME,
123 		attrs, NULL, NULL);
124 }
125 
126 
127 static status_t
init_device(device_node * node,void ** device_cookie)128 init_device(device_node* node, void** device_cookie)
129 {
130 	CALLED();
131 	xhci_pci_sim_info* bus = (xhci_pci_sim_info*)calloc(1,
132 		sizeof(xhci_pci_sim_info));
133 	if (bus == NULL)
134 		return B_NO_MEMORY;
135 
136 	pci_device_module_info* pci;
137 	pci_device* device;
138 	{
139 		device_node* pciParent = gDeviceManager->get_parent_node(node);
140 		gDeviceManager->get_driver(pciParent, (driver_module_info**)&pci,
141 			(void**)&device);
142 		gDeviceManager->put_node(pciParent);
143 	}
144 
145 	bus->pci = pci;
146 	bus->device = device;
147 	bus->driver_node = node;
148 
149 	pci_info *pciInfo = &bus->pciinfo;
150 	pci->get_pci_info(device, pciInfo);
151 
152 	*device_cookie = bus;
153 	return B_OK;
154 }
155 
156 
157 static void
uninit_device(void * device_cookie)158 uninit_device(void* device_cookie)
159 {
160 	CALLED();
161 	xhci_pci_sim_info* bus = (xhci_pci_sim_info*)device_cookie;
162 	free(bus);
163 }
164 
165 
166 static status_t
register_device(device_node * parent)167 register_device(device_node* parent)
168 {
169 	CALLED();
170 	device_attr attrs[] = {
171 		{B_DEVICE_PRETTY_NAME, B_STRING_TYPE, {.string = "XHCI PCI"}},
172 		{}
173 	};
174 
175 	return gDeviceManager->register_node(parent,
176 		XHCI_PCI_DEVICE_MODULE_NAME, attrs, NULL, NULL);
177 }
178 
179 
180 static float
supports_device(device_node * parent)181 supports_device(device_node* parent)
182 {
183 	CALLED();
184 	const char* bus;
185 	uint16 type, subType, api;
186 
187 	// make sure parent is a XHCI PCI device node
188 	if (gDeviceManager->get_attr_string(parent, B_DEVICE_BUS, &bus, false)
189 		< B_OK) {
190 		return -1;
191 	}
192 
193 	if (strcmp(bus, "pci") != 0)
194 		return 0.0f;
195 
196 	if (gDeviceManager->get_attr_uint16(parent, B_DEVICE_SUB_TYPE, &subType,
197 			false) < B_OK
198 		|| gDeviceManager->get_attr_uint16(parent, B_DEVICE_TYPE, &type,
199 			false) < B_OK
200 		|| gDeviceManager->get_attr_uint16(parent, B_DEVICE_INTERFACE, &api,
201 			false) < B_OK) {
202 		TRACE_MODULE("Could not find type/subtype/interface attributes\n");
203 		return -1;
204 	}
205 
206 	if (type == PCI_serial_bus && subType == PCI_usb && api == PCI_usb_xhci) {
207 		pci_device_module_info* pci;
208 		pci_device* device;
209 		gDeviceManager->get_driver(parent, (driver_module_info**)&pci,
210 			(void**)&device);
211 		TRACE_MODULE("XHCI Device found!\n");
212 
213 		return 0.8f;
214 	}
215 
216 	return 0.0f;
217 }
218 
219 
220 static const char*
xhci_error_string(uint32 error)221 xhci_error_string(uint32 error)
222 {
223 	switch (error) {
224 		case COMP_INVALID: return "Invalid";
225 		case COMP_SUCCESS: return "Success";
226 		case COMP_DATA_BUFFER: return "Data buffer";
227 		case COMP_BABBLE: return "Babble detected";
228 		case COMP_USB_TRANSACTION: return "USB transaction";
229 		case COMP_TRB: return "TRB";
230 		case COMP_STALL: return "Stall";
231 		case COMP_RESOURCE: return "Resource";
232 		case COMP_BANDWIDTH: return "Bandwidth";
233 		case COMP_NO_SLOTS: return "No slots";
234 		case COMP_INVALID_STREAM: return "Invalid stream";
235 		case COMP_SLOT_NOT_ENABLED: return "Slot not enabled";
236 		case COMP_ENDPOINT_NOT_ENABLED: return "Endpoint not enabled";
237 		case COMP_SHORT_PACKET: return "Short packet";
238 		case COMP_RING_UNDERRUN: return "Ring underrun";
239 		case COMP_RING_OVERRUN: return "Ring overrun";
240 		case COMP_VF_RING_FULL: return "VF Event Ring Full";
241 		case COMP_PARAMETER: return "Parameter";
242 		case COMP_BANDWIDTH_OVERRUN: return "Bandwidth overrun";
243 		case COMP_CONTEXT_STATE: return "Context state";
244 		case COMP_NO_PING_RESPONSE: return "No ping response";
245 		case COMP_EVENT_RING_FULL: return "Event ring full";
246 		case COMP_INCOMPATIBLE_DEVICE: return "Incompatible device";
247 		case COMP_MISSED_SERVICE: return "Missed service";
248 		case COMP_COMMAND_RING_STOPPED: return "Command ring stopped";
249 		case COMP_COMMAND_ABORTED: return "Command aborted";
250 		case COMP_STOPPED: return "Stopped";
251 		case COMP_STOPPED_LENGTH_INVALID: return "Stopped (length invalid)";
252 		case COMP_MAX_EXIT_LATENCY: return "Max exit latency too large";
253 		case COMP_ISOC_OVERRUN: return "Isoch buffer overrun";
254 		case COMP_EVENT_LOST: return "Event lost";
255 		case COMP_UNDEFINED: return "Undefined";
256 		case COMP_INVALID_STREAM_ID: return "Invalid stream ID";
257 		case COMP_SECONDARY_BANDWIDTH: return "Secondary bandwidth";
258 		case COMP_SPLIT_TRANSACTION: return "Split transaction";
259 
260 		default: return "Undefined";
261 	}
262 }
263 
264 
265 static status_t
xhci_error_status(uint32 error,bool directionIn)266 xhci_error_status(uint32 error, bool directionIn)
267 {
268 	switch (error) {
269 		case COMP_SHORT_PACKET:
270 		case COMP_SUCCESS:
271 			return B_OK;
272 		case COMP_DATA_BUFFER:
273 			return directionIn ? B_DEV_WRITE_ERROR : B_DEV_READ_ERROR;
274 		case COMP_BABBLE:
275 			return directionIn ? B_DEV_DATA_OVERRUN : B_DEV_DATA_UNDERRUN;
276 		case COMP_RING_UNDERRUN:
277 			return B_DEV_FIFO_UNDERRUN;
278 		case COMP_RING_OVERRUN:
279 			return B_DEV_FIFO_OVERRUN;
280 		case COMP_MISSED_SERVICE:
281 			return B_DEV_TOO_LATE;
282 		case COMP_USB_TRANSACTION:
283 			return B_DEV_CRC_ERROR;
284 		case COMP_STALL:
285 			return B_DEV_STALLED;
286 		default:
287 			return B_DEV_STALLED;
288 	}
289 }
290 
291 
292 module_dependency module_dependencies[] = {
293 	{ USB_FOR_CONTROLLER_MODULE_NAME, (module_info**)&gUSB },
294 	{ B_DEVICE_MANAGER_MODULE_NAME, (module_info**)&gDeviceManager },
295 	{}
296 };
297 
298 
299 static usb_bus_interface gXHCIPCIDeviceModule = {
300 	{
301 		{
302 			XHCI_PCI_USB_BUS_MODULE_NAME,
303 			0,
304 			NULL
305 		},
306 		NULL,  // supports device
307 		NULL,  // register device
308 		init_bus,
309 		uninit_bus,
310 		NULL,  // register child devices
311 		NULL,  // rescan
312 		NULL,  // device removed
313 	},
314 };
315 
316 // Root device that binds to the PCI bus. It will register an usb_bus_interface
317 // node for each device.
318 static driver_module_info sXHCIDevice = {
319 	{
320 		XHCI_PCI_DEVICE_MODULE_NAME,
321 		0,
322 		NULL
323 	},
324 	supports_device,
325 	register_device,
326 	init_device,
327 	uninit_device,
328 	register_child_devices,
329 	NULL, // rescan
330 	NULL, // device removed
331 };
332 
333 module_info* modules[] = {
334 	(module_info* )&sXHCIDevice,
335 	(module_info* )&gXHCIPCIDeviceModule,
336 	NULL
337 };
338 
339 
XHCI(pci_info * info,pci_device_module_info * pci,pci_device * device,Stack * stack,device_node * node)340 XHCI::XHCI(pci_info *info, 	pci_device_module_info* pci, pci_device* device, Stack *stack,
341 	device_node* node)
342 	:	BusManager(stack, node),
343 		fRegisterArea(-1),
344 		fRegisters(NULL),
345 		fPCIInfo(info),
346 		fPci(pci),
347 		fDevice(device),
348 		fStack(stack),
349 		fIRQ(0),
350 		fUseMSI(false),
351 		fErstArea(-1),
352 		fDcbaArea(-1),
353 		fCmdCompSem(-1),
354 		fStopThreads(false),
355 		fRootHub(NULL),
356 		fPortCount(0),
357 		fSlotCount(0),
358 		fScratchpadCount(0),
359 		fContextSizeShift(0),
360 		fFinishedHead(NULL),
361 		fFinishTransfersSem(-1),
362 		fFinishThread(-1),
363 		fEventSem(-1),
364 		fEventThread(-1),
365 		fEventIdx(0),
366 		fCmdIdx(0),
367 		fEventCcs(1),
368 		fCmdCcs(1)
369 {
370 	B_INITIALIZE_SPINLOCK(&fSpinlock);
371 	mutex_init(&fFinishedLock, "XHCI finished transfers");
372 	mutex_init(&fEventLock, "XHCI event handler");
373 
374 	if (BusManager::InitCheck() < B_OK) {
375 		TRACE_ERROR("bus manager failed to init\n");
376 		return;
377 	}
378 
379 	TRACE("constructing new XHCI host controller driver\n");
380 	fInitOK = false;
381 
382 	// enable busmaster and memory mapped access
383 	uint16 command = fPci->read_pci_config(fDevice, PCI_command, 2);
384 	command &= ~(PCI_command_io | PCI_command_int_disable);
385 	command |= PCI_command_master | PCI_command_memory;
386 
387 	fPci->write_pci_config(fDevice, PCI_command, 2, command);
388 
389 	// map the registers (low + high for 64-bit when requested)
390 	phys_addr_t physicalAddress = fPCIInfo->u.h0.base_registers[0];
391 	if ((fPCIInfo->u.h0.base_register_flags[0] & PCI_address_type)
392 			== PCI_address_type_64) {
393 		physicalAddress |= (uint64)fPCIInfo->u.h0.base_registers[1] << 32;
394 	}
395 
396 	size_t mapSize = fPCIInfo->u.h0.base_register_sizes[0];
397 
398 	TRACE("map registers %08" B_PRIxPHYSADDR ", size: %" B_PRIuSIZE "\n",
399 		physicalAddress, mapSize);
400 
401 	fRegisterArea = map_physical_memory("XHCI memory mapped registers",
402 		physicalAddress, mapSize, B_ANY_KERNEL_BLOCK_ADDRESS,
403 		B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA,
404 		(void **)&fRegisters);
405 	if (fRegisterArea < B_OK) {
406 		TRACE_ERROR("failed to map register memory\n");
407 		return;
408 	}
409 
410 	// determine the register offsets
411 	fCapabilityRegisterOffset = 0;
412 	fOperationalRegisterOffset = HCI_CAPLENGTH(ReadCapReg32(XHCI_HCI_CAPLENGTH));
413 	fRuntimeRegisterOffset = ReadCapReg32(XHCI_RTSOFF) & ~0x1F;
414 	fDoorbellRegisterOffset = ReadCapReg32(XHCI_DBOFF) & ~0x3;
415 
416 	TRACE("mapped registers: %p\n", fRegisters);
417 	TRACE("operational register offset: %" B_PRId32 "\n", fOperationalRegisterOffset);
418 	TRACE("runtime register offset: %" B_PRId32 "\n", fRuntimeRegisterOffset);
419 	TRACE("doorbell register offset: %" B_PRId32 "\n", fDoorbellRegisterOffset);
420 
421 	int32 interfaceVersion = HCI_VERSION(ReadCapReg32(XHCI_HCI_VERSION));
422 	if (interfaceVersion < 0x0090 || interfaceVersion > 0x0120) {
423 		TRACE_ERROR("unsupported interface version: 0x%04" B_PRIx32 "\n",
424 			interfaceVersion);
425 		return;
426 	}
427 	TRACE_ALWAYS("interface version: 0x%04" B_PRIx32 "\n", interfaceVersion);
428 
429 	TRACE_ALWAYS("structural parameters: 1:0x%08" B_PRIx32 " 2:0x%08"
430 		B_PRIx32 " 3:0x%08" B_PRIx32 "\n", ReadCapReg32(XHCI_HCSPARAMS1),
431 		ReadCapReg32(XHCI_HCSPARAMS2), ReadCapReg32(XHCI_HCSPARAMS3));
432 
433 	uint32 cparams = ReadCapReg32(XHCI_HCCPARAMS);
434 	if (cparams == 0xffffffff)
435 		return;
436 	TRACE_ALWAYS("capability parameters: 0x%08" B_PRIx32 "\n", cparams);
437 
438 	// if 64 bytes context structures, then 1
439 	fContextSizeShift = HCC_CSZ(cparams);
440 
441 	// Assume ownership of the controller from the BIOS.
442 	uint32 eec = 0xffffffff;
443 	uint32 eecp = HCS0_XECP(cparams) << 2;
444 	for (; eecp != 0 && XECP_NEXT(eec); eecp += XECP_NEXT(eec) << 2) {
445 		TRACE("eecp register: 0x%08" B_PRIx32 "\n", eecp);
446 
447 		eec = ReadCapReg32(eecp);
448 		if (XECP_ID(eec) != XHCI_LEGSUP_CAPID)
449 			continue;
450 
451 		if (eec & XHCI_LEGSUP_BIOSOWNED) {
452 			TRACE_ALWAYS("the host controller is bios owned, claiming"
453 				" ownership\n");
454 			WriteCapReg32(eecp, eec | XHCI_LEGSUP_OSOWNED);
455 
456 			for (int32 i = 0; i < 20; i++) {
457 				eec = ReadCapReg32(eecp);
458 
459 				if ((eec & XHCI_LEGSUP_BIOSOWNED) == 0)
460 					break;
461 
462 				TRACE_ALWAYS("controller is still bios owned, waiting\n");
463 				snooze(50000);
464 			}
465 
466 			if (eec & XHCI_LEGSUP_BIOSOWNED) {
467 				TRACE_ERROR("bios won't give up control over the host "
468 					"controller (ignoring)\n");
469 			} else if (eec & XHCI_LEGSUP_OSOWNED) {
470 				TRACE_ALWAYS("successfully took ownership of the host "
471 					"controller\n");
472 			}
473 
474 			// Force off the BIOS owned flag, and clear all SMIs. Some BIOSes
475 			// do indicate a successful handover but do not remove their SMIs
476 			// and then freeze the system when interrupts are generated.
477 			WriteCapReg32(eecp, eec & ~XHCI_LEGSUP_BIOSOWNED);
478 		}
479 		break;
480 	}
481 	uint32 legctlsts = ReadCapReg32(eecp + XHCI_LEGCTLSTS);
482 	legctlsts &= XHCI_LEGCTLSTS_DISABLE_SMI;
483 	legctlsts |= XHCI_LEGCTLSTS_EVENTS_SMI;
484 	WriteCapReg32(eecp + XHCI_LEGCTLSTS, legctlsts);
485 
486 	// We need to explicitly take ownership of EHCI ports on earlier Intel chipsets.
487 	if (fPCIInfo->vendor_id == PCI_VENDOR_INTEL) {
488 		switch (fPCIInfo->device_id) {
489 			case PCI_DEVICE_INTEL_PANTHER_POINT_XHCI:
490 			case PCI_DEVICE_INTEL_LYNX_POINT_XHCI:
491 			case PCI_DEVICE_INTEL_LYNX_POINT_LP_XHCI:
492 			case PCI_DEVICE_INTEL_BAYTRAIL_XHCI:
493 			case PCI_DEVICE_INTEL_WILDCAT_POINT_XHCI:
494 			case PCI_DEVICE_INTEL_WILDCAT_POINT_LP_XHCI:
495 				_SwitchIntelPorts();
496 				break;
497 		}
498 	}
499 
500 	// halt the host controller
501 	if (ControllerHalt() < B_OK) {
502 		return;
503 	}
504 
505 	// reset the host controller
506 	if (ControllerReset() < B_OK) {
507 		TRACE_ERROR("host controller failed to reset\n");
508 		return;
509 	}
510 
511 	fCmdCompSem = create_sem(0, "XHCI Command Complete");
512 	fFinishTransfersSem = create_sem(0, "XHCI Finish Transfers");
513 	fEventSem = create_sem(0, "XHCI Event");
514 	if (fFinishTransfersSem < B_OK || fCmdCompSem < B_OK || fEventSem < B_OK) {
515 		TRACE_ERROR("failed to create semaphores\n");
516 		return;
517 	}
518 
519 	// create event handler thread
520 	fEventThread = spawn_kernel_thread(EventThread, "xhci event thread",
521 		B_URGENT_PRIORITY, (void *)this);
522 	resume_thread(fEventThread);
523 
524 	// create finisher service thread
525 	fFinishThread = spawn_kernel_thread(FinishThread, "xhci finish thread",
526 		B_URGENT_PRIORITY - 1, (void *)this);
527 	resume_thread(fFinishThread);
528 
529 	// Find the right interrupt vector, using MSIs if available.
530 	fIRQ = fPCIInfo->u.h0.interrupt_line;
531 	if (fIRQ == 0xFF)
532 		fIRQ = 0;
533 
534 #if 0
535 	if (fPci->get_msix_count(fDevice) >= 1) {
536 		uint8 msiVector = 0;
537 		if (fPci->configure_msix(fDevice, 1, &msiVector) == B_OK
538 			&& fPci->enable_msix(fDevice) == B_OK) {
539 			TRACE_ALWAYS("using MSI-X\n");
540 			fIRQ = msiVector;
541 			fUseMSI = true;
542 		}
543 	} else
544 #endif
545 	if (fPci->get_msi_count(fDevice) >= 1) {
546 		uint32 msiVector = 0;
547 		if (fPci->configure_msi(fDevice, 1, &msiVector) == B_OK
548 			&& fPci->enable_msi(fDevice) == B_OK) {
549 			TRACE_ALWAYS("using message signaled interrupts\n");
550 			fIRQ = msiVector;
551 			fUseMSI = true;
552 		}
553 	}
554 
555 	if (fIRQ == 0) {
556 		TRACE_MODULE_ERROR("device PCI:%d:%d:%d was assigned an invalid IRQ\n",
557 			fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function);
558 		return;
559 	}
560 
561 	// Install the interrupt handler
562 	TRACE("installing interrupt handler\n");
563 	install_io_interrupt_handler(fIRQ, InterruptHandler, (void *)this, 0);
564 
565 	memset(fPortSpeeds, 0, sizeof(fPortSpeeds));
566 	memset(fDevices, 0, sizeof(fDevices));
567 
568 	fInitOK = true;
569 	TRACE("driver construction successful\n");
570 }
571 
572 
~XHCI()573 XHCI::~XHCI()
574 {
575 	TRACE("tear down XHCI host controller driver\n");
576 
577 	WriteOpReg(XHCI_CMD, 0);
578 
579 	int32 result = 0;
580 	fStopThreads = true;
581 	delete_sem(fCmdCompSem);
582 	delete_sem(fFinishTransfersSem);
583 	delete_sem(fEventSem);
584 	wait_for_thread(fFinishThread, &result);
585 	wait_for_thread(fEventThread, &result);
586 
587 	mutex_destroy(&fFinishedLock);
588 	mutex_destroy(&fEventLock);
589 
590 	remove_io_interrupt_handler(fIRQ, InterruptHandler, (void *)this);
591 
592 	delete_area(fRegisterArea);
593 	delete_area(fErstArea);
594 	for (uint32 i = 0; i < fScratchpadCount; i++)
595 		delete_area(fScratchpadArea[i]);
596 	delete_area(fDcbaArea);
597 
598 	if (fUseMSI) {
599 		fPci->disable_msi(fDevice);
600 		fPci->unconfigure_msi(fDevice);
601 	}
602 }
603 
604 
605 void
_SwitchIntelPorts()606 XHCI::_SwitchIntelPorts()
607 {
608 	TRACE("Looking for EHCI owned ports\n");
609 	uint32 ports = fPci->read_pci_config(fDevice, XHCI_INTEL_USB3PRM, 4);
610 	TRACE("Superspeed Ports: 0x%" B_PRIx32 "\n", ports);
611 	fPci->write_pci_config(fDevice, XHCI_INTEL_USB3_PSSEN, 4, ports);
612 	ports = fPci->read_pci_config(fDevice, XHCI_INTEL_USB3_PSSEN, 4);
613 	TRACE("Superspeed ports now under XHCI : 0x%" B_PRIx32 "\n", ports);
614 	ports = fPci->read_pci_config(fDevice, XHCI_INTEL_USB2PRM, 4);
615 	TRACE("USB 2.0 Ports : 0x%" B_PRIx32 "\n", ports);
616 	fPci->write_pci_config(fDevice, XHCI_INTEL_XUSB2PR, 4, ports);
617 	ports = fPci->read_pci_config(fDevice, XHCI_INTEL_XUSB2PR, 4);
618 	TRACE("USB 2.0 ports now under XHCI: 0x%" B_PRIx32 "\n", ports);
619 }
620 
621 
622 status_t
Start()623 XHCI::Start()
624 {
625 	TRACE_ALWAYS("starting XHCI host controller\n");
626 	TRACE("usbcmd: 0x%08" B_PRIx32 "; usbsts: 0x%08" B_PRIx32 "\n",
627 		ReadOpReg(XHCI_CMD), ReadOpReg(XHCI_STS));
628 
629 	if (WaitOpBits(XHCI_STS, STS_CNR, 0) != B_OK) {
630 		TRACE("Start() failed STS_CNR\n");
631 	}
632 
633 	if ((ReadOpReg(XHCI_CMD) & CMD_RUN) != 0) {
634 		TRACE_ERROR("Start() warning, starting running XHCI controller!\n");
635 	}
636 
637 	if ((ReadOpReg(XHCI_PAGESIZE) & (1 << 0)) == 0) {
638 		TRACE_ERROR("controller does not support 4K page size\n");
639 		return B_ERROR;
640 	}
641 
642 	// read port count from capability register
643 	uint32 capabilities = ReadCapReg32(XHCI_HCSPARAMS1);
644 	fPortCount = HCS_MAX_PORTS(capabilities);
645 	if (fPortCount == 0) {
646 		TRACE_ERROR("invalid number of ports: %u\n", fPortCount);
647 		return B_ERROR;
648 	}
649 
650 	fSlotCount = HCS_MAX_SLOTS(capabilities);
651 	if (fSlotCount > XHCI_MAX_DEVICES)
652 		fSlotCount = XHCI_MAX_DEVICES;
653 	WriteOpReg(XHCI_CONFIG, fSlotCount);
654 
655 	// find out which protocol is used for each port
656 	uint8 portFound = 0;
657 	uint32 cparams = ReadCapReg32(XHCI_HCCPARAMS);
658 	uint32 eec = 0xffffffff;
659 	uint32 eecp = HCS0_XECP(cparams) << 2;
660 	for (; eecp != 0 && XECP_NEXT(eec) && portFound < fPortCount;
661 		eecp += XECP_NEXT(eec) << 2) {
662 		eec = ReadCapReg32(eecp);
663 		if (XECP_ID(eec) != XHCI_SUPPORTED_PROTOCOLS_CAPID)
664 			continue;
665 		if (XHCI_SUPPORTED_PROTOCOLS_0_MAJOR(eec) > 3)
666 			continue;
667 		uint32 temp = ReadCapReg32(eecp + 8);
668 		uint32 offset = XHCI_SUPPORTED_PROTOCOLS_1_OFFSET(temp);
669 		uint32 count = XHCI_SUPPORTED_PROTOCOLS_1_COUNT(temp);
670 		if (offset == 0 || count == 0)
671 			continue;
672 		offset--;
673 		for (uint32 i = offset; i < offset + count; i++) {
674 			if (XHCI_SUPPORTED_PROTOCOLS_0_MAJOR(eec) == 0x3)
675 				fPortSpeeds[i] = USB_SPEED_SUPERSPEED;
676 			else
677 				fPortSpeeds[i] = USB_SPEED_HIGHSPEED;
678 
679 			TRACE("speed for port %" B_PRId32 " is %s\n", i,
680 				fPortSpeeds[i] == USB_SPEED_SUPERSPEED ? "super" : "high");
681 		}
682 		portFound += count;
683 	}
684 
685 	uint32 params2 = ReadCapReg32(XHCI_HCSPARAMS2);
686 	fScratchpadCount = HCS_MAX_SC_BUFFERS(params2);
687 	if (fScratchpadCount > XHCI_MAX_SCRATCHPADS) {
688 		TRACE_ERROR("invalid number of scratchpads: %" B_PRIu32 "\n",
689 			fScratchpadCount);
690 		return B_ERROR;
691 	}
692 
693 	uint32 params3 = ReadCapReg32(XHCI_HCSPARAMS3);
694 	fExitLatMax = HCS_U1_DEVICE_LATENCY(params3)
695 		+ HCS_U2_DEVICE_LATENCY(params3);
696 
697 	// clear interrupts & disable device notifications
698 	WriteOpReg(XHCI_STS, ReadOpReg(XHCI_STS));
699 	WriteOpReg(XHCI_DNCTRL, 0);
700 
701 	// allocate Device Context Base Address array
702 	phys_addr_t dmaAddress;
703 	fDcbaArea = fStack->AllocateArea((void **)&fDcba, &dmaAddress,
704 		sizeof(*fDcba), "DCBA Area");
705 	if (fDcbaArea < B_OK) {
706 		TRACE_ERROR("unable to create the DCBA area\n");
707 		return B_ERROR;
708 	}
709 	memset(fDcba, 0, sizeof(*fDcba));
710 	memset(fScratchpadArea, 0, sizeof(fScratchpadArea));
711 	memset(fScratchpad, 0, sizeof(fScratchpad));
712 
713 	// setting the first address to the scratchpad array address
714 	fDcba->baseAddress[0] = dmaAddress
715 		+ offsetof(struct xhci_device_context_array, scratchpad);
716 
717 	// fill up the scratchpad array with scratchpad pages
718 	for (uint32 i = 0; i < fScratchpadCount; i++) {
719 		phys_addr_t scratchDmaAddress;
720 		fScratchpadArea[i] = fStack->AllocateArea((void **)&fScratchpad[i],
721 			&scratchDmaAddress, B_PAGE_SIZE, "Scratchpad Area");
722 		if (fScratchpadArea[i] < B_OK) {
723 			TRACE_ERROR("unable to create the scratchpad area\n");
724 			return B_ERROR;
725 		}
726 		fDcba->scratchpad[i] = scratchDmaAddress;
727 	}
728 
729 	TRACE("setting DCBAAP %" B_PRIxPHYSADDR "\n", dmaAddress);
730 	WriteOpReg(XHCI_DCBAAP_LO, (uint32)dmaAddress);
731 	WriteOpReg(XHCI_DCBAAP_HI, (uint32)(dmaAddress >> 32));
732 
733 	// allocate Event Ring Segment Table
734 	uint8 *addr;
735 	fErstArea = fStack->AllocateArea((void **)&addr, &dmaAddress,
736 		(XHCI_MAX_COMMANDS + XHCI_MAX_EVENTS) * sizeof(xhci_trb)
737 		+ sizeof(xhci_erst_element),
738 		"USB XHCI ERST CMD_RING and EVENT_RING Area");
739 
740 	if (fErstArea < B_OK) {
741 		TRACE_ERROR("unable to create the ERST AND RING area\n");
742 		delete_area(fDcbaArea);
743 		return B_ERROR;
744 	}
745 	fErst = (xhci_erst_element *)addr;
746 	memset(fErst, 0, (XHCI_MAX_COMMANDS + XHCI_MAX_EVENTS) * sizeof(xhci_trb)
747 		+ sizeof(xhci_erst_element));
748 
749 	// fill with Event Ring Segment Base Address and Event Ring Segment Size
750 	fErst->rs_addr = dmaAddress + sizeof(xhci_erst_element);
751 	fErst->rs_size = XHCI_MAX_EVENTS;
752 	fErst->rsvdz = 0;
753 
754 	addr += sizeof(xhci_erst_element);
755 	fEventRing = (xhci_trb *)addr;
756 	addr += XHCI_MAX_EVENTS * sizeof(xhci_trb);
757 	fCmdRing = (xhci_trb *)addr;
758 
759 	TRACE("setting ERST size\n");
760 	WriteRunReg32(XHCI_ERSTSZ(0), XHCI_ERSTS_SET(1));
761 
762 	TRACE("setting ERDP addr = 0x%" B_PRIx64 "\n", fErst->rs_addr);
763 	WriteRunReg32(XHCI_ERDP_LO(0), (uint32)fErst->rs_addr);
764 	WriteRunReg32(XHCI_ERDP_HI(0), (uint32)(fErst->rs_addr >> 32));
765 
766 	TRACE("setting ERST base addr = 0x%" B_PRIxPHYSADDR "\n", dmaAddress);
767 	WriteRunReg32(XHCI_ERSTBA_LO(0), (uint32)dmaAddress);
768 	WriteRunReg32(XHCI_ERSTBA_HI(0), (uint32)(dmaAddress >> 32));
769 
770 	dmaAddress += sizeof(xhci_erst_element) + XHCI_MAX_EVENTS
771 		* sizeof(xhci_trb);
772 
773 	// Make sure the Command Ring is stopped
774 	if ((ReadOpReg(XHCI_CRCR_LO) & CRCR_CRR) != 0) {
775 		TRACE_ALWAYS("Command Ring is running, send stop/cancel\n");
776 		WriteOpReg(XHCI_CRCR_LO, CRCR_CS);
777 		WriteOpReg(XHCI_CRCR_HI, 0);
778 		WriteOpReg(XHCI_CRCR_LO, CRCR_CA);
779 		WriteOpReg(XHCI_CRCR_HI, 0);
780 		snooze(1000);
781 		if ((ReadOpReg(XHCI_CRCR_LO) & CRCR_CRR) != 0) {
782 			TRACE_ERROR("Command Ring still running after stop/cancel\n");
783 		}
784 	}
785 	TRACE("setting CRCR addr = 0x%" B_PRIxPHYSADDR "\n", dmaAddress);
786 	WriteOpReg(XHCI_CRCR_LO, (uint32)dmaAddress | CRCR_RCS);
787 	WriteOpReg(XHCI_CRCR_HI, (uint32)(dmaAddress >> 32));
788 	// link trb
789 	fCmdRing[XHCI_MAX_COMMANDS - 1].address = dmaAddress;
790 
791 	TRACE("setting interrupt rate\n");
792 
793 	// Setting IMOD below 0x3F8 on Intel Lynx Point can cause IRQ lockups
794 	if (fPCIInfo->vendor_id == PCI_VENDOR_INTEL
795 		&& (fPCIInfo->device_id == PCI_DEVICE_INTEL_PANTHER_POINT_XHCI
796 			|| fPCIInfo->device_id == PCI_DEVICE_INTEL_LYNX_POINT_XHCI
797 			|| fPCIInfo->device_id == PCI_DEVICE_INTEL_LYNX_POINT_LP_XHCI
798 			|| fPCIInfo->device_id == PCI_DEVICE_INTEL_BAYTRAIL_XHCI
799 			|| fPCIInfo->device_id == PCI_DEVICE_INTEL_WILDCAT_POINT_XHCI)) {
800 		WriteRunReg32(XHCI_IMOD(0), 0x000003f8); // 4000 irq/s
801 	} else {
802 		WriteRunReg32(XHCI_IMOD(0), 0x000001f4); // 8000 irq/s
803 	}
804 
805 	TRACE("enabling interrupt\n");
806 	WriteRunReg32(XHCI_IMAN(0), ReadRunReg32(XHCI_IMAN(0)) | IMAN_INTR_ENA);
807 
808 	WriteOpReg(XHCI_CMD, CMD_RUN | CMD_INTE | CMD_HSEE);
809 
810 	// wait for start up state
811 	if (WaitOpBits(XHCI_STS, STS_HCH, 0) != B_OK) {
812 		TRACE_ERROR("HCH start up timeout\n");
813 	}
814 
815 	fRootHub = new(std::nothrow) XHCIRootHub(RootObject(), 1);
816 	if (!fRootHub) {
817 		TRACE_ERROR("no memory to allocate root hub\n");
818 		return B_NO_MEMORY;
819 	}
820 
821 	if (fRootHub->InitCheck() < B_OK) {
822 		TRACE_ERROR("root hub failed init check\n");
823 		return fRootHub->InitCheck();
824 	}
825 
826 	SetRootHub(fRootHub);
827 
828 	fRootHub->RegisterNode(Node());
829 
830 	TRACE_ALWAYS("successfully started the controller\n");
831 
832 #ifdef TRACE_USB
833 	TRACE("No-Op test...\n");
834 	Noop();
835 #endif
836 
837 	return BusManager::Start();
838 }
839 
840 
841 status_t
SubmitTransfer(Transfer * transfer)842 XHCI::SubmitTransfer(Transfer *transfer)
843 {
844 	// short circuit the root hub
845 	if (transfer->TransferPipe()->DeviceAddress() == 1)
846 		return fRootHub->ProcessTransfer(this, transfer);
847 
848 	TRACE("SubmitTransfer(%p)\n", transfer);
849 	Pipe *pipe = transfer->TransferPipe();
850 	if ((pipe->Type() & USB_OBJECT_CONTROL_PIPE) != 0)
851 		return SubmitControlRequest(transfer);
852 	return SubmitNormalRequest(transfer);
853 }
854 
855 
856 status_t
SubmitControlRequest(Transfer * transfer)857 XHCI::SubmitControlRequest(Transfer *transfer)
858 {
859 	Pipe *pipe = transfer->TransferPipe();
860 	usb_request_data *requestData = transfer->RequestData();
861 	bool directionIn = (requestData->RequestType & USB_REQTYPE_DEVICE_IN) != 0;
862 
863 	TRACE("SubmitControlRequest() length %d\n", requestData->Length);
864 
865 	xhci_endpoint *endpoint = (xhci_endpoint *)pipe->ControllerCookie();
866 	if (endpoint == NULL) {
867 		TRACE_ERROR("control pipe has no endpoint!\n");
868 		return B_BAD_VALUE;
869 	}
870 	if (endpoint->device == NULL) {
871 		panic("endpoint is not initialized!");
872 		return B_NO_INIT;
873 	}
874 
875 	status_t status = transfer->InitKernelAccess();
876 	if (status != B_OK)
877 		return status;
878 
879 	xhci_td *descriptor = CreateDescriptor(3, 1, requestData->Length);
880 	if (descriptor == NULL)
881 		return B_NO_MEMORY;
882 	descriptor->transfer = transfer;
883 
884 	// Setup Stage
885 	uint8 index = 0;
886 	memcpy(&descriptor->trbs[index].address, requestData,
887 		sizeof(usb_request_data));
888 	descriptor->trbs[index].status = TRB_2_IRQ(0) | TRB_2_BYTES(8);
889 	descriptor->trbs[index].flags
890 		= TRB_3_TYPE(TRB_TYPE_SETUP_STAGE) | TRB_3_IDT_BIT | TRB_3_CYCLE_BIT;
891 	if (requestData->Length > 0) {
892 		descriptor->trbs[index].flags |=
893 			directionIn ? TRB_3_TRT_IN : TRB_3_TRT_OUT;
894 	}
895 
896 	index++;
897 
898 	// Data Stage (if any)
899 	if (requestData->Length > 0) {
900 		descriptor->trbs[index].address = descriptor->buffer_addrs[0];
901 		descriptor->trbs[index].status = TRB_2_IRQ(0)
902 			| TRB_2_BYTES(requestData->Length)
903 			| TRB_2_TD_SIZE(0);
904 		descriptor->trbs[index].flags = TRB_3_TYPE(TRB_TYPE_DATA_STAGE)
905 				| (directionIn ? TRB_3_DIR_IN : 0)
906 				| TRB_3_CYCLE_BIT;
907 
908 		if (!directionIn) {
909 			transfer->PrepareKernelAccess();
910 			WriteDescriptor(descriptor, transfer->Vector(),
911 				transfer->VectorCount(), transfer->IsPhysical());
912 		}
913 
914 		index++;
915 	}
916 
917 	// Status Stage
918 	descriptor->trbs[index].address = 0;
919 	descriptor->trbs[index].status = TRB_2_IRQ(0);
920 	descriptor->trbs[index].flags = TRB_3_TYPE(TRB_TYPE_STATUS_STAGE)
921 			| TRB_3_CHAIN_BIT | TRB_3_ENT_BIT | TRB_3_CYCLE_BIT;
922 		// The CHAIN bit must be set when using an Event Data TRB
923 		// (XHCI 1.2 § 6.4.1.2.3 Table 6-31 p472).
924 
925 	// Status Stage is an OUT transfer when the device is sending data
926 	// (XHCI 1.2 § 4.11.2.2 Table 4-7 p213), otherwise set the IN bit.
927 	if (requestData->Length == 0 || !directionIn)
928 		descriptor->trbs[index].flags |= TRB_3_DIR_IN;
929 
930 	descriptor->trb_used = index + 1;
931 
932 	status = _LinkDescriptorForPipe(descriptor, endpoint);
933 	if (status != B_OK) {
934 		FreeDescriptor(descriptor);
935 		return status;
936 	}
937 
938 	return B_OK;
939 }
940 
941 
942 status_t
SubmitNormalRequest(Transfer * transfer)943 XHCI::SubmitNormalRequest(Transfer *transfer)
944 {
945 	TRACE("SubmitNormalRequest() length %" B_PRIuSIZE "\n", transfer->FragmentLength());
946 
947 	Pipe *pipe = transfer->TransferPipe();
948 	usb_isochronous_data *isochronousData = transfer->IsochronousData();
949 	bool directionIn = (pipe->Direction() == Pipe::In);
950 
951 	xhci_endpoint *endpoint = (xhci_endpoint *)pipe->ControllerCookie();
952 	if (endpoint == NULL) {
953 		TRACE_ERROR("pipe has no endpoint!\n");
954 		return B_BAD_VALUE;
955 	}
956 	if (endpoint->device == NULL) {
957 		panic("endpoint is not initialized!");
958 		return B_NO_INIT;
959 	}
960 
961 	status_t status = transfer->InitKernelAccess();
962 	if (status != B_OK)
963 		return status;
964 
965 	// TRBs within a TD must be "grouped" into TD Fragments, which mostly means
966 	// that a max_burst_payload boundary cannot be crossed within a TRB, but
967 	// only between TRBs. More than one TRB can be in a TD Fragment, but we keep
968 	// things simple by setting trbSize to the MBP. (XHCI 1.2 § 4.11.7.1 p235.)
969 	size_t trbSize = endpoint->max_burst_payload;
970 
971 	if (isochronousData != NULL) {
972 		if (isochronousData->packet_count == 0)
973 			return B_BAD_VALUE;
974 
975 		// Isochronous transfers use more specifically sized packets.
976 		trbSize = transfer->DataLength() / isochronousData->packet_count;
977 		if (trbSize == 0 || trbSize > pipe->MaxPacketSize() || trbSize
978 				!= (size_t)isochronousData->packet_descriptors[0].request_length)
979 			return B_BAD_VALUE;
980 	}
981 
982 	// Now that we know trbSize, compute the count.
983 	const int32 trbCount = (transfer->FragmentLength() + trbSize - 1) / trbSize;
984 
985 	xhci_td *td = CreateDescriptor(trbCount, trbCount, trbSize);
986 	if (td == NULL)
987 		return B_NO_MEMORY;
988 
989 	// Normal Stage
990 	const size_t maxPacketSize = pipe->MaxPacketSize();
991 	size_t remaining = transfer->FragmentLength();
992 	for (int32 i = 0; i < trbCount; i++) {
993 		int32 trbLength = (remaining < trbSize) ? remaining : trbSize;
994 		remaining -= trbLength;
995 
996 		// The "TD Size" field of a transfer TRB indicates the number of
997 		// remaining maximum-size *packets* in this TD, *not* including the
998 		// packets in the current TRB, and capped at 31 if there are more
999 		// than 31 packets remaining in the TD. (XHCI 1.2 § 4.11.2.4 p218.)
1000 		int32 tdSize = (remaining + maxPacketSize - 1) / maxPacketSize;
1001 		if (tdSize > 31)
1002 			tdSize = 31;
1003 
1004 		td->trbs[i].address = td->buffer_addrs[i];
1005 		td->trbs[i].status = TRB_2_IRQ(0)
1006 			| TRB_2_BYTES(trbLength)
1007 			| TRB_2_TD_SIZE(tdSize);
1008 		td->trbs[i].flags = TRB_3_TYPE(TRB_TYPE_NORMAL)
1009 			| TRB_3_CYCLE_BIT | TRB_3_CHAIN_BIT;
1010 
1011 		td->trb_used++;
1012 	}
1013 
1014 	// Isochronous-specific.
1015 	if (isochronousData != NULL) {
1016 		// This is an isochronous transfer; it should have one TD per packet.
1017 		for (uint32 i = 0; i < isochronousData->packet_count; i++) {
1018 			td->trbs[i].flags &= ~(TRB_3_TYPE(TRB_TYPE_NORMAL));
1019 			td->trbs[i].flags |= TRB_3_TYPE(TRB_TYPE_ISOCH);
1020 
1021 			if (i != (isochronousData->packet_count - 1)) {
1022 				// For all but the last TD, generate events (but not interrupts) on short packets.
1023 				// (The last TD uses the regular Event Data TRB.)
1024 				td->trbs[i].flags |= TRB_3_ISP_BIT | TRB_3_BEI_BIT;
1025 				td->trbs[i].flags &= ~TRB_3_CHAIN_BIT;
1026 			}
1027 		}
1028 
1029 		// TODO: We do not currently take Mult into account at all!
1030 		// How are we supposed to do that here?
1031 
1032 		// Determine the (starting) frame number: if ISO_ASAP is set,
1033 		// we are queueing this "right away", and so want to reset
1034 		// the starting_frame_number. Otherwise we use the passed one.
1035 		uint32 frame;
1036 		if ((isochronousData->flags & USB_ISO_ASAP) != 0
1037 				|| isochronousData->starting_frame_number == NULL) {
1038 			// All reads from the microframe index register must be
1039 			// incremented by 1. (XHCI 1.2 § 4.14.2.1.4 p265.)
1040 			frame = (ReadRunReg32(XHCI_MFINDEX) + 1) >> 3;
1041 			td->trbs[0].flags |= TRB_3_ISO_SIA_BIT;
1042 		} else {
1043 			frame = *isochronousData->starting_frame_number;
1044 			td->trbs[0].flags |= TRB_3_FRID(frame);
1045 		}
1046 		if (isochronousData->starting_frame_number != NULL)
1047 			*isochronousData->starting_frame_number = frame;
1048 	}
1049 
1050 	// Set the ENT (Evaluate Next TRB) bit, so that the HC will not switch
1051 	// contexts before evaluating the Link TRB that _LinkDescriptorForPipe
1052 	// will insert, as otherwise there would be a race between us freeing
1053 	// and unlinking the descriptor, and the controller evaluating the Link TRB
1054 	// and thus getting back onto the main ring and executing the Event Data
1055 	// TRB that generates the interrupt for this transfer.
1056 	//
1057 	// Note that we *do not* unset the CHAIN bit in this TRB, thus including
1058 	// the Link TRB in this TD formally, which is required when using the
1059 	// ENT bit. (XHCI 1.2 § 4.12.3 p250.)
1060 	td->trbs[td->trb_used - 1].flags |= TRB_3_ENT_BIT;
1061 
1062 	if (!directionIn) {
1063 		TRACE("copying out iov count %ld\n", transfer->VectorCount());
1064 		status_t status = transfer->PrepareKernelAccess();
1065 		if (status != B_OK) {
1066 			FreeDescriptor(td);
1067 			return status;
1068 		}
1069 		WriteDescriptor(td, transfer->Vector(),
1070 			transfer->VectorCount(), transfer->IsPhysical());
1071 	}
1072 
1073 	td->transfer = transfer;
1074 	status = _LinkDescriptorForPipe(td, endpoint);
1075 	if (status != B_OK) {
1076 		FreeDescriptor(td);
1077 		return status;
1078 	}
1079 
1080 	return B_OK;
1081 }
1082 
1083 
1084 status_t
CancelQueuedTransfers(Pipe * pipe,bool force)1085 XHCI::CancelQueuedTransfers(Pipe *pipe, bool force)
1086 {
1087 	xhci_endpoint* endpoint = (xhci_endpoint*)pipe->ControllerCookie();
1088 	if (endpoint == NULL || endpoint->trbs == NULL) {
1089 		// Someone's de-allocated this pipe or endpoint in the meantime.
1090 		// (Possibly AllocateDevice failed, and we were the temporary pipe.)
1091 		return B_NO_INIT;
1092 	}
1093 
1094 #ifndef TRACE_USB
1095 	if (force)
1096 #endif
1097 	{
1098 		TRACE_ALWAYS("cancel queued transfers (%" B_PRId8 ") for pipe %p (%d)\n",
1099 			endpoint->used, pipe, pipe->EndpointAddress());
1100 	}
1101 
1102 	MutexLocker endpointLocker(endpoint->lock);
1103 
1104 	if (endpoint->td_head == NULL) {
1105 		// There aren't any currently pending transfers to cancel.
1106 		return B_OK;
1107 	}
1108 
1109 	// Calling the callbacks while holding the endpoint lock could potentially
1110 	// cause deadlocks, so we instead store them in a pointer array. We need
1111 	// to do this separately from freeing the TDs, for in the case we fail
1112 	// to stop the endpoint, we cancel the transfers but do not free the TDs.
1113 	Transfer* transfers[XHCI_MAX_TRANSFERS];
1114 	int32 transfersCount = 0;
1115 
1116 	for (xhci_td* td = endpoint->td_head; td != NULL; td = td->next) {
1117 		if (td->transfer == NULL)
1118 			continue;
1119 
1120 		transfers[transfersCount] = td->transfer;
1121 		transfersCount++;
1122 		td->transfer = NULL;
1123 	}
1124 
1125 	// It is possible that while waiting for the stop-endpoint command to
1126 	// complete, one of the queued transfers posts a completion event, so in
1127 	// order to avoid a deadlock, we must unlock the endpoint.
1128 	endpointLocker.Unlock();
1129 	status_t status = StopEndpoint(false, endpoint);
1130 	if (status != B_OK && status != B_DEV_STALLED) {
1131 		// It is possible that the endpoint was stopped by the controller at the
1132 		// same time our STOP command was in progress, causing a "Context State"
1133 		// error. In that case, try again; if the endpoint is already stopped,
1134 		// StopEndpoint will notice this. (XHCI 1.2 § 4.6.9 p137.)
1135 		status = StopEndpoint(false, endpoint);
1136 	}
1137 	if (status == B_DEV_STALLED) {
1138 		// Only exit from a Halted state is a RESET. (XHCI 1.2 § 4.8.3 p163.)
1139 		TRACE_ERROR("cancel queued transfers: halted endpoint, reset!\n");
1140 		status = ResetEndpoint(false, endpoint);
1141 	}
1142 	endpointLocker.Lock();
1143 
1144 	// Detach the head TD from the endpoint.
1145 	xhci_td* td_head = endpoint->td_head;
1146 	endpoint->td_head = NULL;
1147 
1148 	if (status == B_OK) {
1149 		// Clear the endpoint's TRBs.
1150 		memset(endpoint->trbs, 0, sizeof(xhci_trb) * XHCI_ENDPOINT_RING_SIZE);
1151 		endpoint->used = 0;
1152 		endpoint->next = 0;
1153 
1154 		// Set dequeue pointer location to the beginning of the ring.
1155 		SetTRDequeue(endpoint->trb_addr, 0, endpoint->id + 1,
1156 			endpoint->device->slot);
1157 
1158 		// We don't need to do anything else to restart the ring, as it will resume
1159 		// operation as normal upon the next doorbell. (XHCI 1.2 § 4.6.9 p136.)
1160 	} else {
1161 		// We couldn't stop the endpoint. Most likely the device has been
1162 		// removed and the endpoint was stopped by the hardware, or is
1163 		// for some reason busy and cannot be stopped.
1164 		TRACE_ERROR("cancel queued transfers: could not stop endpoint: %s!\n",
1165 			strerror(status));
1166 
1167 		// Instead of freeing the TDs, we want to leave them in the endpoint
1168 		// so that when/if the hardware returns, they can be properly unlinked,
1169 		// as otherwise the endpoint could get "stuck" by having the "used"
1170 		// slowly accumulate due to "dead" transfers.
1171 		endpoint->td_head = td_head;
1172 		td_head = NULL;
1173 	}
1174 
1175 	endpointLocker.Unlock();
1176 
1177 	for (int32 i = 0; i < transfersCount; i++) {
1178 		// If the transfer is canceled by force, the one causing the
1179 		// cancel is possibly not the one who initiated the transfer
1180 		// and the callback is likely not safe anymore.
1181 		if (!force)
1182 			transfers[i]->Finished(B_CANCELED, 0);
1183 
1184 		delete transfers[i];
1185 	}
1186 
1187 	// This loop looks a bit strange because we need to store the "next"
1188 	// pointer before freeing the descriptor.
1189 	xhci_td* td;
1190 	while ((td = td_head) != NULL) {
1191 		td_head = td_head->next;
1192 		FreeDescriptor(td);
1193 	}
1194 
1195 	return B_OK;
1196 }
1197 
1198 
1199 status_t
StartDebugTransfer(Transfer * transfer)1200 XHCI::StartDebugTransfer(Transfer *transfer)
1201 {
1202 	Pipe *pipe = transfer->TransferPipe();
1203 	xhci_endpoint *endpoint = (xhci_endpoint *)pipe->ControllerCookie();
1204 	if (endpoint == NULL)
1205 		return B_BAD_VALUE;
1206 
1207 	// Check all locks that we are going to hit when running transfers.
1208 	if (mutex_trylock(&endpoint->lock) != B_OK)
1209 		return B_WOULD_BLOCK;
1210 	if (mutex_trylock(&fFinishedLock) != B_OK) {
1211 		mutex_unlock(&endpoint->lock);
1212 		return B_WOULD_BLOCK;
1213 	}
1214 	if (mutex_trylock(&fEventLock) != B_OK) {
1215 		mutex_unlock(&endpoint->lock);
1216 		mutex_unlock(&fFinishedLock);
1217 		return B_WOULD_BLOCK;
1218 	}
1219 	mutex_unlock(&endpoint->lock);
1220 	mutex_unlock(&fFinishedLock);
1221 	mutex_unlock(&fEventLock);
1222 
1223 	status_t status = SubmitTransfer(transfer);
1224 	if (status != B_OK)
1225 		return status;
1226 
1227 	// The endpoint's head TD is the TD of the just-submitted transfer.
1228 	// Just like EHCI, abuse the callback cookie to hold the TD pointer.
1229 	transfer->SetCallback(NULL, endpoint->td_head);
1230 
1231 	return B_OK;
1232 }
1233 
1234 
1235 status_t
CheckDebugTransfer(Transfer * transfer)1236 XHCI::CheckDebugTransfer(Transfer *transfer)
1237 {
1238 	xhci_td *transfer_td = (xhci_td *)transfer->CallbackCookie();
1239 	if (transfer_td == NULL)
1240 		return B_NO_INIT;
1241 
1242 	// Process events once, and then look for it in the finished list.
1243 	ProcessEvents();
1244 	xhci_td *previous = NULL;
1245 	for (xhci_td *td = fFinishedHead; td != NULL; td = td->next) {
1246 		if (td != transfer_td) {
1247 			previous = td;
1248 			continue;
1249 		}
1250 
1251 		// We've found it!
1252 		if (previous == NULL) {
1253 			fFinishedHead = fFinishedHead->next;
1254 		} else {
1255 			previous->next = td->next;
1256 		}
1257 
1258 		bool directionIn = (transfer->TransferPipe()->Direction() != Pipe::Out);
1259 		status_t status = (td->trb_completion_code == COMP_SUCCESS
1260 			|| td->trb_completion_code == COMP_SHORT_PACKET) ? B_OK : B_ERROR;
1261 
1262 		if (status == B_OK && directionIn) {
1263 			ReadDescriptor(td, transfer->Vector(), transfer->VectorCount(),
1264 				transfer->IsPhysical());
1265 		}
1266 
1267 		FreeDescriptor(td);
1268 		transfer->SetCallback(NULL, NULL);
1269 		return status;
1270 	}
1271 
1272 	// We didn't find it.
1273 	spin(75);
1274 	return B_DEV_PENDING;
1275 }
1276 
1277 
1278 void
CancelDebugTransfer(Transfer * transfer)1279 XHCI::CancelDebugTransfer(Transfer *transfer)
1280 {
1281 	while (CheckDebugTransfer(transfer) == B_DEV_PENDING)
1282 		spin(100);
1283 }
1284 
1285 
1286 status_t
NotifyPipeChange(Pipe * pipe,usb_change change)1287 XHCI::NotifyPipeChange(Pipe *pipe, usb_change change)
1288 {
1289 	TRACE("pipe change %d for pipe %p (%d)\n", change, pipe,
1290 		pipe->EndpointAddress());
1291 
1292 	switch (change) {
1293 	case USB_CHANGE_CREATED:
1294 		return _InsertEndpointForPipe(pipe);
1295 	case USB_CHANGE_DESTROYED:
1296 		return _RemoveEndpointForPipe(pipe);
1297 
1298 	case USB_CHANGE_PIPE_POLICY_CHANGED:
1299 		// We don't care about these, at least for now.
1300 		return B_OK;
1301 	}
1302 
1303 	TRACE_ERROR("unknown pipe change!\n");
1304 	return B_UNSUPPORTED;
1305 }
1306 
1307 
1308 xhci_td *
CreateDescriptor(uint32 trbCount,uint32 bufferCount,size_t bufferSize)1309 XHCI::CreateDescriptor(uint32 trbCount, uint32 bufferCount, size_t bufferSize)
1310 {
1311 	const bool inKDL = debug_debugger_running();
1312 
1313 	xhci_td *result;
1314 	if (!inKDL) {
1315 		result = (xhci_td*)calloc(1, sizeof(xhci_td));
1316 	} else {
1317 		// Just use the physical memory allocator while in KDL; it's less
1318 		// secure than using the regular heap, but it's easier to deal with.
1319 		phys_addr_t dummy;
1320 		fStack->AllocateChunk((void **)&result, &dummy, sizeof(xhci_td));
1321 	}
1322 
1323 	if (result == NULL) {
1324 		TRACE_ERROR("failed to allocate a transfer descriptor\n");
1325 		return NULL;
1326 	}
1327 
1328 	// We always allocate 1 more TRB than requested, so that
1329 	// _LinkDescriptorForPipe() has room to insert a link TRB.
1330 	trbCount++;
1331 	if (fStack->AllocateChunk((void **)&result->trbs, &result->trb_addr,
1332 			(trbCount * sizeof(xhci_trb))) < B_OK) {
1333 		TRACE_ERROR("failed to allocate TRBs\n");
1334 		FreeDescriptor(result);
1335 		return NULL;
1336 	}
1337 	result->trb_count = trbCount;
1338 	result->trb_used = 0;
1339 
1340 	if (bufferSize > 0) {
1341 		// Due to how the USB stack allocates physical memory, we can't just
1342 		// request one large chunk the size of the transfer, and so instead we
1343 		// create a series of buffers as requested by our caller.
1344 
1345 		// We store the buffer pointers and addresses in one memory block.
1346 		if (!inKDL) {
1347 			result->buffers = (void**)calloc(bufferCount,
1348 				(sizeof(void*) + sizeof(phys_addr_t)));
1349 		} else {
1350 			phys_addr_t dummy;
1351 			fStack->AllocateChunk((void **)&result->buffers, &dummy,
1352 				bufferCount * (sizeof(void*) + sizeof(phys_addr_t)));
1353 		}
1354 		if (result->buffers == NULL) {
1355 			TRACE_ERROR("unable to allocate space for buffer infos\n");
1356 			FreeDescriptor(result);
1357 			return NULL;
1358 		}
1359 		result->buffer_addrs = (phys_addr_t*)&result->buffers[bufferCount];
1360 		result->buffer_size = bufferSize;
1361 		result->buffer_count = bufferCount;
1362 
1363 		// Optimization: If the requested total size of all buffers is less
1364 		// than 32*B_PAGE_SIZE (the maximum size that the physical memory
1365 		// allocator can handle), we allocate only one buffer and segment it.
1366 		size_t totalSize = bufferSize * bufferCount;
1367 		if (totalSize < (32 * B_PAGE_SIZE)) {
1368 			if (fStack->AllocateChunk(&result->buffers[0],
1369 					&result->buffer_addrs[0], totalSize) < B_OK) {
1370 				TRACE_ERROR("unable to allocate space for large buffer (size %ld)\n",
1371 					totalSize);
1372 				FreeDescriptor(result);
1373 				return NULL;
1374 			}
1375 			for (uint32 i = 1; i < bufferCount; i++) {
1376 				result->buffers[i] = (void*)((addr_t)(result->buffers[i - 1])
1377 					+ bufferSize);
1378 				result->buffer_addrs[i] = result->buffer_addrs[i - 1]
1379 					+ bufferSize;
1380 			}
1381 		} else {
1382 			// Otherwise, we allocate each buffer individually.
1383 			for (uint32 i = 0; i < bufferCount; i++) {
1384 				if (fStack->AllocateChunk(&result->buffers[i],
1385 						&result->buffer_addrs[i], bufferSize) < B_OK) {
1386 					TRACE_ERROR("unable to allocate space for a buffer (size "
1387 						"%" B_PRIuSIZE ", count %" B_PRIu32 ")\n",
1388 						bufferSize, bufferCount);
1389 					FreeDescriptor(result);
1390 					return NULL;
1391 				}
1392 			}
1393 		}
1394 	} else {
1395 		result->buffers = NULL;
1396 		result->buffer_addrs = NULL;
1397 	}
1398 
1399 	// Initialize all other fields.
1400 	result->transfer = NULL;
1401 	result->trb_completion_code = 0;
1402 	result->trb_left = 0;
1403 	result->next = NULL;
1404 
1405 	TRACE("CreateDescriptor allocated %p, buffer_size %ld, buffer_count %" B_PRIu32 "\n",
1406 		result, result->buffer_size, result->buffer_count);
1407 
1408 	return result;
1409 }
1410 
1411 
1412 void
FreeDescriptor(xhci_td * descriptor)1413 XHCI::FreeDescriptor(xhci_td *descriptor)
1414 {
1415 	if (descriptor == NULL)
1416 		return;
1417 
1418 	const bool inKDL = debug_debugger_running();
1419 
1420 	if (descriptor->trbs != NULL) {
1421 		fStack->FreeChunk(descriptor->trbs, descriptor->trb_addr,
1422 			(descriptor->trb_count * sizeof(xhci_trb)));
1423 	}
1424 	if (descriptor->buffers != NULL) {
1425 		size_t totalSize = descriptor->buffer_size * descriptor->buffer_count;
1426 		if (totalSize < (32 * B_PAGE_SIZE)) {
1427 			// This was allocated as one contiguous buffer.
1428 			fStack->FreeChunk(descriptor->buffers[0], descriptor->buffer_addrs[0],
1429 				totalSize);
1430 		} else {
1431 			for (uint32 i = 0; i < descriptor->buffer_count; i++) {
1432 				if (descriptor->buffers[i] == NULL)
1433 					continue;
1434 				fStack->FreeChunk(descriptor->buffers[i], descriptor->buffer_addrs[i],
1435 					descriptor->buffer_size);
1436 			}
1437 		}
1438 
1439 		if (!inKDL) {
1440 			free(descriptor->buffers);
1441 		} else {
1442 			fStack->FreeChunk(descriptor->buffers, 0,
1443 				descriptor->buffer_count * (sizeof(void*) + sizeof(phys_addr_t)));
1444 		}
1445 	}
1446 
1447 	if (!inKDL)
1448 		free(descriptor);
1449 	else
1450 		fStack->FreeChunk(descriptor, 0, sizeof(xhci_td));
1451 }
1452 
1453 
1454 size_t
WriteDescriptor(xhci_td * descriptor,generic_io_vec * vector,size_t vectorCount,bool physical)1455 XHCI::WriteDescriptor(xhci_td *descriptor, generic_io_vec *vector, size_t vectorCount, bool physical)
1456 {
1457 	size_t written = 0;
1458 
1459 	size_t bufIdx = 0, bufUsed = 0;
1460 	for (size_t vecIdx = 0; vecIdx < vectorCount; vecIdx++) {
1461 		size_t length = vector[vecIdx].length;
1462 
1463 		while (length > 0 && bufIdx < descriptor->buffer_count) {
1464 			size_t toCopy = min_c(length, descriptor->buffer_size - bufUsed);
1465 			status_t status = generic_memcpy(
1466 				(generic_addr_t)descriptor->buffers[bufIdx] + bufUsed, false,
1467 				vector[vecIdx].base + (vector[vecIdx].length - length), physical,
1468 				toCopy);
1469 			ASSERT_ALWAYS(status == B_OK);
1470 
1471 			written += toCopy;
1472 			bufUsed += toCopy;
1473 			length -= toCopy;
1474 			if (bufUsed == descriptor->buffer_size) {
1475 				bufIdx++;
1476 				bufUsed = 0;
1477 			}
1478 		}
1479 	}
1480 
1481 	TRACE("wrote descriptor (%" B_PRIuSIZE " bytes)\n", written);
1482 	return written;
1483 }
1484 
1485 
1486 size_t
ReadDescriptor(xhci_td * descriptor,generic_io_vec * vector,size_t vectorCount,bool physical)1487 XHCI::ReadDescriptor(xhci_td *descriptor, generic_io_vec *vector, size_t vectorCount, bool physical)
1488 {
1489 	size_t read = 0;
1490 
1491 	size_t bufIdx = 0, bufUsed = 0;
1492 	for (size_t vecIdx = 0; vecIdx < vectorCount; vecIdx++) {
1493 		size_t length = vector[vecIdx].length;
1494 
1495 		while (length > 0 && bufIdx < descriptor->buffer_count) {
1496 			size_t toCopy = min_c(length, descriptor->buffer_size - bufUsed);
1497 			status_t status = generic_memcpy(
1498 				vector[vecIdx].base + (vector[vecIdx].length - length), physical,
1499 				(generic_addr_t)descriptor->buffers[bufIdx] + bufUsed, false, toCopy);
1500 			ASSERT_ALWAYS(status == B_OK);
1501 
1502 			read += toCopy;
1503 			bufUsed += toCopy;
1504 			length -= toCopy;
1505 			if (bufUsed == descriptor->buffer_size) {
1506 				bufIdx++;
1507 				bufUsed = 0;
1508 			}
1509 		}
1510 	}
1511 
1512 	TRACE("read descriptor (%" B_PRIuSIZE " bytes)\n", read);
1513 	return read;
1514 }
1515 
1516 
1517 Device *
AllocateDevice(Hub * parent,int8 hubAddress,uint8 hubPort,usb_speed speed)1518 XHCI::AllocateDevice(Hub *parent, int8 hubAddress, uint8 hubPort,
1519 	usb_speed speed)
1520 {
1521 	TRACE("AllocateDevice hubAddress %d hubPort %d speed %d\n", hubAddress,
1522 		hubPort, speed);
1523 
1524 	uint8 slot = XHCI_MAX_SLOTS;
1525 	status_t status = EnableSlot(&slot);
1526 	if (status != B_OK) {
1527 		TRACE_ERROR("failed to enable slot: %s\n", strerror(status));
1528 		return NULL;
1529 	}
1530 
1531 	if (slot == 0 || slot > fSlotCount) {
1532 		TRACE_ERROR("AllocateDevice: bad slot\n");
1533 		return NULL;
1534 	}
1535 
1536 	if (fDevices[slot].slot != 0) {
1537 		TRACE_ERROR("AllocateDevice: slot already used\n");
1538 		return NULL;
1539 	}
1540 
1541 	struct xhci_device *device = &fDevices[slot];
1542 	device->slot = slot;
1543 
1544 	device->input_ctx_area = fStack->AllocateArea((void **)&device->input_ctx,
1545 		&device->input_ctx_addr, sizeof(*device->input_ctx) << fContextSizeShift,
1546 		"XHCI input context");
1547 	if (device->input_ctx_area < B_OK) {
1548 		TRACE_ERROR("unable to create a input context area\n");
1549 		CleanupDevice(device);
1550 		return NULL;
1551 	}
1552 	if (fContextSizeShift == 1) {
1553 		// 64-byte contexts have to be page-aligned in order for
1554 		// _OffsetContextAddr to function properly.
1555 		ASSERT((((addr_t)device->input_ctx) % B_PAGE_SIZE) == 0);
1556 	}
1557 
1558 	memset(device->input_ctx, 0, sizeof(*device->input_ctx) << fContextSizeShift);
1559 	_WriteContext(&device->input_ctx->input.dropFlags, 0);
1560 	_WriteContext(&device->input_ctx->input.addFlags, 3);
1561 
1562 	uint8 rhPort = hubPort;
1563 	uint32 route = 0;
1564 	for (Device *hubDevice = parent; hubDevice != RootObject();
1565 			hubDevice = (Device *)hubDevice->Parent()) {
1566 		if (hubDevice->Parent() == RootObject())
1567 			break;
1568 
1569 		if (rhPort > 15)
1570 			rhPort = 15;
1571 		route = route << 4;
1572 		route |= rhPort;
1573 
1574 		rhPort = hubDevice->HubPort();
1575 	}
1576 
1577 	uint32 dwslot0 = SLOT_0_NUM_ENTRIES(1) | SLOT_0_ROUTE(route);
1578 
1579 	// Get speed of port, only if device connected to root hub port
1580 	// else we have to rely on value reported by the Hub Explore thread
1581 	if (route == 0) {
1582 		GetPortSpeed(hubPort - 1, &speed);
1583 		TRACE("speed updated %d\n", speed);
1584 	}
1585 
1586 	// add the speed
1587 	switch (speed) {
1588 	case USB_SPEED_LOWSPEED:
1589 		dwslot0 |= SLOT_0_SPEED(2);
1590 		break;
1591 	case USB_SPEED_FULLSPEED:
1592 		dwslot0 |= SLOT_0_SPEED(1);
1593 		break;
1594 	case USB_SPEED_HIGHSPEED:
1595 		dwslot0 |= SLOT_0_SPEED(3);
1596 		break;
1597 	case USB_SPEED_SUPERSPEED:
1598 		dwslot0 |= SLOT_0_SPEED(4);
1599 		break;
1600 	case USB_SPEED_SUPERSPEEDPLUS:
1601 		dwslot0 |= SLOT_0_SPEED(5);
1602 		break;
1603 	default:
1604 		TRACE_ERROR("unknown usb speed\n");
1605 		break;
1606 	}
1607 
1608 	_WriteContext(&device->input_ctx->slot.dwslot0, dwslot0);
1609 	// TODO enable power save
1610 	_WriteContext(&device->input_ctx->slot.dwslot1, SLOT_1_RH_PORT(rhPort));
1611 	uint32 dwslot2 = SLOT_2_IRQ_TARGET(0);
1612 
1613 	// If LS/FS device connected to non-root HS device
1614 	if (route != 0 && parent->Speed() == USB_SPEED_HIGHSPEED
1615 		&& (speed == USB_SPEED_LOWSPEED || speed == USB_SPEED_FULLSPEED)) {
1616 		struct xhci_device *parenthub = (struct xhci_device *)
1617 			parent->ControllerCookie();
1618 		dwslot2 |= SLOT_2_PORT_NUM(hubPort);
1619 		dwslot2 |= SLOT_2_TT_HUB_SLOT(parenthub->slot);
1620 	}
1621 
1622 	_WriteContext(&device->input_ctx->slot.dwslot2, dwslot2);
1623 
1624 	_WriteContext(&device->input_ctx->slot.dwslot3, SLOT_3_SLOT_STATE(0)
1625 		| SLOT_3_DEVICE_ADDRESS(0));
1626 
1627 	TRACE("slot 0x%08" B_PRIx32 " 0x%08" B_PRIx32 " 0x%08" B_PRIx32 " 0x%08" B_PRIx32
1628 		"\n", _ReadContext(&device->input_ctx->slot.dwslot0),
1629 		_ReadContext(&device->input_ctx->slot.dwslot1),
1630 		_ReadContext(&device->input_ctx->slot.dwslot2),
1631 		_ReadContext(&device->input_ctx->slot.dwslot3));
1632 
1633 	device->device_ctx_area = fStack->AllocateArea((void **)&device->device_ctx,
1634 		&device->device_ctx_addr, sizeof(*device->device_ctx) << fContextSizeShift,
1635 		"XHCI device context");
1636 	if (device->device_ctx_area < B_OK) {
1637 		TRACE_ERROR("unable to create a device context area\n");
1638 		CleanupDevice(device);
1639 		return NULL;
1640 	}
1641 	memset(device->device_ctx, 0, sizeof(*device->device_ctx) << fContextSizeShift);
1642 
1643 	device->trb_area = fStack->AllocateArea((void **)&device->trbs,
1644 		&device->trb_addr, sizeof(xhci_trb) * (XHCI_MAX_ENDPOINTS - 1)
1645 			* XHCI_ENDPOINT_RING_SIZE, "XHCI endpoint trbs");
1646 	if (device->trb_area < B_OK) {
1647 		TRACE_ERROR("unable to create a device trbs area\n");
1648 		CleanupDevice(device);
1649 		return NULL;
1650 	}
1651 
1652 	// set up slot pointer to device context
1653 	fDcba->baseAddress[slot] = device->device_ctx_addr;
1654 
1655 	size_t maxPacketSize;
1656 	switch (speed) {
1657 	case USB_SPEED_LOWSPEED:
1658 	case USB_SPEED_FULLSPEED:
1659 		maxPacketSize = 8;
1660 		break;
1661 	case USB_SPEED_HIGHSPEED:
1662 		maxPacketSize = 64;
1663 		break;
1664 	default:
1665 		maxPacketSize = 512;
1666 		break;
1667 	}
1668 
1669 	xhci_endpoint* endpoint0 = &device->endpoints[0];
1670 	mutex_init(&endpoint0->lock, "xhci endpoint lock");
1671 	endpoint0->device = device;
1672 	endpoint0->id = 0;
1673 	endpoint0->status = 0;
1674 	endpoint0->td_head = NULL;
1675 	endpoint0->used = 0;
1676 	endpoint0->next = 0;
1677 	endpoint0->trbs = device->trbs;
1678 	endpoint0->trb_addr = device->trb_addr;
1679 
1680 	// configure the Control endpoint 0
1681 	if (ConfigureEndpoint(endpoint0, slot, 0, USB_OBJECT_CONTROL_PIPE, false,
1682 			0, maxPacketSize, speed, 0, 0) != B_OK) {
1683 		TRACE_ERROR("unable to configure default control endpoint\n");
1684 		CleanupDevice(device);
1685 		return NULL;
1686 	}
1687 
1688 	// device should get to addressed state (bsr = 0)
1689 	status = SetAddress(device->input_ctx_addr, false, slot);
1690 	if (status != B_OK) {
1691 		TRACE_ERROR("unable to set address: %s\n", strerror(status));
1692 		CleanupDevice(device);
1693 		return NULL;
1694 	}
1695 
1696 	device->address = SLOT_3_DEVICE_ADDRESS_GET(_ReadContext(
1697 		&device->device_ctx->slot.dwslot3));
1698 
1699 	TRACE("device: address 0x%x state 0x%08" B_PRIx32 "\n", device->address,
1700 		SLOT_3_SLOT_STATE_GET(_ReadContext(
1701 			&device->device_ctx->slot.dwslot3)));
1702 	TRACE("endpoint0 state 0x%08" B_PRIx32 "\n",
1703 		ENDPOINT_0_STATE_GET(_ReadContext(
1704 			&device->device_ctx->endpoints[0].dwendpoint0)));
1705 
1706 	// Wait a bit for the device to complete addressing
1707 	snooze(USB_DELAY_SET_ADDRESS);
1708 
1709 	// Create a temporary pipe with the new address
1710 	ControlPipe pipe(parent);
1711 	pipe.SetControllerCookie(endpoint0);
1712 	pipe.InitCommon(device->address + 1, 0, speed, Pipe::Default, maxPacketSize, 0,
1713 		hubAddress, hubPort);
1714 
1715 	// Get the device descriptor
1716 	// Just retrieve the first 8 bytes of the descriptor -> minimum supported
1717 	// size of any device. It is enough because it includes the device type.
1718 
1719 	size_t actualLength = 0;
1720 	usb_device_descriptor deviceDescriptor;
1721 
1722 	TRACE("getting the device descriptor\n");
1723 	status = pipe.SendRequest(
1724 		USB_REQTYPE_DEVICE_IN | USB_REQTYPE_STANDARD,		// type
1725 		USB_REQUEST_GET_DESCRIPTOR,							// request
1726 		USB_DESCRIPTOR_DEVICE << 8,							// value
1727 		0,													// index
1728 		8,													// length
1729 		(void *)&deviceDescriptor,							// buffer
1730 		8,													// buffer length
1731 		&actualLength);										// actual length
1732 
1733 	if (actualLength != 8) {
1734 		TRACE_ERROR("failed to get the device descriptor: %s\n",
1735 			strerror(status));
1736 		CleanupDevice(device);
1737 		return NULL;
1738 	}
1739 
1740 	TRACE("device_class: %d device_subclass %d device_protocol %d\n",
1741 		deviceDescriptor.device_class, deviceDescriptor.device_subclass,
1742 		deviceDescriptor.device_protocol);
1743 
1744 	if (speed == USB_SPEED_FULLSPEED && deviceDescriptor.max_packet_size_0 != 8) {
1745 		TRACE("Full speed device with different max packet size for Endpoint 0\n");
1746 		uint32 dwendpoint1 = _ReadContext(
1747 			&device->input_ctx->endpoints[0].dwendpoint1);
1748 		dwendpoint1 &= ~ENDPOINT_1_MAXPACKETSIZE(0xffff);
1749 		dwendpoint1 |= ENDPOINT_1_MAXPACKETSIZE(
1750 			deviceDescriptor.max_packet_size_0);
1751 		_WriteContext(&device->input_ctx->endpoints[0].dwendpoint1,
1752 			dwendpoint1);
1753 		_WriteContext(&device->input_ctx->input.dropFlags, 0);
1754 		_WriteContext(&device->input_ctx->input.addFlags, (1 << 1));
1755 		EvaluateContext(device->input_ctx_addr, device->slot);
1756 	}
1757 
1758 	Device *deviceObject = NULL;
1759 	if (deviceDescriptor.device_class == 0x09) {
1760 		TRACE("creating new Hub\n");
1761 		TRACE("getting the hub descriptor\n");
1762 		size_t actualLength = 0;
1763 		usb_hub_descriptor hubDescriptor;
1764 		status = pipe.SendRequest(
1765 			USB_REQTYPE_DEVICE_IN | USB_REQTYPE_CLASS,			// type
1766 			USB_REQUEST_GET_DESCRIPTOR,							// request
1767 			USB_DESCRIPTOR_HUB << 8,							// value
1768 			0,													// index
1769 			sizeof(usb_hub_descriptor),							// length
1770 			(void *)&hubDescriptor,								// buffer
1771 			sizeof(usb_hub_descriptor),							// buffer length
1772 			&actualLength);
1773 
1774 		if (actualLength != sizeof(usb_hub_descriptor)) {
1775 			TRACE_ERROR("error while getting the hub descriptor: %s\n",
1776 				strerror(status));
1777 			CleanupDevice(device);
1778 			return NULL;
1779 		}
1780 
1781 		uint32 dwslot0 = _ReadContext(&device->input_ctx->slot.dwslot0);
1782 		dwslot0 |= SLOT_0_HUB_BIT;
1783 		_WriteContext(&device->input_ctx->slot.dwslot0, dwslot0);
1784 		uint32 dwslot1 = _ReadContext(&device->input_ctx->slot.dwslot1);
1785 		dwslot1 |= SLOT_1_NUM_PORTS(hubDescriptor.num_ports);
1786 		_WriteContext(&device->input_ctx->slot.dwslot1, dwslot1);
1787 		if (speed == USB_SPEED_HIGHSPEED) {
1788 			uint32 dwslot2 = _ReadContext(&device->input_ctx->slot.dwslot2);
1789 			dwslot2 |= SLOT_2_TT_TIME(HUB_TTT_GET(hubDescriptor.characteristics));
1790 			_WriteContext(&device->input_ctx->slot.dwslot2, dwslot2);
1791 		}
1792 
1793 		deviceObject = new(std::nothrow) Hub(parent, hubAddress, hubPort,
1794 			deviceDescriptor, device->address + 1, speed, false, device);
1795 	} else {
1796 		TRACE("creating new device\n");
1797 		deviceObject = new(std::nothrow) Device(parent, hubAddress, hubPort,
1798 			deviceDescriptor, device->address + 1, speed, false, device);
1799 	}
1800 	if (deviceObject == NULL || deviceObject->InitCheck() != B_OK) {
1801 		if (deviceObject == NULL) {
1802 			TRACE_ERROR("no memory to allocate device\n");
1803 		} else {
1804 			TRACE_ERROR("device object failed to initialize\n");
1805 		}
1806 		CleanupDevice(device);
1807 		return NULL;
1808 	}
1809 
1810 	// We don't want to disable the default endpoint, naturally, which would
1811 	// otherwise happen when this Pipe object is destroyed.
1812 	pipe.SetControllerCookie(NULL);
1813 
1814 	deviceObject->RegisterNode();
1815 
1816 	TRACE("AllocateDevice() port %d slot %d\n", hubPort, slot);
1817 	return deviceObject;
1818 }
1819 
1820 
1821 void
FreeDevice(Device * usbDevice)1822 XHCI::FreeDevice(Device *usbDevice)
1823 {
1824 	xhci_device* device = (xhci_device*)usbDevice->ControllerCookie();
1825 	TRACE("FreeDevice() slot %d\n", device->slot);
1826 
1827 	// Delete the device first, so it cleans up its pipes and tells us
1828 	// what we need to destroy before we tear down our internal state.
1829 	delete usbDevice;
1830 
1831 	CleanupDevice(device);
1832 }
1833 
1834 
1835 void
CleanupDevice(xhci_device * device)1836 XHCI::CleanupDevice(xhci_device *device)
1837 {
1838 	if (device->slot != 0) {
1839 		DisableSlot(device->slot);
1840 		fDcba->baseAddress[device->slot] = 0;
1841 	}
1842 
1843 	if (device->trb_addr != 0)
1844 		delete_area(device->trb_area);
1845 	if (device->input_ctx_addr != 0)
1846 		delete_area(device->input_ctx_area);
1847 	if (device->device_ctx_addr != 0)
1848 		delete_area(device->device_ctx_area);
1849 
1850 	memset(device, 0, sizeof(xhci_device));
1851 }
1852 
1853 
1854 uint8
_GetEndpointState(xhci_endpoint * endpoint)1855 XHCI::_GetEndpointState(xhci_endpoint* endpoint)
1856 {
1857 	struct xhci_device_ctx* device_ctx = endpoint->device->device_ctx;
1858 	return ENDPOINT_0_STATE_GET(
1859 		_ReadContext(&device_ctx->endpoints[endpoint->id].dwendpoint0));
1860 }
1861 
1862 
1863 status_t
_InsertEndpointForPipe(Pipe * pipe)1864 XHCI::_InsertEndpointForPipe(Pipe *pipe)
1865 {
1866 	TRACE("insert endpoint for pipe %p (%d)\n", pipe, pipe->EndpointAddress());
1867 
1868 	if (pipe->ControllerCookie() != NULL
1869 			|| pipe->Parent()->Type() != USB_OBJECT_DEVICE) {
1870 		// default pipe is already referenced
1871 		return B_OK;
1872 	}
1873 
1874 	Device* usbDevice = (Device *)pipe->Parent();
1875 	if (usbDevice->Parent() == RootObject()) {
1876 		// root hub needs no initialization
1877 		return B_OK;
1878 	}
1879 
1880 	struct xhci_device *device = (struct xhci_device *)
1881 		usbDevice->ControllerCookie();
1882 	if (device == NULL) {
1883 		panic("device is NULL\n");
1884 		return B_NO_INIT;
1885 	}
1886 
1887 	const uint8 id = (2 * pipe->EndpointAddress()
1888 		+ (pipe->Direction() != Pipe::Out ? 1 : 0)) - 1;
1889 	if (id >= XHCI_MAX_ENDPOINTS - 1)
1890 		return B_BAD_VALUE;
1891 
1892 	if (id > 0) {
1893 		uint32 devicedwslot0 = _ReadContext(&device->device_ctx->slot.dwslot0);
1894 		if (SLOT_0_NUM_ENTRIES_GET(devicedwslot0) == 1) {
1895 			uint32 inputdwslot0 = _ReadContext(&device->input_ctx->slot.dwslot0);
1896 			inputdwslot0 &= ~(SLOT_0_NUM_ENTRIES(0x1f));
1897 			inputdwslot0 |= SLOT_0_NUM_ENTRIES(XHCI_MAX_ENDPOINTS - 1);
1898 			_WriteContext(&device->input_ctx->slot.dwslot0, inputdwslot0);
1899 			EvaluateContext(device->input_ctx_addr, device->slot);
1900 		}
1901 
1902 		xhci_endpoint* endpoint = &device->endpoints[id];
1903 		mutex_init(&endpoint->lock, "xhci endpoint lock");
1904 		MutexLocker endpointLocker(endpoint->lock);
1905 
1906 		endpoint->device = device;
1907 		endpoint->id = id;
1908 		endpoint->td_head = NULL;
1909 		endpoint->used = 0;
1910 		endpoint->next = 0;
1911 
1912 		endpoint->trbs = device->trbs + id * XHCI_ENDPOINT_RING_SIZE;
1913 		endpoint->trb_addr = device->trb_addr
1914 			+ id * XHCI_ENDPOINT_RING_SIZE * sizeof(xhci_trb);
1915 		memset(endpoint->trbs, 0,
1916 			sizeof(xhci_trb) * XHCI_ENDPOINT_RING_SIZE);
1917 
1918 		TRACE("insert endpoint for pipe: trbs, device %p endpoint %p\n",
1919 			device->trbs, endpoint->trbs);
1920 		TRACE("insert endpoint for pipe: trb_addr, device 0x%" B_PRIxPHYSADDR
1921 			" endpoint 0x%" B_PRIxPHYSADDR "\n", device->trb_addr,
1922 			endpoint->trb_addr);
1923 
1924 		const uint8 endpointNum = id + 1;
1925 
1926 		status_t status = ConfigureEndpoint(endpoint, device->slot, id, pipe->Type(),
1927 			pipe->Direction() == Pipe::In, pipe->Interval(), pipe->MaxPacketSize(),
1928 			usbDevice->Speed(), pipe->MaxBurst(), pipe->BytesPerInterval());
1929 		if (status != B_OK) {
1930 			TRACE_ERROR("unable to configure endpoint: %s\n", strerror(status));
1931 			return status;
1932 		}
1933 
1934 		_WriteContext(&device->input_ctx->input.dropFlags, 0);
1935 		_WriteContext(&device->input_ctx->input.addFlags,
1936 			(1 << endpointNum) | (1 << 0));
1937 
1938 		ConfigureEndpoint(device->input_ctx_addr, false, device->slot);
1939 
1940 		TRACE("device: address 0x%x state 0x%08" B_PRIx32 "\n",
1941 			device->address, SLOT_3_SLOT_STATE_GET(_ReadContext(
1942 				&device->device_ctx->slot.dwslot3)));
1943 		TRACE("endpoint[0] state 0x%08" B_PRIx32 "\n",
1944 			ENDPOINT_0_STATE_GET(_ReadContext(
1945 				&device->device_ctx->endpoints[0].dwendpoint0)));
1946 		TRACE("endpoint[%d] state 0x%08" B_PRIx32 "\n", id,
1947 			ENDPOINT_0_STATE_GET(_ReadContext(
1948 				&device->device_ctx->endpoints[id].dwendpoint0)));
1949 	}
1950 	pipe->SetControllerCookie(&device->endpoints[id]);
1951 
1952 	return B_OK;
1953 }
1954 
1955 
1956 status_t
_RemoveEndpointForPipe(Pipe * pipe)1957 XHCI::_RemoveEndpointForPipe(Pipe *pipe)
1958 {
1959 	TRACE("remove endpoint for pipe %p (%d)\n", pipe, pipe->EndpointAddress());
1960 
1961 	if (pipe->Parent()->Type() != USB_OBJECT_DEVICE)
1962 		return B_OK;
1963 	Device* usbDevice = (Device *)pipe->Parent();
1964 	if (usbDevice->Parent() == RootObject())
1965 		return B_BAD_VALUE;
1966 
1967 	xhci_endpoint *endpoint = (xhci_endpoint *)pipe->ControllerCookie();
1968 	if (endpoint == NULL || endpoint->trbs == NULL)
1969 		return B_NO_INIT;
1970 
1971 	pipe->SetControllerCookie(NULL);
1972 
1973 	if (endpoint->id > 0) {
1974 		xhci_device *device = endpoint->device;
1975 		uint8 epNumber = endpoint->id + 1;
1976 		StopEndpoint(true, endpoint);
1977 
1978 		mutex_lock(&endpoint->lock);
1979 
1980 		// See comment in CancelQueuedTransfers.
1981 		xhci_td* td;
1982 		while ((td = endpoint->td_head) != NULL) {
1983 			endpoint->td_head = endpoint->td_head->next;
1984 			FreeDescriptor(td);
1985 		}
1986 
1987 		mutex_destroy(&endpoint->lock);
1988 		memset(endpoint, 0, sizeof(xhci_endpoint));
1989 
1990 		_WriteContext(&device->input_ctx->input.dropFlags, (1 << epNumber));
1991 		_WriteContext(&device->input_ctx->input.addFlags, (1 << 0));
1992 
1993 		// The Deconfigure bit in the Configure Endpoint command indicates
1994 		// that *all* endpoints are to be deconfigured, and not just the ones
1995 		// specified in the context flags. (XHCI 1.2 § 4.6.6 p115.)
1996 		ConfigureEndpoint(device->input_ctx_addr, false, device->slot);
1997 	}
1998 
1999 	return B_OK;
2000 }
2001 
2002 
2003 status_t
_LinkDescriptorForPipe(xhci_td * descriptor,xhci_endpoint * endpoint)2004 XHCI::_LinkDescriptorForPipe(xhci_td *descriptor, xhci_endpoint *endpoint)
2005 {
2006 	TRACE("link descriptor for pipe\n");
2007 
2008 	// Use mutex_trylock first, in case we are in KDL.
2009 	MutexLocker endpointLocker(&endpoint->lock, mutex_trylock(&endpoint->lock) == B_OK);
2010 
2011 	// "used" refers to the number of currently linked TDs, not the number of
2012 	// used TRBs on the ring (we use 2 TRBs on the ring per transfer.)
2013 	// Furthermore, we have to leave an empty item between the head and tail.
2014 	if (endpoint->used >= (XHCI_MAX_TRANSFERS - 1)) {
2015 		TRACE_ERROR("link descriptor for pipe: max transfers count exceeded\n");
2016 		return B_BAD_VALUE;
2017 	}
2018 
2019 	// We do not support queuing other transfers in tandem with a fragmented one.
2020 	if (endpoint->td_head != NULL && endpoint->td_head->transfer != NULL
2021 			&& endpoint->td_head->transfer->IsFragmented()) {
2022 		TRACE_ERROR("cannot submit transfer: a fragmented transfer is queued\n");
2023 		return B_DEV_RESOURCE_CONFLICT;
2024 	}
2025 
2026 	endpoint->used++;
2027 	descriptor->next = endpoint->td_head;
2028 	endpoint->td_head = descriptor;
2029 
2030 	uint32 link = endpoint->next, eventdata = link + 1, next = eventdata + 1;
2031 	if (eventdata == XHCI_ENDPOINT_RING_SIZE || next == XHCI_ENDPOINT_RING_SIZE) {
2032 		// If it's "next" not "eventdata" that got us here, we will be leaving
2033 		// one TRB at the end of the ring unused.
2034 		eventdata = 0;
2035 		next = 1;
2036 	}
2037 
2038 	TRACE("link descriptor for pipe: link %d, next %d\n", link, next);
2039 
2040 	// Add a Link TRB to the end of the descriptor.
2041 	phys_addr_t addr = endpoint->trb_addr + (eventdata * sizeof(xhci_trb));
2042 	descriptor->trbs[descriptor->trb_used].address = addr;
2043 	descriptor->trbs[descriptor->trb_used].status = TRB_2_IRQ(0);
2044 	descriptor->trbs[descriptor->trb_used].flags = TRB_3_TYPE(TRB_TYPE_LINK)
2045 		| TRB_3_CHAIN_BIT | TRB_3_CYCLE_BIT;
2046 		// It is specified that (XHCI 1.2 § 4.12.3 Note 2 p251) if the TRB
2047 		// following one with the ENT bit set is a Link TRB, the Link TRB
2048 		// shall be evaluated *and* the subsequent TRB shall be. Thus a
2049 		// TRB_3_ENT_BIT is unnecessary here; and from testing seems to
2050 		// break all transfers on a (very) small number of controllers.
2051 
2052 #if !B_HOST_IS_LENDIAN
2053 	// Convert endianness.
2054 	for (uint32 i = 0; i <= descriptor->trb_used; i++) {
2055 		descriptor->trbs[i].address =
2056 			B_HOST_TO_LENDIAN_INT64(descriptor->trbs[i].address);
2057 		descriptor->trbs[i].status =
2058 			B_HOST_TO_LENDIAN_INT32(descriptor->trbs[i].status);
2059 		descriptor->trbs[i].flags =
2060 			B_HOST_TO_LENDIAN_INT32(descriptor->trbs[i].flags);
2061 	}
2062 #endif
2063 
2064 	// Link the descriptor.
2065 	endpoint->trbs[link].address =
2066 		B_HOST_TO_LENDIAN_INT64(descriptor->trb_addr);
2067 	endpoint->trbs[link].status =
2068 		B_HOST_TO_LENDIAN_INT32(TRB_2_IRQ(0));
2069 	endpoint->trbs[link].flags =
2070 		B_HOST_TO_LENDIAN_INT32(TRB_3_TYPE(TRB_TYPE_LINK));
2071 
2072 	// Set up the Event Data TRB (XHCI 1.2 § 4.11.5.2 p230.)
2073 	//
2074 	// We do this on the main ring for two reasons: first, to avoid a small
2075 	// potential race between the interrupt and the controller evaluating
2076 	// the link TRB to get back onto the ring; and second, because many
2077 	// controllers throw errors if the target of a Link TRB is not valid
2078 	// (i.e. does not have its Cycle Bit set.)
2079 	//
2080 	// We also set the "address" field, which the controller will copy
2081 	// verbatim into the TRB it posts to the event ring, to be the last
2082 	// "real" TRB in the TD; this will allow us to determine what transfer
2083 	// the resulting Transfer Event TRB refers to.
2084 	endpoint->trbs[eventdata].address =
2085 		B_HOST_TO_LENDIAN_INT64(descriptor->trb_addr
2086 			+ (descriptor->trb_used - 1) * sizeof(xhci_trb));
2087 	endpoint->trbs[eventdata].status =
2088 		B_HOST_TO_LENDIAN_INT32(TRB_2_IRQ(0));
2089 	endpoint->trbs[eventdata].flags =
2090 		B_HOST_TO_LENDIAN_INT32(TRB_3_TYPE(TRB_TYPE_EVENT_DATA)
2091 			| TRB_3_IOC_BIT | TRB_3_CYCLE_BIT);
2092 
2093 	endpoint->trbs[next].address = 0;
2094 	endpoint->trbs[next].status = 0;
2095 	endpoint->trbs[next].flags = 0;
2096 
2097 	memory_write_barrier();
2098 
2099 	// Everything is ready, so write the cycle bit.
2100 	endpoint->trbs[link].flags |= B_HOST_TO_LENDIAN_INT32(TRB_3_CYCLE_BIT);
2101 
2102 	TRACE("_LinkDescriptorForPipe pLink %p phys 0x%" B_PRIxPHYSADDR
2103 		" 0x%" B_PRIxPHYSADDR " 0x%08" B_PRIx32 "\n", &endpoint->trbs[link],
2104 		endpoint->trb_addr + link * sizeof(struct xhci_trb),
2105 		endpoint->trbs[link].address,
2106 		B_LENDIAN_TO_HOST_INT32(endpoint->trbs[link].flags));
2107 
2108 	endpoint->next = next;
2109 	endpointLocker.Unlock();
2110 
2111 	TRACE("Endpoint status 0x%08" B_PRIx32 " 0x%08" B_PRIx32 " 0x%016" B_PRIx64 "\n",
2112 		_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].dwendpoint0),
2113 		_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].dwendpoint1),
2114 		_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].qwendpoint2));
2115 
2116 	Ring(endpoint->device->slot, endpoint->id + 1);
2117 
2118 	TRACE("Endpoint status 0x%08" B_PRIx32 " 0x%08" B_PRIx32 " 0x%016" B_PRIx64 "\n",
2119 		_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].dwendpoint0),
2120 		_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].dwendpoint1),
2121 		_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].qwendpoint2));
2122 
2123 	return B_OK;
2124 }
2125 
2126 
2127 status_t
_UnlinkDescriptorForPipe(xhci_td * descriptor,xhci_endpoint * endpoint)2128 XHCI::_UnlinkDescriptorForPipe(xhci_td *descriptor, xhci_endpoint *endpoint)
2129 {
2130 	TRACE("unlink descriptor for pipe\n");
2131 	// We presume that the caller has already locked or owns the endpoint.
2132 
2133 	endpoint->used--;
2134 	if (descriptor == endpoint->td_head) {
2135 		endpoint->td_head = descriptor->next;
2136 		descriptor->next = NULL;
2137 		return B_OK;
2138 	} else {
2139 		for (xhci_td *td = endpoint->td_head; td->next != NULL; td = td->next) {
2140 			if (td->next == descriptor) {
2141 				td->next = descriptor->next;
2142 				descriptor->next = NULL;
2143 				return B_OK;
2144 			}
2145 		}
2146 	}
2147 
2148 	endpoint->used++;
2149 	return B_ERROR;
2150 }
2151 
2152 
2153 status_t
ConfigureEndpoint(xhci_endpoint * ep,uint8 slot,uint8 number,uint8 type,bool directionIn,uint16 interval,uint16 maxPacketSize,usb_speed speed,uint8 maxBurst,uint16 bytesPerInterval)2154 XHCI::ConfigureEndpoint(xhci_endpoint* ep, uint8 slot, uint8 number, uint8 type,
2155 	bool directionIn, uint16 interval, uint16 maxPacketSize, usb_speed speed,
2156 	uint8 maxBurst, uint16 bytesPerInterval)
2157 {
2158 	struct xhci_device* device = &fDevices[slot];
2159 
2160 	uint32 dwendpoint0 = 0;
2161 	uint32 dwendpoint1 = 0;
2162 	uint64 qwendpoint2 = 0;
2163 	uint32 dwendpoint4 = 0;
2164 
2165 	// Compute and assign the endpoint type. (XHCI 1.2 § 6.2.3 Table 6-9 p452.)
2166 	uint8 xhciType = 4;
2167 	if ((type & USB_OBJECT_INTERRUPT_PIPE) != 0)
2168 		xhciType = 3;
2169 	if ((type & USB_OBJECT_BULK_PIPE) != 0)
2170 		xhciType = 2;
2171 	if ((type & USB_OBJECT_ISO_PIPE) != 0)
2172 		xhciType = 1;
2173 	xhciType |= directionIn ? (1 << 2) : 0;
2174 	dwendpoint1 |= ENDPOINT_1_EPTYPE(xhciType);
2175 
2176 	// Compute and assign interval. (XHCI 1.2 § 6.2.3.6 p456.)
2177 	uint16 calcInterval;
2178 	if ((type & USB_OBJECT_BULK_PIPE) != 0
2179 			|| (type & USB_OBJECT_CONTROL_PIPE) != 0) {
2180 		// Bulk and Control endpoints never issue NAKs.
2181 		calcInterval = 0;
2182 	} else {
2183 		switch (speed) {
2184 		case USB_SPEED_FULLSPEED:
2185 			if ((type & USB_OBJECT_ISO_PIPE) != 0) {
2186 				// Convert 1-16 into 3-18.
2187 				calcInterval = min_c(max_c(interval, 1), 16) + 2;
2188 				break;
2189 			}
2190 
2191 			// fall through
2192 		case USB_SPEED_LOWSPEED: {
2193 			// Convert 1ms-255ms into 3-10.
2194 
2195 			// Find the index of the highest set bit in "interval".
2196 			uint32 temp = min_c(max_c(interval, 1), 255);
2197 			for (calcInterval = 0; temp != 1; calcInterval++)
2198 				temp = temp >> 1;
2199 			calcInterval += 3;
2200 			break;
2201 		}
2202 
2203 		case USB_SPEED_HIGHSPEED:
2204 		case USB_SPEED_SUPERSPEED:
2205 		case USB_SPEED_SUPERSPEEDPLUS:
2206 		default:
2207 			// Convert 1-16 into 0-15.
2208 			calcInterval = min_c(max_c(interval, 1), 16) - 1;
2209 			break;
2210 		}
2211 	}
2212 	dwendpoint0 |= ENDPOINT_0_INTERVAL(calcInterval);
2213 
2214 	// For non-isochronous endpoints, we want the controller to retry failed
2215 	// transfers, if possible. (XHCI 1.2 § 4.10.2.3 p197.)
2216 	if ((type & USB_OBJECT_ISO_PIPE) == 0)
2217 		dwendpoint1 |= ENDPOINT_1_CERR(3);
2218 
2219 	// Assign maximum burst size. For USB3 devices this is passed in; for
2220 	// all other devices we compute it. (XHCI 1.2 § 4.8.2 p161.)
2221 	if (speed == USB_SPEED_HIGHSPEED && (type & (USB_OBJECT_INTERRUPT_PIPE
2222 			| USB_OBJECT_ISO_PIPE)) != 0) {
2223 		maxBurst = (maxPacketSize & 0x1800) >> 11;
2224 	} else if (speed < USB_SPEED_SUPERSPEED) {
2225 		maxBurst = 0;
2226 	}
2227 	dwendpoint1 |= ENDPOINT_1_MAXBURST(maxBurst);
2228 
2229 	// Assign maximum packet size, set the ring address, and set the
2230 	// "Dequeue Cycle State" bit. (XHCI 1.2 § 6.2.3 Table 6-10 p453.)
2231 	dwendpoint1 |= ENDPOINT_1_MAXPACKETSIZE(maxPacketSize);
2232 	qwendpoint2 |= ENDPOINT_2_DCS_BIT | ep->trb_addr;
2233 
2234 	// The Max Burst Payload is the number of bytes moved by a
2235 	// maximum sized burst. (XHCI 1.2 § 4.11.7.1 p236.)
2236 	ep->max_burst_payload = (maxBurst + 1) * maxPacketSize;
2237 	if (ep->max_burst_payload == 0) {
2238 		TRACE_ERROR("ConfigureEndpoint() failed invalid max_burst_payload\n");
2239 		return B_BAD_VALUE;
2240 	}
2241 
2242 	// Assign average TRB length.
2243 	if ((type & USB_OBJECT_CONTROL_PIPE) != 0) {
2244 		// Control pipes are a special case, as they rarely have
2245 		// outbound transfers of any substantial size.
2246 		dwendpoint4 |= ENDPOINT_4_AVGTRBLENGTH(8);
2247 	} else if ((type & USB_OBJECT_ISO_PIPE) != 0) {
2248 		// Isochronous pipes are another special case: the TRB size will be
2249 		// one packet (which is normally smaller than the max packet size,
2250 		// but we don't know what it is here.)
2251 		dwendpoint4 |= ENDPOINT_4_AVGTRBLENGTH(maxPacketSize);
2252 	} else {
2253 		// Under all other circumstances, we put max_burst_payload in a TRB.
2254 		dwendpoint4 |= ENDPOINT_4_AVGTRBLENGTH(ep->max_burst_payload);
2255 	}
2256 
2257 	// Assign maximum ESIT payload. (XHCI 1.2 § 4.14.2 p259.)
2258 	if ((type & (USB_OBJECT_INTERRUPT_PIPE | USB_OBJECT_ISO_PIPE)) != 0) {
2259 		// TODO: For SuperSpeedPlus endpoints, there is yet another descriptor
2260 		// for isochronous endpoints that specifies the maximum ESIT payload.
2261 		// We don't fetch this yet, so just fall back to the USB2 computation
2262 		// method if bytesPerInterval is 0.
2263 		if (speed >= USB_SPEED_SUPERSPEED && bytesPerInterval != 0)
2264 			dwendpoint4 |= ENDPOINT_4_MAXESITPAYLOAD(bytesPerInterval);
2265 		else if (speed >= USB_SPEED_HIGHSPEED)
2266 			dwendpoint4 |= ENDPOINT_4_MAXESITPAYLOAD((maxBurst + 1) * maxPacketSize);
2267 	}
2268 
2269 	_WriteContext(&device->input_ctx->endpoints[number].dwendpoint0,
2270 		dwendpoint0);
2271 	_WriteContext(&device->input_ctx->endpoints[number].dwendpoint1,
2272 		dwendpoint1);
2273 	_WriteContext(&device->input_ctx->endpoints[number].qwendpoint2,
2274 		qwendpoint2);
2275 	_WriteContext(&device->input_ctx->endpoints[number].dwendpoint4,
2276 		dwendpoint4);
2277 
2278 	TRACE("endpoint 0x%" B_PRIx32 " 0x%" B_PRIx32 " 0x%" B_PRIx64 " 0x%"
2279 		B_PRIx32 "\n",
2280 		_ReadContext(&device->input_ctx->endpoints[number].dwendpoint0),
2281 		_ReadContext(&device->input_ctx->endpoints[number].dwendpoint1),
2282 		_ReadContext(&device->input_ctx->endpoints[number].qwendpoint2),
2283 		_ReadContext(&device->input_ctx->endpoints[number].dwendpoint4));
2284 
2285 	return B_OK;
2286 }
2287 
2288 
2289 status_t
GetPortSpeed(uint8 index,usb_speed * speed)2290 XHCI::GetPortSpeed(uint8 index, usb_speed* speed)
2291 {
2292 	if (index >= fPortCount)
2293 		return B_BAD_INDEX;
2294 
2295 	uint32 portStatus = ReadOpReg(XHCI_PORTSC(index));
2296 
2297 	switch (PS_SPEED_GET(portStatus)) {
2298 	case 2:
2299 		*speed = USB_SPEED_LOWSPEED;
2300 		break;
2301 	case 1:
2302 		*speed = USB_SPEED_FULLSPEED;
2303 		break;
2304 	case 3:
2305 		*speed = USB_SPEED_HIGHSPEED;
2306 		break;
2307 	case 4:
2308 		*speed = USB_SPEED_SUPERSPEED;
2309 		break;
2310 	case 5:
2311 		*speed = USB_SPEED_SUPERSPEEDPLUS;
2312 		break;
2313 	default:
2314 		TRACE_ALWAYS("nonstandard port speed %" B_PRId32 ", assuming SuperSpeed\n",
2315 			PS_SPEED_GET(portStatus));
2316 		*speed = USB_SPEED_SUPERSPEED;
2317 		break;
2318 	}
2319 
2320 	return B_OK;
2321 }
2322 
2323 
2324 status_t
GetPortStatus(uint8 index,usb_port_status * status)2325 XHCI::GetPortStatus(uint8 index, usb_port_status* status)
2326 {
2327 	if (index >= fPortCount)
2328 		return B_BAD_INDEX;
2329 
2330 	status->status = status->change = 0;
2331 	uint32 portStatus = ReadOpReg(XHCI_PORTSC(index));
2332 	TRACE("port %" B_PRId8 " status=0x%08" B_PRIx32 "\n", index, portStatus);
2333 
2334 	// build the status
2335 	switch (PS_SPEED_GET(portStatus)) {
2336 	case 3:
2337 		status->status |= PORT_STATUS_HIGH_SPEED;
2338 		break;
2339 	case 2:
2340 		status->status |= PORT_STATUS_LOW_SPEED;
2341 		break;
2342 	default:
2343 		break;
2344 	}
2345 
2346 	if (portStatus & PS_CCS)
2347 		status->status |= PORT_STATUS_CONNECTION;
2348 	if (portStatus & PS_PED)
2349 		status->status |= PORT_STATUS_ENABLE;
2350 	if (portStatus & PS_OCA)
2351 		status->status |= PORT_STATUS_OVER_CURRENT;
2352 	if (portStatus & PS_PR)
2353 		status->status |= PORT_STATUS_RESET;
2354 	if (portStatus & PS_PP) {
2355 		if (fPortSpeeds[index] >= USB_SPEED_SUPERSPEED)
2356 			status->status |= PORT_STATUS_SS_POWER;
2357 		else
2358 			status->status |= PORT_STATUS_POWER;
2359 	}
2360 	if (fPortSpeeds[index] >= USB_SPEED_SUPERSPEED)
2361 		status->status |= portStatus & PS_PLS_MASK;
2362 
2363 	// build the change
2364 	if (portStatus & PS_CSC)
2365 		status->change |= PORT_STATUS_CONNECTION;
2366 	if (portStatus & PS_PEC)
2367 		status->change |= PORT_STATUS_ENABLE;
2368 	if (portStatus & PS_OCC)
2369 		status->change |= PORT_STATUS_OVER_CURRENT;
2370 	if (portStatus & PS_PRC)
2371 		status->change |= PORT_STATUS_RESET;
2372 
2373 	if (fPortSpeeds[index] >= USB_SPEED_SUPERSPEED) {
2374 		if (portStatus & PS_PLC)
2375 			status->change |= PORT_CHANGE_LINK_STATE;
2376 		if (portStatus & PS_WRC)
2377 			status->change |= PORT_CHANGE_BH_PORT_RESET;
2378 	}
2379 
2380 	return B_OK;
2381 }
2382 
2383 
2384 status_t
SetPortFeature(uint8 index,uint16 feature)2385 XHCI::SetPortFeature(uint8 index, uint16 feature)
2386 {
2387 	TRACE("set port feature index %u feature %u\n", index, feature);
2388 	if (index >= fPortCount)
2389 		return B_BAD_INDEX;
2390 
2391 	uint32 portRegister = XHCI_PORTSC(index);
2392 	uint32 portStatus = ReadOpReg(portRegister) & ~PS_CLEAR;
2393 
2394 	switch (feature) {
2395 	case PORT_SUSPEND:
2396 		if ((portStatus & PS_PED) == 0 || (portStatus & PS_PR)
2397 			|| (portStatus & PS_PLS_MASK) >= PS_XDEV_U3) {
2398 			TRACE_ERROR("USB core suspending device not in U0/U1/U2.\n");
2399 			return B_BAD_VALUE;
2400 		}
2401 		portStatus &= ~PS_PLS_MASK;
2402 		WriteOpReg(portRegister, portStatus | PS_LWS | PS_XDEV_U3);
2403 		break;
2404 
2405 	case PORT_RESET:
2406 		WriteOpReg(portRegister, portStatus | PS_PR);
2407 		break;
2408 
2409 	case PORT_POWER:
2410 		WriteOpReg(portRegister, portStatus | PS_PP);
2411 		break;
2412 	default:
2413 		return B_BAD_VALUE;
2414 	}
2415 	ReadOpReg(portRegister);
2416 	return B_OK;
2417 }
2418 
2419 
2420 status_t
ClearPortFeature(uint8 index,uint16 feature)2421 XHCI::ClearPortFeature(uint8 index, uint16 feature)
2422 {
2423 	TRACE("clear port feature index %u feature %u\n", index, feature);
2424 	if (index >= fPortCount)
2425 		return B_BAD_INDEX;
2426 
2427 	uint32 portRegister = XHCI_PORTSC(index);
2428 	uint32 portStatus = ReadOpReg(portRegister) & ~PS_CLEAR;
2429 
2430 	switch (feature) {
2431 	case PORT_SUSPEND:
2432 		portStatus = ReadOpReg(portRegister);
2433 		if (portStatus & PS_PR)
2434 			return B_BAD_VALUE;
2435 		if (portStatus & PS_XDEV_U3) {
2436 			if ((portStatus & PS_PED) == 0)
2437 				return B_BAD_VALUE;
2438 			portStatus &= ~PS_PLS_MASK;
2439 			WriteOpReg(portRegister, portStatus | PS_XDEV_U0 | PS_LWS);
2440 		}
2441 		break;
2442 	case PORT_ENABLE:
2443 		WriteOpReg(portRegister, portStatus | PS_PED);
2444 		break;
2445 	case PORT_POWER:
2446 		WriteOpReg(portRegister, portStatus & ~PS_PP);
2447 		break;
2448 	case C_PORT_CONNECTION:
2449 		WriteOpReg(portRegister, portStatus | PS_CSC);
2450 		break;
2451 	case C_PORT_ENABLE:
2452 		WriteOpReg(portRegister, portStatus | PS_PEC);
2453 		break;
2454 	case C_PORT_OVER_CURRENT:
2455 		WriteOpReg(portRegister, portStatus | PS_OCC);
2456 		break;
2457 	case C_PORT_RESET:
2458 		WriteOpReg(portRegister, portStatus | PS_PRC);
2459 		break;
2460 	case C_PORT_BH_PORT_RESET:
2461 		WriteOpReg(portRegister, portStatus | PS_WRC);
2462 		break;
2463 	case C_PORT_LINK_STATE:
2464 		WriteOpReg(portRegister, portStatus | PS_PLC);
2465 		break;
2466 	default:
2467 		return B_BAD_VALUE;
2468 	}
2469 
2470 	ReadOpReg(portRegister);
2471 	return B_OK;
2472 }
2473 
2474 
2475 status_t
ControllerHalt()2476 XHCI::ControllerHalt()
2477 {
2478 	// Mask off run state
2479 	WriteOpReg(XHCI_CMD, ReadOpReg(XHCI_CMD) & ~CMD_RUN);
2480 
2481 	// wait for shutdown state
2482 	if (WaitOpBits(XHCI_STS, STS_HCH, STS_HCH) != B_OK) {
2483 		TRACE_ERROR("HCH shutdown timeout\n");
2484 		return B_ERROR;
2485 	}
2486 	return B_OK;
2487 }
2488 
2489 
2490 status_t
ControllerReset()2491 XHCI::ControllerReset()
2492 {
2493 	TRACE("ControllerReset() cmd: 0x%" B_PRIx32 " sts: 0x%" B_PRIx32 "\n",
2494 		ReadOpReg(XHCI_CMD), ReadOpReg(XHCI_STS));
2495 	WriteOpReg(XHCI_CMD, ReadOpReg(XHCI_CMD) | CMD_HCRST);
2496 
2497 	if (WaitOpBits(XHCI_CMD, CMD_HCRST, 0) != B_OK) {
2498 		TRACE_ERROR("ControllerReset() failed CMD_HCRST\n");
2499 		return B_ERROR;
2500 	}
2501 
2502 	if (WaitOpBits(XHCI_STS, STS_CNR, 0) != B_OK) {
2503 		TRACE_ERROR("ControllerReset() failed STS_CNR\n");
2504 		return B_ERROR;
2505 	}
2506 
2507 	return B_OK;
2508 }
2509 
2510 
2511 int32
InterruptHandler(void * data)2512 XHCI::InterruptHandler(void* data)
2513 {
2514 	return ((XHCI*)data)->Interrupt();
2515 }
2516 
2517 
2518 int32
Interrupt()2519 XHCI::Interrupt()
2520 {
2521 	SpinLocker _(&fSpinlock);
2522 
2523 	uint32 status = ReadOpReg(XHCI_STS);
2524 	uint32 temp = ReadRunReg32(XHCI_IMAN(0));
2525 	WriteOpReg(XHCI_STS, status);
2526 	WriteRunReg32(XHCI_IMAN(0), temp);
2527 
2528 	int32 result = B_HANDLED_INTERRUPT;
2529 
2530 	if ((status & STS_HCH) != 0) {
2531 		TRACE_ERROR("Host Controller halted\n");
2532 		return result;
2533 	}
2534 	if ((status & STS_HSE) != 0) {
2535 		TRACE_ERROR("Host System Error\n");
2536 		return result;
2537 	}
2538 	if ((status & STS_HCE) != 0) {
2539 		TRACE_ERROR("Host Controller Error\n");
2540 		return result;
2541 	}
2542 
2543 	if ((status & STS_EINT) == 0) {
2544 		TRACE("STS: 0x%" B_PRIx32 " IRQ_PENDING: 0x%" B_PRIx32 "\n",
2545 			status, temp);
2546 		return B_UNHANDLED_INTERRUPT;
2547 	}
2548 
2549 	TRACE("Event Interrupt\n");
2550 	release_sem_etc(fEventSem, 1, B_DO_NOT_RESCHEDULE);
2551 	return B_INVOKE_SCHEDULER;
2552 }
2553 
2554 
2555 void
Ring(uint8 slot,uint8 endpoint)2556 XHCI::Ring(uint8 slot, uint8 endpoint)
2557 {
2558 	TRACE("Ding Dong! slot:%d endpoint %d\n", slot, endpoint)
2559 	if ((slot == 0 && endpoint > 0) || (slot > 0 && endpoint == 0))
2560 		panic("Ring() invalid slot/endpoint combination\n");
2561 	if (slot > fSlotCount || endpoint >= XHCI_MAX_ENDPOINTS)
2562 		panic("Ring() invalid slot or endpoint\n");
2563 
2564 	WriteDoorReg32(XHCI_DOORBELL(slot), XHCI_DOORBELL_TARGET(endpoint)
2565 		| XHCI_DOORBELL_STREAMID(0));
2566 	ReadDoorReg32(XHCI_DOORBELL(slot));
2567 		// Flush PCI writes
2568 }
2569 
2570 
2571 void
QueueCommand(xhci_trb * trb)2572 XHCI::QueueCommand(xhci_trb* trb)
2573 {
2574 	uint8 i, j;
2575 	uint32 temp;
2576 
2577 	i = fCmdIdx;
2578 	j = fCmdCcs;
2579 
2580 	TRACE("command[%u] = %" B_PRId32 " (0x%016" B_PRIx64 ", 0x%08" B_PRIx32
2581 		", 0x%08" B_PRIx32 ")\n", i, TRB_3_TYPE_GET(trb->flags), trb->address,
2582 		trb->status, trb->flags);
2583 
2584 	fCmdRing[i].address = trb->address;
2585 	fCmdRing[i].status = trb->status;
2586 	temp = trb->flags;
2587 
2588 	if (j)
2589 		temp |= TRB_3_CYCLE_BIT;
2590 	else
2591 		temp &= ~TRB_3_CYCLE_BIT;
2592 	temp &= ~TRB_3_TC_BIT;
2593 	fCmdRing[i].flags = B_HOST_TO_LENDIAN_INT32(temp);
2594 
2595 	fCmdAddr = fErst->rs_addr + (XHCI_MAX_EVENTS + i) * sizeof(xhci_trb);
2596 
2597 	i++;
2598 
2599 	if (i == (XHCI_MAX_COMMANDS - 1)) {
2600 		temp = TRB_3_TYPE(TRB_TYPE_LINK) | TRB_3_TC_BIT;
2601 		if (j)
2602 			temp |= TRB_3_CYCLE_BIT;
2603 		fCmdRing[i].flags = B_HOST_TO_LENDIAN_INT32(temp);
2604 
2605 		i = 0;
2606 		j ^= 1;
2607 	}
2608 
2609 	fCmdIdx = i;
2610 	fCmdCcs = j;
2611 }
2612 
2613 
2614 void
HandleCmdComplete(xhci_trb * trb)2615 XHCI::HandleCmdComplete(xhci_trb* trb)
2616 {
2617 	if (fCmdAddr == trb->address) {
2618 		TRACE("Received command event\n");
2619 		fCmdResult[0] = trb->status;
2620 		fCmdResult[1] = B_LENDIAN_TO_HOST_INT32(trb->flags);
2621 		release_sem_etc(fCmdCompSem, 1, B_DO_NOT_RESCHEDULE);
2622 	} else
2623 		TRACE_ERROR("received command event for unknown command!\n")
2624 }
2625 
2626 
2627 void
HandleTransferComplete(xhci_trb * trb)2628 XHCI::HandleTransferComplete(xhci_trb* trb)
2629 {
2630 	const uint32 flags = B_LENDIAN_TO_HOST_INT32(trb->flags);
2631 	const uint8 endpointNumber = TRB_3_ENDPOINT_GET(flags),
2632 		slot = TRB_3_SLOT_GET(flags);
2633 
2634 	if (slot > fSlotCount)
2635 		TRACE_ERROR("invalid slot\n");
2636 	if (endpointNumber == 0 || endpointNumber >= XHCI_MAX_ENDPOINTS) {
2637 		TRACE_ERROR("invalid endpoint\n");
2638 		return;
2639 	}
2640 
2641 	xhci_device *device = &fDevices[slot];
2642 	xhci_endpoint *endpoint = &device->endpoints[endpointNumber - 1];
2643 
2644 	if (endpoint->trbs == NULL) {
2645 		TRACE_ERROR("got TRB but endpoint is not allocated!\n");
2646 		return;
2647 	}
2648 
2649 	// Use mutex_trylock first, in case we are in KDL.
2650 	MutexLocker endpointLocker(endpoint->lock, mutex_trylock(&endpoint->lock) == B_OK);
2651 	if (!endpointLocker.IsLocked()) {
2652 		// We failed to get the lock. Most likely it was destroyed
2653 		// while we were waiting for it.
2654 		return;
2655 	}
2656 
2657 	TRACE("HandleTransferComplete: ed %" B_PRIu32 ", status %" B_PRId32 "\n",
2658 		  (flags & TRB_3_EVENT_DATA_BIT), trb->status);
2659 
2660 	uint8 completionCode = TRB_2_COMP_CODE_GET(trb->status);
2661 
2662 	if (completionCode == COMP_RING_OVERRUN || completionCode == COMP_RING_UNDERRUN) {
2663 		// These occur on isochronous endpoints when there is no TRB ready to be
2664 		// executed at the appropriate time. (XHCI 1.2 § 4.10.3.1 p204.)
2665 		endpoint->status = completionCode;
2666 		return;
2667 	}
2668 
2669 	int32 remainder = TRB_2_REM_GET(trb->status), transferred = -1;
2670 	if ((flags & TRB_3_EVENT_DATA_BIT) != 0) {
2671 		// In the case of an Event Data TRB, value in the status field refers
2672 		// to the actual number of bytes transferred across the whole TD.
2673 		// (XHCI 1.2 § 6.4.2.1 Table 6-38 p478.)
2674 		transferred = remainder;
2675 		remainder = -1;
2676 	} else {
2677 		// This should only occur under error conditions, or for isochronous transfers.
2678 		TRACE("got transfer event for a non-Event Data TRB!\n");
2679 
2680 		if (completionCode == COMP_STOPPED_LENGTH_INVALID)
2681 			remainder = -1;
2682 	}
2683 
2684 	if (completionCode != COMP_SUCCESS && completionCode != COMP_SHORT_PACKET
2685 			&& completionCode != COMP_STOPPED && completionCode != COMP_STOPPED_LENGTH_INVALID) {
2686 		TRACE_ALWAYS("transfer error on slot %" B_PRId8 " endpoint %" B_PRId8
2687 			": %s\n", slot, endpointNumber, xhci_error_string(completionCode));
2688 	}
2689 
2690 	phys_addr_t source = B_LENDIAN_TO_HOST_INT64(trb->address);
2691 	if (source >= endpoint->trb_addr
2692 			&& (source - endpoint->trb_addr) < (XHCI_ENDPOINT_RING_SIZE * sizeof(xhci_trb))) {
2693 		// The "source" address points to a TRB on the ring.
2694 		// See if we can figure out what it really corresponds to.
2695 		const int64 offset = (source - endpoint->trb_addr) / sizeof(xhci_trb);
2696 		const int32 type = TRB_3_TYPE_GET(endpoint->trbs[offset].flags);
2697 		if (type == TRB_TYPE_EVENT_DATA || type == TRB_TYPE_LINK)
2698 			source = B_LENDIAN_TO_HOST_INT64(endpoint->trbs[offset].address);
2699 	}
2700 
2701 	for (xhci_td *td = endpoint->td_head; td != NULL; td = td->next) {
2702 		int64 offset = (source - td->trb_addr) / sizeof(xhci_trb);
2703 		if (offset < 0 || offset >= td->trb_count)
2704 			continue;
2705 
2706 		TRACE("HandleTransferComplete td %p trb %" B_PRId64 " found\n",
2707 			td, offset);
2708 
2709 		if (td->transfer != NULL && td->transfer->IsochronousData() != NULL) {
2710 			usb_isochronous_data* isochronousData = td->transfer->IsochronousData();
2711 			usb_iso_packet_descriptor& descriptor = isochronousData->packet_descriptors[offset];
2712 			if (transferred < 0)
2713 				transferred = (TRB_2_BYTES_GET(td->trbs[offset].status) - remainder);
2714 			descriptor.actual_length = transferred;
2715 			descriptor.status = xhci_error_status(completionCode,
2716 				(td->transfer->TransferPipe()->Direction() != Pipe::Out));
2717 
2718 			// Don't double-report completion status.
2719 			completionCode = COMP_SUCCESS;
2720 
2721 			if (offset != (td->trb_used - 1)) {
2722 				// We'll be sent here again.
2723 				return;
2724 			}
2725 
2726 			// Compute the real transferred length.
2727 			transferred = 0;
2728 			for (int32 i = 0; i < offset; i++) {
2729 				usb_iso_packet_descriptor& descriptor = isochronousData->packet_descriptors[i];
2730 				if (descriptor.status == B_NO_INIT) {
2731 					// Assume success.
2732 					descriptor.actual_length = descriptor.request_length;
2733 					descriptor.status = B_OK;
2734 				}
2735 				transferred += descriptor.actual_length;
2736 			}
2737 
2738 			// Report the endpoint status (if any.)
2739 			if (endpoint->status != 0) {
2740 				completionCode = endpoint->status;
2741 				endpoint->status = 0;
2742 			}
2743 		} else if (completionCode == COMP_STOPPED_LENGTH_INVALID) {
2744 			// To determine transferred length, sum up the lengths of all TRBs
2745 			// prior to the referenced one. (XHCI 1.2 § 4.6.9 p136.)
2746 			transferred = 0;
2747 			for (int32 i = 0; i < offset; i++)
2748 				transferred += TRB_2_BYTES_GET(td->trbs[i].status);
2749 		}
2750 
2751 		// The TRB at offset trb_used will be the link TRB, which we do not
2752 		// care about (and should not generate an interrupt at all.) We really
2753 		// care about the properly last TRB, at index "count - 1", which the
2754 		// Event Data TRB that _LinkDescriptorForPipe creates points to.
2755 		//
2756 		// But if we have an unsuccessful completion code, the transfer
2757 		// likely failed midway; so just accept it anyway.
2758 		if (offset == (td->trb_used - 1) || completionCode != COMP_SUCCESS) {
2759 			_UnlinkDescriptorForPipe(td, endpoint);
2760 			endpointLocker.Unlock();
2761 
2762 			td->trb_completion_code = completionCode;
2763 			td->td_transferred = transferred;
2764 			td->trb_left = remainder;
2765 
2766 			// add descriptor to finished list
2767 			if (mutex_trylock(&fFinishedLock) != B_OK)
2768 				mutex_lock(&fFinishedLock);
2769 			td->next = fFinishedHead;
2770 			fFinishedHead = td;
2771 			mutex_unlock(&fFinishedLock);
2772 
2773 			release_sem_etc(fFinishTransfersSem, 1, B_DO_NOT_RESCHEDULE);
2774 			TRACE("HandleTransferComplete td %p done\n", td);
2775 		} else {
2776 			TRACE_ERROR("successful TRB 0x%" B_PRIxPHYSADDR " was found, but it wasn't "
2777 				"the last in the TD!\n", source);
2778 		}
2779 		return;
2780 	}
2781 	TRACE_ERROR("TRB 0x%" B_PRIxPHYSADDR " was not found in the endpoint!\n", source);
2782 }
2783 
2784 
2785 void
DumpRing(xhci_trb * trbs,uint32 size)2786 XHCI::DumpRing(xhci_trb *trbs, uint32 size)
2787 {
2788 	if (!Lock()) {
2789 		TRACE("Unable to get lock!\n");
2790 		return;
2791 	}
2792 
2793 	for (uint32 i = 0; i < size; i++) {
2794 		TRACE("command[%" B_PRId32 "] = %" B_PRId32 " (0x%016" B_PRIx64 ","
2795 			" 0x%08" B_PRIx32 ", 0x%08" B_PRIx32 ")\n", i,
2796 			TRB_3_TYPE_GET(B_LENDIAN_TO_HOST_INT32(trbs[i].flags)),
2797 			trbs[i].address, trbs[i].status, trbs[i].flags);
2798 	}
2799 
2800 	Unlock();
2801 }
2802 
2803 
2804 status_t
DoCommand(xhci_trb * trb)2805 XHCI::DoCommand(xhci_trb* trb)
2806 {
2807 	if (!Lock()) {
2808 		TRACE("Unable to get lock!\n");
2809 		return B_ERROR;
2810 	}
2811 
2812 	QueueCommand(trb);
2813 	Ring(0, 0);
2814 
2815 	// Begin with a 50ms timeout.
2816 	if (acquire_sem_etc(fCmdCompSem, 1, B_RELATIVE_TIMEOUT, 50 * 1000) != B_OK) {
2817 		// We've hit the timeout. In some error cases, interrupts are not
2818 		// generated; so here we force the event ring to be polled once.
2819 		release_sem(fEventSem);
2820 
2821 		// Now try again, this time with a 750ms timeout.
2822 		if (acquire_sem_etc(fCmdCompSem, 1, B_RELATIVE_TIMEOUT,
2823 				750 * 1000) != B_OK) {
2824 			TRACE("Unable to obtain fCmdCompSem!\n");
2825 			fCmdAddr = 0;
2826 			Unlock();
2827 			return B_TIMED_OUT;
2828 		}
2829 	}
2830 
2831 	// eat up sems that have been released by multiple interrupts
2832 	int32 semCount = 0;
2833 	get_sem_count(fCmdCompSem, &semCount);
2834 	if (semCount > 0)
2835 		acquire_sem_etc(fCmdCompSem, semCount, B_RELATIVE_TIMEOUT, 0);
2836 
2837 	status_t status = B_OK;
2838 	uint32 completionCode = TRB_2_COMP_CODE_GET(fCmdResult[0]);
2839 	TRACE("command complete\n");
2840 	if (completionCode != COMP_SUCCESS) {
2841 		TRACE_ERROR("unsuccessful command %" B_PRId32 ", error %s (%" B_PRId32 ")\n",
2842 			TRB_3_TYPE_GET(trb->flags), xhci_error_string(completionCode),
2843 			completionCode);
2844 		status = B_IO_ERROR;
2845 	}
2846 
2847 	trb->status = fCmdResult[0];
2848 	trb->flags = fCmdResult[1];
2849 
2850 	fCmdAddr = 0;
2851 	Unlock();
2852 	return status;
2853 }
2854 
2855 
2856 status_t
Noop()2857 XHCI::Noop()
2858 {
2859 	TRACE("Issue No-Op\n");
2860 	xhci_trb trb;
2861 	trb.address = 0;
2862 	trb.status = 0;
2863 	trb.flags = TRB_3_TYPE(TRB_TYPE_CMD_NOOP);
2864 
2865 	return DoCommand(&trb);
2866 }
2867 
2868 
2869 status_t
EnableSlot(uint8 * slot)2870 XHCI::EnableSlot(uint8* slot)
2871 {
2872 	TRACE("Enable Slot\n");
2873 	xhci_trb trb;
2874 	trb.address = 0;
2875 	trb.status = 0;
2876 	trb.flags = TRB_3_TYPE(TRB_TYPE_ENABLE_SLOT);
2877 
2878 	status_t status = DoCommand(&trb);
2879 	if (status != B_OK)
2880 		return status;
2881 
2882 	*slot = TRB_3_SLOT_GET(trb.flags);
2883 	return *slot != 0 ? B_OK : B_BAD_VALUE;
2884 }
2885 
2886 
2887 status_t
DisableSlot(uint8 slot)2888 XHCI::DisableSlot(uint8 slot)
2889 {
2890 	TRACE("Disable Slot\n");
2891 	xhci_trb trb;
2892 	trb.address = 0;
2893 	trb.status = 0;
2894 	trb.flags = TRB_3_TYPE(TRB_TYPE_DISABLE_SLOT) | TRB_3_SLOT(slot);
2895 
2896 	return DoCommand(&trb);
2897 }
2898 
2899 
2900 status_t
SetAddress(uint64 inputContext,bool bsr,uint8 slot)2901 XHCI::SetAddress(uint64 inputContext, bool bsr, uint8 slot)
2902 {
2903 	TRACE("Set Address\n");
2904 	xhci_trb trb;
2905 	trb.address = inputContext;
2906 	trb.status = 0;
2907 	trb.flags = TRB_3_TYPE(TRB_TYPE_ADDRESS_DEVICE) | TRB_3_SLOT(slot);
2908 
2909 	if (bsr)
2910 		trb.flags |= TRB_3_BSR_BIT;
2911 
2912 	return DoCommand(&trb);
2913 }
2914 
2915 
2916 status_t
ConfigureEndpoint(uint64 inputContext,bool deconfigure,uint8 slot)2917 XHCI::ConfigureEndpoint(uint64 inputContext, bool deconfigure, uint8 slot)
2918 {
2919 	TRACE("Configure Endpoint\n");
2920 	xhci_trb trb;
2921 	trb.address = inputContext;
2922 	trb.status = 0;
2923 	trb.flags = TRB_3_TYPE(TRB_TYPE_CONFIGURE_ENDPOINT) | TRB_3_SLOT(slot);
2924 
2925 	if (deconfigure)
2926 		trb.flags |= TRB_3_DCEP_BIT;
2927 
2928 	return DoCommand(&trb);
2929 }
2930 
2931 
2932 status_t
EvaluateContext(uint64 inputContext,uint8 slot)2933 XHCI::EvaluateContext(uint64 inputContext, uint8 slot)
2934 {
2935 	TRACE("Evaluate Context\n");
2936 	xhci_trb trb;
2937 	trb.address = inputContext;
2938 	trb.status = 0;
2939 	trb.flags = TRB_3_TYPE(TRB_TYPE_EVALUATE_CONTEXT) | TRB_3_SLOT(slot);
2940 
2941 	return DoCommand(&trb);
2942 }
2943 
2944 
2945 status_t
ResetEndpoint(bool preserve,xhci_endpoint * endpoint)2946 XHCI::ResetEndpoint(bool preserve, xhci_endpoint* endpoint)
2947 {
2948 	TRACE("Reset Endpoint\n");
2949 
2950 	switch (_GetEndpointState(endpoint)) {
2951 		case ENDPOINT_STATE_STOPPED:
2952 			TRACE("Reset Endpoint: already stopped");
2953 			return B_OK;
2954 		case ENDPOINT_STATE_HALTED:
2955 			TRACE("Reset Endpoint: warning, weird state!");
2956 		default:
2957 			break;
2958 	}
2959 
2960 	xhci_trb trb;
2961 	trb.address = 0;
2962 	trb.status = 0;
2963 	trb.flags = TRB_3_TYPE(TRB_TYPE_RESET_ENDPOINT)
2964 		| TRB_3_SLOT(endpoint->device->slot) | TRB_3_ENDPOINT(endpoint->id + 1);
2965 	if (preserve)
2966 		trb.flags |= TRB_3_PRSV_BIT;
2967 
2968 	return DoCommand(&trb);
2969 }
2970 
2971 
2972 status_t
StopEndpoint(bool suspend,xhci_endpoint * endpoint)2973 XHCI::StopEndpoint(bool suspend, xhci_endpoint* endpoint)
2974 {
2975 	TRACE("Stop Endpoint\n");
2976 
2977 	switch (_GetEndpointState(endpoint)) {
2978 		case ENDPOINT_STATE_HALTED:
2979 			TRACE("Stop Endpoint: error, halted");
2980 			return B_DEV_STALLED;
2981 		case ENDPOINT_STATE_STOPPED:
2982 			TRACE("Stop Endpoint: already stopped");
2983 			return B_OK;
2984 		default:
2985 			break;
2986 	}
2987 
2988 	xhci_trb trb;
2989 	trb.address = 0;
2990 	trb.status = 0;
2991 	trb.flags = TRB_3_TYPE(TRB_TYPE_STOP_ENDPOINT)
2992 		| TRB_3_SLOT(endpoint->device->slot) | TRB_3_ENDPOINT(endpoint->id + 1);
2993 	if (suspend)
2994 		trb.flags |= TRB_3_SUSPEND_ENDPOINT_BIT;
2995 
2996 	return DoCommand(&trb);
2997 }
2998 
2999 
3000 status_t
SetTRDequeue(uint64 dequeue,uint16 stream,uint8 endpoint,uint8 slot)3001 XHCI::SetTRDequeue(uint64 dequeue, uint16 stream, uint8 endpoint, uint8 slot)
3002 {
3003 	TRACE("Set TR Dequeue\n");
3004 	xhci_trb trb;
3005 	trb.address = dequeue | ENDPOINT_2_DCS_BIT;
3006 		// The DCS bit is copied from the address field as in ConfigureEndpoint.
3007 		// (XHCI 1.2 § 4.6.10 p142.)
3008 	trb.status = TRB_2_STREAM(stream);
3009 	trb.flags = TRB_3_TYPE(TRB_TYPE_SET_TR_DEQUEUE)
3010 		| TRB_3_SLOT(slot) | TRB_3_ENDPOINT(endpoint);
3011 
3012 	return DoCommand(&trb);
3013 }
3014 
3015 
3016 status_t
ResetDevice(uint8 slot)3017 XHCI::ResetDevice(uint8 slot)
3018 {
3019 	TRACE("Reset Device\n");
3020 	xhci_trb trb;
3021 	trb.address = 0;
3022 	trb.status = 0;
3023 	trb.flags = TRB_3_TYPE(TRB_TYPE_RESET_DEVICE) | TRB_3_SLOT(slot);
3024 
3025 	return DoCommand(&trb);
3026 }
3027 
3028 
3029 int32
EventThread(void * data)3030 XHCI::EventThread(void* data)
3031 {
3032 	((XHCI *)data)->CompleteEvents();
3033 	return B_OK;
3034 }
3035 
3036 
3037 void
CompleteEvents()3038 XHCI::CompleteEvents()
3039 {
3040 	while (!fStopThreads) {
3041 		if (acquire_sem(fEventSem) < B_OK)
3042 			continue;
3043 
3044 		// eat up sems that have been released by multiple interrupts
3045 		int32 semCount = 0;
3046 		get_sem_count(fEventSem, &semCount);
3047 		if (semCount > 0)
3048 			acquire_sem_etc(fEventSem, semCount, B_RELATIVE_TIMEOUT, 0);
3049 
3050 		ProcessEvents();
3051 	}
3052 }
3053 
3054 
3055 void
ProcessEvents()3056 XHCI::ProcessEvents()
3057 {
3058 	// Use mutex_trylock first, in case we are in KDL.
3059 	MutexLocker locker(fEventLock, mutex_trylock(&fEventLock) == B_OK);
3060 	if (!locker.IsLocked()) {
3061 		// We failed to get the lock. This really should not happen.
3062 		TRACE_ERROR("failed to acquire event lock!\n");
3063 		return;
3064 	}
3065 
3066 	uint16 i = fEventIdx;
3067 	uint8 j = fEventCcs;
3068 	uint8 t = 2;
3069 
3070 	while (1) {
3071 		uint32 temp = B_LENDIAN_TO_HOST_INT32(fEventRing[i].flags);
3072 		uint8 event = TRB_3_TYPE_GET(temp);
3073 		TRACE("event[%u] = %u (0x%016" B_PRIx64 " 0x%08" B_PRIx32 " 0x%08"
3074 			B_PRIx32 ")\n", i, event, fEventRing[i].address,
3075 			fEventRing[i].status, B_LENDIAN_TO_HOST_INT32(fEventRing[i].flags));
3076 		uint8 k = (temp & TRB_3_CYCLE_BIT) ? 1 : 0;
3077 		if (j != k)
3078 			break;
3079 
3080 		switch (event) {
3081 		case TRB_TYPE_COMMAND_COMPLETION:
3082 			HandleCmdComplete(&fEventRing[i]);
3083 			break;
3084 		case TRB_TYPE_TRANSFER:
3085 			HandleTransferComplete(&fEventRing[i]);
3086 			break;
3087 		case TRB_TYPE_PORT_STATUS_CHANGE:
3088 			TRACE("port change detected\n");
3089 			break;
3090 		default:
3091 			TRACE_ERROR("Unhandled event = %u\n", event);
3092 			break;
3093 		}
3094 
3095 		i++;
3096 		if (i == XHCI_MAX_EVENTS) {
3097 			i = 0;
3098 			j ^= 1;
3099 			if (!--t)
3100 				break;
3101 		}
3102 	}
3103 
3104 	fEventIdx = i;
3105 	fEventCcs = j;
3106 
3107 	uint64 addr = fErst->rs_addr + i * sizeof(xhci_trb);
3108 	WriteRunReg32(XHCI_ERDP_LO(0), (uint32)addr | ERDP_BUSY);
3109 	WriteRunReg32(XHCI_ERDP_HI(0), (uint32)(addr >> 32));
3110 }
3111 
3112 
3113 int32
FinishThread(void * data)3114 XHCI::FinishThread(void* data)
3115 {
3116 	((XHCI *)data)->FinishTransfers();
3117 	return B_OK;
3118 }
3119 
3120 
3121 void
FinishTransfers()3122 XHCI::FinishTransfers()
3123 {
3124 	while (!fStopThreads) {
3125 		if (acquire_sem(fFinishTransfersSem) < B_OK)
3126 			continue;
3127 
3128 		// eat up sems that have been released by multiple interrupts
3129 		int32 semCount = 0;
3130 		get_sem_count(fFinishTransfersSem, &semCount);
3131 		if (semCount > 0)
3132 			acquire_sem_etc(fFinishTransfersSem, semCount, B_RELATIVE_TIMEOUT, 0);
3133 
3134 		mutex_lock(&fFinishedLock);
3135 		TRACE("finishing transfers\n");
3136 		while (fFinishedHead != NULL) {
3137 			xhci_td* td = fFinishedHead;
3138 			fFinishedHead = td->next;
3139 			td->next = NULL;
3140 			mutex_unlock(&fFinishedLock);
3141 
3142 			TRACE("finishing transfer td %p\n", td);
3143 
3144 			Transfer* transfer = td->transfer;
3145 			if (transfer == NULL) {
3146 				// No transfer? Quick way out.
3147 				FreeDescriptor(td);
3148 				mutex_lock(&fFinishedLock);
3149 				continue;
3150 			}
3151 
3152 			bool directionIn = (transfer->TransferPipe()->Direction() != Pipe::Out);
3153 
3154 			const uint8 completionCode = td->trb_completion_code;
3155 			status_t callbackStatus = xhci_error_status(completionCode, directionIn);
3156 
3157 			size_t actualLength = transfer->FragmentLength();
3158 			if (completionCode != COMP_SUCCESS) {
3159 				actualLength = td->td_transferred;
3160 				if (td->td_transferred == -1)
3161 					actualLength = transfer->FragmentLength() - td->trb_left;
3162 				TRACE("transfer not successful, actualLength=%" B_PRIuSIZE "\n",
3163 					actualLength);
3164 			}
3165 
3166 			if (directionIn && actualLength > 0) {
3167 				TRACE("copying in iov count %ld\n", transfer->VectorCount());
3168 				status_t status = transfer->PrepareKernelAccess();
3169 				if (status == B_OK) {
3170 					ReadDescriptor(td, transfer->Vector(),
3171 						transfer->VectorCount(), transfer->IsPhysical());
3172 				} else {
3173 					callbackStatus = status;
3174 				}
3175 			}
3176 
3177 			FreeDescriptor(td);
3178 
3179 			// this transfer may still have data left
3180 			bool finished = true;
3181 			transfer->AdvanceByFragment(actualLength);
3182 			if (completionCode == COMP_SUCCESS
3183 					&& transfer->FragmentLength() > 0) {
3184 				TRACE("still %" B_PRIuSIZE " bytes left on transfer\n",
3185 					transfer->FragmentLength());
3186 				callbackStatus = SubmitTransfer(transfer);
3187 				finished = (callbackStatus != B_OK);
3188 			}
3189 			if (finished) {
3190 				// The actualLength was already handled in AdvanceByFragment.
3191 				transfer->Finished(callbackStatus, 0);
3192 				delete transfer;
3193 			}
3194 
3195 			mutex_lock(&fFinishedLock);
3196 		}
3197 		mutex_unlock(&fFinishedLock);
3198 	}
3199 }
3200 
3201 
3202 inline void
WriteOpReg(uint32 reg,uint32 value)3203 XHCI::WriteOpReg(uint32 reg, uint32 value)
3204 {
3205 	*(volatile uint32 *)(fRegisters + fOperationalRegisterOffset + reg) = value;
3206 }
3207 
3208 
3209 inline uint32
ReadOpReg(uint32 reg)3210 XHCI::ReadOpReg(uint32 reg)
3211 {
3212 	return *(volatile uint32 *)(fRegisters + fOperationalRegisterOffset + reg);
3213 }
3214 
3215 
3216 inline status_t
WaitOpBits(uint32 reg,uint32 mask,uint32 expected)3217 XHCI::WaitOpBits(uint32 reg, uint32 mask, uint32 expected)
3218 {
3219 	int loops = 0;
3220 	uint32 value = ReadOpReg(reg);
3221 	while ((value & mask) != expected) {
3222 		snooze(1000);
3223 		value = ReadOpReg(reg);
3224 		if (loops == 100) {
3225 			TRACE("delay waiting on reg 0x%" B_PRIX32 " match 0x%" B_PRIX32
3226 				" (0x%" B_PRIX32 ")\n",	reg, expected, mask);
3227 		} else if (loops > 250) {
3228 			TRACE_ERROR("timeout waiting on reg 0x%" B_PRIX32
3229 				" match 0x%" B_PRIX32 " (0x%" B_PRIX32 ")\n", reg, expected,
3230 				mask);
3231 			return B_ERROR;
3232 		}
3233 		loops++;
3234 	}
3235 	return B_OK;
3236 }
3237 
3238 
3239 inline uint32
ReadCapReg32(uint32 reg)3240 XHCI::ReadCapReg32(uint32 reg)
3241 {
3242 	return *(volatile uint32 *)(fRegisters + fCapabilityRegisterOffset + reg);
3243 }
3244 
3245 
3246 inline void
WriteCapReg32(uint32 reg,uint32 value)3247 XHCI::WriteCapReg32(uint32 reg, uint32 value)
3248 {
3249 	*(volatile uint32 *)(fRegisters + fCapabilityRegisterOffset + reg) = value;
3250 }
3251 
3252 
3253 inline uint32
ReadRunReg32(uint32 reg)3254 XHCI::ReadRunReg32(uint32 reg)
3255 {
3256 	return *(volatile uint32 *)(fRegisters + fRuntimeRegisterOffset + reg);
3257 }
3258 
3259 
3260 inline void
WriteRunReg32(uint32 reg,uint32 value)3261 XHCI::WriteRunReg32(uint32 reg, uint32 value)
3262 {
3263 	*(volatile uint32 *)(fRegisters + fRuntimeRegisterOffset + reg) = value;
3264 }
3265 
3266 
3267 inline uint32
ReadDoorReg32(uint32 reg)3268 XHCI::ReadDoorReg32(uint32 reg)
3269 {
3270 	return *(volatile uint32 *)(fRegisters + fDoorbellRegisterOffset + reg);
3271 }
3272 
3273 
3274 inline void
WriteDoorReg32(uint32 reg,uint32 value)3275 XHCI::WriteDoorReg32(uint32 reg, uint32 value)
3276 {
3277 	*(volatile uint32 *)(fRegisters + fDoorbellRegisterOffset + reg) = value;
3278 }
3279 
3280 
3281 inline addr_t
_OffsetContextAddr(addr_t p)3282 XHCI::_OffsetContextAddr(addr_t p)
3283 {
3284 	if (fContextSizeShift == 1) {
3285 		// each structure is page aligned, each pointer is 32 bits aligned
3286 		uint32 offset = p & ((B_PAGE_SIZE - 1) & ~31U);
3287 		p += offset;
3288 	}
3289 	return p;
3290 }
3291 
3292 inline uint32
_ReadContext(uint32 * p)3293 XHCI::_ReadContext(uint32* p)
3294 {
3295 	p = (uint32*)_OffsetContextAddr((addr_t)p);
3296 	return *p;
3297 }
3298 
3299 
3300 inline void
_WriteContext(uint32 * p,uint32 value)3301 XHCI::_WriteContext(uint32* p, uint32 value)
3302 {
3303 	p = (uint32*)_OffsetContextAddr((addr_t)p);
3304 	*p = value;
3305 }
3306 
3307 
3308 inline uint64
_ReadContext(uint64 * p)3309 XHCI::_ReadContext(uint64* p)
3310 {
3311 	p = (uint64*)_OffsetContextAddr((addr_t)p);
3312 	return *p;
3313 }
3314 
3315 
3316 inline void
_WriteContext(uint64 * p,uint64 value)3317 XHCI::_WriteContext(uint64* p, uint64 value)
3318 {
3319 	p = (uint64*)_OffsetContextAddr((addr_t)p);
3320 	*p = value;
3321 }
3322