xref: /haiku/src/libs/mapm/mapm_lg3.c (revision 59d799dabcba86f92658ddb402f634e262d9aae7)
1 
2 /*
3  *  M_APM  -  mapm_lg3.c
4  *
5  *  Copyright (C) 2003 - 2007   Michael C. Ring
6  *
7  *  Permission to use, copy, and distribute this software and its
8  *  documentation for any purpose with or without fee is hereby granted,
9  *  provided that the above copyright notice appear in all copies and
10  *  that both that copyright notice and this permission notice appear
11  *  in supporting documentation.
12  *
13  *  Permission to modify the software is granted. Permission to distribute
14  *  the modified code is granted. Modifications are to be distributed by
15  *  using the file 'license.txt' as a template to modify the file header.
16  *  'license.txt' is available in the official MAPM distribution.
17  *
18  *  This software is provided "as is" without express or implied warranty.
19  */
20 
21 /*
22  *      $Id: mapm_lg3.c,v 1.7 2007/12/03 01:42:59 mike Exp $
23  *
24  *      This file contains the function to compute log(2), log(10),
25  *	and 1/log(10) to the desired precision using an AGM algorithm.
26  *
27  *      $Log: mapm_lg3.c,v $
28  *      Revision 1.7  2007/12/03 01:42:59  mike
29  *      Update license
30  *
31  *      Revision 1.6  2003/12/09 01:25:06  mike
32  *      actually compute the first term of the AGM iteration instead
33  *      of assuming the inputs a=1 and b=10^-N.
34  *
35  *      Revision 1.5  2003/12/04 03:19:16  mike
36  *      rearrange logic in AGM to be more straight-forward
37  *
38  *      Revision 1.4  2003/05/01 22:04:37  mike
39  *      rearrange some code
40  *
41  *      Revision 1.3  2003/05/01 21:58:31  mike
42  *      remove math.h
43  *
44  *      Revision 1.2  2003/03/30 22:14:58  mike
45  *      add comments
46  *
47  *      Revision 1.1  2003/03/30 21:18:04  mike
48  *      Initial revision
49  */
50 
51 #include "m_apm_lc.h"
52 
53 /*
54  *  using the 'R' function (defined below) for 'N' decimal places :
55  *
56  *
57  *                          -N             -N
58  *  log(2)  =  R(1, 0.5 * 10  )  -  R(1, 10  )
59  *
60  *
61  *                          -N             -N
62  *  log(10) =  R(1, 0.1 * 10  )  -  R(1, 10  )
63  *
64  *
65  *  In general:
66  *
67  *                    -N                -N
68  *  log(x)  =  R(1, 10  / x)  -  R(1, 10  )
69  *
70  *
71  *  I found this on a web site which went into considerable detail
72  *  on the history of log(2). This formula is algebraically identical
73  *  to the formula specified in J. Borwein and P. Borwein's book
74  *  "PI and the AGM". (reference algorithm 7.2)
75  */
76 
77 /****************************************************************************/
78 /*
79  *	check if our local copy of log(2) & log(10) is precise
80  *      enough for our purpose. if not, calculate them so it's
81  *	as precise as desired, accurate to at least 'places'.
82  */
M_check_log_places(int places)83 void	M_check_log_places(int places)
84 {
85 M_APM   tmp6, tmp7, tmp8, tmp9;
86 int     dplaces;
87 
88 dplaces = places + 4;
89 
90 if (dplaces > MM_lc_log_digits)
91   {
92    MM_lc_log_digits = dplaces + 4;
93 
94    tmp6 = M_get_stack_var();
95    tmp7 = M_get_stack_var();
96    tmp8 = M_get_stack_var();
97    tmp9 = M_get_stack_var();
98 
99    dplaces += 6 + (int)log10((double)places);
100 
101    m_apm_copy(tmp7, MM_One);
102    tmp7->m_apm_exponent = -places;
103 
104    M_log_AGM_R_func(tmp8, dplaces, MM_One, tmp7);
105 
106    m_apm_multiply(tmp6, tmp7, MM_0_5);
107 
108    M_log_AGM_R_func(tmp9, dplaces, MM_One, tmp6);
109 
110    m_apm_subtract(MM_lc_log2, tmp9, tmp8);               /* log(2) */
111 
112    tmp7->m_apm_exponent -= 1;                            /* divide by 10 */
113 
114    M_log_AGM_R_func(tmp9, dplaces, MM_One, tmp7);
115 
116    m_apm_subtract(MM_lc_log10, tmp9, tmp8);              /* log(10) */
117    m_apm_reciprocal(MM_lc_log10R, dplaces, MM_lc_log10); /* 1 / log(10) */
118 
119    M_restore_stack(4);
120   }
121 }
122 /****************************************************************************/
123 
124 /*
125  *	define a notation for a function 'R' :
126  *
127  *
128  *
129  *                                    1
130  *      R (a0, b0)  =  ------------------------------
131  *
132  *                          ----
133  *                           \
134  *                            \     n-1      2    2
135  *                      1  -   |   2    *  (a  - b )
136  *                            /              n    n
137  *                           /
138  *                          ----
139  *                         n >= 0
140  *
141  *
142  *      where a, b are the classic AGM iteration :
143  *
144  *
145  *      a    =  0.5 * (a  + b )
146  *       n+1            n    n
147  *
148  *
149  *      b    =  sqrt(a  * b )
150  *       n+1          n    n
151  *
152  *
153  *
154  *      define a variable 'c' for more efficient computation :
155  *
156  *                                      2     2     2
157  *      c    =  0.5 * (a  - b )    ,   c  =  a  -  b
158  *       n+1            n    n          n     n     n
159  *
160  */
161 
162 /****************************************************************************/
M_log_AGM_R_func(M_APM rr,int places,M_APM aa,M_APM bb)163 void	M_log_AGM_R_func(M_APM rr, int places, M_APM aa, M_APM bb)
164 {
165 M_APM   tmp1, tmp2, tmp3, tmp4, tmpC2, sum, pow_2, tmpA0, tmpB0;
166 int	tolerance, dplaces;
167 
168 tmpA0 = M_get_stack_var();
169 tmpB0 = M_get_stack_var();
170 tmpC2 = M_get_stack_var();
171 tmp1  = M_get_stack_var();
172 tmp2  = M_get_stack_var();
173 tmp3  = M_get_stack_var();
174 tmp4  = M_get_stack_var();
175 sum   = M_get_stack_var();
176 pow_2 = M_get_stack_var();
177 
178 tolerance = places + 8;
179 dplaces   = places + 16;
180 
181 m_apm_copy(tmpA0, aa);
182 m_apm_copy(tmpB0, bb);
183 m_apm_copy(pow_2, MM_0_5);
184 
185 m_apm_multiply(tmp1, aa, aa);		    /* 0.5 * [ a ^ 2 - b ^ 2 ] */
186 m_apm_multiply(tmp2, bb, bb);
187 m_apm_subtract(tmp3, tmp1, tmp2);
188 m_apm_multiply(sum, MM_0_5, tmp3);
189 
190 while (TRUE)
191   {
192    m_apm_subtract(tmp1, tmpA0, tmpB0);      /* C n+1 = 0.5 * [ An - Bn ] */
193    m_apm_multiply(tmp4, MM_0_5, tmp1);      /* C n+1 */
194    m_apm_multiply(tmpC2, tmp4, tmp4);       /* C n+1 ^ 2 */
195 
196    /* do the AGM */
197 
198    m_apm_add(tmp1, tmpA0, tmpB0);
199    m_apm_multiply(tmp3, MM_0_5, tmp1);
200 
201    m_apm_multiply(tmp2, tmpA0, tmpB0);
202    m_apm_sqrt(tmpB0, dplaces, tmp2);
203 
204    m_apm_round(tmpA0, dplaces, tmp3);
205 
206    /* end AGM */
207 
208    m_apm_multiply(tmp2, MM_Two, pow_2);
209    m_apm_copy(pow_2, tmp2);
210 
211    m_apm_multiply(tmp1, tmpC2, pow_2);
212    m_apm_add(tmp3, sum, tmp1);
213 
214    if ((tmp1->m_apm_sign == 0) ||
215       ((-2 * tmp1->m_apm_exponent) > tolerance))
216      break;
217 
218    m_apm_round(sum, dplaces, tmp3);
219   }
220 
221 m_apm_subtract(tmp4, MM_One, tmp3);
222 m_apm_reciprocal(rr, places, tmp4);
223 
224 M_restore_stack(9);
225 }
226 /****************************************************************************/
227