xref: /haiku/src/add-ons/kernel/network/stack/radix.c (revision c22d69bf1f5f60f7ebddd79108a53c8f97f300fe)
1 /*
2  * Copyright 2006, Haiku, Inc. All Rights Reserved.
3  * Distributed under the terms of the MIT License.
4  */
5 
6 /*
7  * Copyright (c) 1988, 1989, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Routines to build and maintain radix trees for routing lookups.
37  */
38 
39 #include "radix.h"
40 
41 #include <KernelExport.h>
42 
43 #include <stdlib.h>
44 #include <string.h>
45 
46 
47 static int	rn_walktree_from(struct radix_node_head *h, void *a, void *m,
48 				walktree_f_t *f, void *w);
49 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
50 static struct radix_node *rn_insert(void *, struct radix_node_head *, int *,
51 	     		struct radix_node [2]);
52 static struct radix_node *rn_newpair(void *, int, struct radix_node[2]);
53 static struct radix_node *rn_search(void *, struct radix_node *);
54 static struct radix_node *rn_search_m(void *, struct radix_node *, void *);
55 
56 static int	max_keylen;
57 static struct radix_mask *rn_mkfreelist;
58 static struct radix_node_head *mask_rnhead;
59 /*
60  * Work area -- the following point to 3 buffers of size max_keylen,
61  * allocated in this order in a block of memory malloc'ed by rn_init.
62  */
63 static uint8 *rn_zeros, *rn_ones, *addmask_key;
64 
65 #define MKFree(m) { (m)->rm_mklist = rn_mkfreelist; rn_mkfreelist = (m);}
66 
67 #define rn_masktop (mask_rnhead->rnh_treetop)
68 
69 static int	rn_lexobetter(void *m_arg, void *n_arg);
70 static struct radix_mask *rn_new_radix_mask(struct radix_node *tt,
71 					struct radix_mask *next);
72 static int	rn_satisfies_leaf(char *trial, struct radix_node *leaf,
73 					int skip);
74 
75 /*
76  * The data structure for the keys is a radix tree with one way
77  * branching removed.  The index rn_bit at an internal node n represents a bit
78  * position to be tested.  The tree is arranged so that all descendants
79  * of a node n have keys whose bits all agree up to position rn_bit - 1.
80  * (We say the index of n is rn_bit.)
81  *
82  * There is at least one descendant which has a one bit at position rn_bit,
83  * and at least one with a zero there.
84  *
85  * A route is determined by a pair of key and mask.  We require that the
86  * bit-wise logical and of the key and mask to be the key.
87  * We define the index of a route to associated with the mask to be
88  * the first bit number in the mask where 0 occurs (with bit number 0
89  * representing the highest order bit).
90  *
91  * We say a mask is normal if every bit is 0, past the index of the mask.
92  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
93  * and m is a normal mask, then the route applies to every descendant of n.
94  * If the index(m) < rn_bit, this implies the trailing last few bits of k
95  * before bit b are all 0, (and hence consequently true of every descendant
96  * of n), so the route applies to all descendants of the node as well.
97  *
98  * Similar logic shows that a non-normal mask m such that
99  * index(m) <= index(n) could potentially apply to many children of n.
100  * Thus, for each non-host route, we attach its mask to a list at an internal
101  * node as high in the tree as we can go.
102  *
103  * The present version of the code makes use of normal routes in short-
104  * circuiting an explict mask and compare operation when testing whether
105  * a key satisfies a normal route, and also in remembering the unique leaf
106  * that governs a subtree.
107  */
108 
109 /*
110  * Most of the functions in this code assume that the key/mask arguments
111  * are sockaddr-like structures, where the first byte is an u_char
112  * indicating the size of the entire structure.
113  *
114  * To make the assumption more explicit, we use the LEN() macro to access
115  * this field. It is safe to pass an expression with side effects
116  * to LEN() as the argument is evaluated only once.
117  */
118 #define LEN(x) (*(const u_char *)(x))
119 
120 /*
121  * XXX THIS NEEDS TO BE FIXED
122  * In the code, pointers to keys and masks are passed as either
123  * 'void *' (because callers use to pass pointers of various kinds), or
124  * 'caddr_t' (which is fine for pointer arithmetics, but not very
125  * clean when you dereference it to access data). Furthermore, caddr_t
126  * is really 'char *', while the natural type to operate on keys and
127  * masks would be 'u_char'. This mismatch require a lot of casts and
128  * intermediate variables to adapt types that clutter the code.
129  */
130 
131 
132 static int	/* XXX: arbitrary ordering for non-contiguous masks */
rn_lexobetter(void * m_arg,void * n_arg)133 rn_lexobetter(void *m_arg, void *n_arg)
134 {
135 	register uint8 *mp = m_arg, *np = n_arg, *lim;
136 
137 	if (LEN(mp) > LEN(np))
138 		return 1;  /* not really, but need to check longer one first */
139 	if (LEN(mp) == LEN(np)) {
140 		for (lim = mp + LEN(mp); mp < lim;) {
141 			if (*mp++ > *np++)
142 				return 1;
143 		}
144 	}
145 	return 0;
146 }
147 
148 
149 static struct radix_mask *
rn_new_radix_mask(register struct radix_node * tt,register struct radix_mask * next)150 rn_new_radix_mask(register struct radix_node *tt, register struct radix_mask *next)
151 {
152 	register struct radix_mask *m;
153 
154 	if (rn_mkfreelist) {
155 		m = rn_mkfreelist;
156 		rn_mkfreelist = m->rm_mklist;
157 	} else
158 		m = (struct radix_mask *)malloc(sizeof(struct radix_mask));
159 	if (m == 0) {
160 		dprintf("Mask for route not entered\n");
161 		return 0;
162 	}
163 	memset(m, 0, sizeof *m);
164 	m->rm_bit = tt->rn_bit;
165 	m->rm_flags = tt->rn_flags;
166 	if (tt->rn_flags & RNF_NORMAL)
167 		m->rm_leaf = tt;
168 	else
169 		m->rm_mask = tt->rn_mask;
170 	m->rm_mklist = next;
171 	tt->rn_mklist = m;
172 	return m;
173 }
174 
175 
176 /*!
177 	Search a node in the tree matching the key.
178 */
179 static struct radix_node *
rn_search(void * v_arg,struct radix_node * head)180 rn_search(void *v_arg, struct radix_node *head)
181 {
182 	register struct radix_node *x;
183 	register caddr_t v;
184 
185 	for (x = head, v = v_arg; x->rn_bit >= 0;) {
186 		if (x->rn_bmask & v[x->rn_offset])
187 			x = x->rn_right;
188 		else
189 			x = x->rn_left;
190 	}
191 	return x;
192 }
193 
194 
195 /*!
196 	Same as above, but with an additional mask.
197 	XXX note this function is used only once.
198 */
199 static struct radix_node *
rn_search_m(void * v_arg,struct radix_node * head,void * m_arg)200 rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
201 {
202 	register struct radix_node *x;
203 	register caddr_t v = v_arg, m = m_arg;
204 
205 	for (x = head; x->rn_bit >= 0;) {
206 		if ((x->rn_bmask & m[x->rn_offset])
207 			&& (x->rn_bmask & v[x->rn_offset]))
208 			x = x->rn_right;
209 		else
210 			x = x->rn_left;
211 	}
212 	return x;
213 }
214 
215 
216 static int
rn_satisfies_leaf(char * trial,register struct radix_node * leaf,int skip)217 rn_satisfies_leaf(char *trial, register struct radix_node *leaf, int skip)
218 {
219 	register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
220 	char *cplim;
221 	int length = min(LEN(cp), LEN(cp2));
222 
223 	if (cp3 == 0)
224 		cp3 = rn_ones;
225 	else
226 		length = min(length, *(u_char *)cp3);
227 	cplim = cp + length; cp3 += skip; cp2 += skip;
228 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
229 		if ((*cp ^ *cp2) & *cp3)
230 			return 0;
231 	return 1;
232 }
233 
234 
235 /*
236  * Whenever we add a new leaf to the tree, we also add a parent node,
237  * so we allocate them as an array of two elements: the first one must be
238  * the leaf (see RNTORT() in route.c), the second one is the parent.
239  * This routine initializes the relevant fields of the nodes, so that
240  * the leaf is the left child of the parent node, and both nodes have
241  * (almost) all all fields filled as appropriate.
242  * (XXX some fields are left unset, see the '#if 0' section).
243  * The function returns a pointer to the parent node.
244  */
245 
246 static struct radix_node *
rn_newpair(void * v,int b,struct radix_node nodes[2])247 rn_newpair(void *v, int b, struct radix_node nodes[2])
248 {
249 	register struct radix_node *tt = nodes, *t = tt + 1;
250 	t->rn_bit = b;
251 	t->rn_bmask = 0x80 >> (b & 7);
252 	t->rn_left = tt;
253 	t->rn_offset = b >> 3;
254 
255 #if 0  /* XXX perhaps we should fill these fields as well. */
256 	t->rn_parent = t->rn_right = NULL;
257 
258 	tt->rn_mask = NULL;
259 	tt->rn_dupedkey = NULL;
260 	tt->rn_bmask = 0;
261 #endif
262 	tt->rn_bit = -1;
263 	tt->rn_key = (caddr_t)v;
264 	tt->rn_parent = t;
265 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
266 	tt->rn_mklist = t->rn_mklist = 0;
267 	return t;
268 }
269 
270 
271 static struct radix_node *
rn_insert(void * v_arg,struct radix_node_head * head,int * dupentry,struct radix_node nodes[2])272 rn_insert(void *v_arg, struct radix_node_head *head, int *dupentry,
273 	struct radix_node nodes[2])
274 {
275 	uint8 *v = v_arg;
276 	struct radix_node *top = head->rnh_treetop;
277 	int head_off = top->rn_offset, vlen = (int)LEN(v);
278 	register struct radix_node *t = rn_search(v_arg, top);
279 	register uint8 *cp = v + head_off;
280 	register int b;
281 	struct radix_node *tt;
282 	/*
283 	 * Find first bit at which v and t->rn_key differ
284 	 */
285     {
286 		register uint8 *cp2 = t->rn_key + head_off;
287 		register int cmp_res;
288 		uint8 *cplim = v + vlen;
289 
290 		while (cp < cplim) {
291 			if (*cp2++ != *cp++)
292 				goto on1;
293 		}
294 		*dupentry = 1;
295 		return t;
296 	on1:
297 		*dupentry = 0;
298 		cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
299 		for (b = (cp - v) << 3; cmp_res; b--) {
300 			cmp_res >>= 1;
301 		}
302     }
303     {
304 		register struct radix_node *p, *x = top;
305 		cp = v;
306 		do {
307 			p = x;
308 			if (cp[x->rn_offset] & x->rn_bmask)
309 				x = x->rn_right;
310 			else
311 				x = x->rn_left;
312 		} while (b > (unsigned) x->rn_bit);
313 					/* x->rn_bit < b && x->rn_bit >= 0 */
314 		t = rn_newpair(v_arg, b, nodes);
315 		tt = t->rn_left;
316 		if ((cp[p->rn_offset] & p->rn_bmask) == 0)
317 			p->rn_left = t;
318 		else
319 			p->rn_right = t;
320 		x->rn_parent = t;
321 		t->rn_parent = p; /* frees x, p as temp vars below */
322 		if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
323 			t->rn_right = x;
324 		} else {
325 			t->rn_right = tt;
326 			t->rn_left = x;
327 		}
328     }
329 	return tt;
330 }
331 
332 
333 /*!
334 	This is the same as rn_walktree() except for the parameters and the
335 	exit.
336 */
337 static int
rn_walktree_from(struct radix_node_head * h,void * a,void * m,walktree_f_t * f,void * w)338 rn_walktree_from(struct radix_node_head *h, void *a, void *m, walktree_f_t *f, void *w)
339 {
340 	int error;
341 	struct radix_node *base, *next;
342 	u_char *xa = (u_char *)a;
343 	u_char *xm = (u_char *)m;
344 	register struct radix_node *rn, *last = 0 /* shut up gcc */;
345 	int stopping = 0;
346 	int lastb;
347 
348 	/*
349 	 * rn_search_m is sort-of-open-coded here. We cannot use the
350 	 * function because we need to keep track of the last node seen.
351 	 */
352 	/* printf("about to search\n"); */
353 	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
354 		last = rn;
355 		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
356 		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
357 		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
358 			break;
359 		}
360 		if (rn->rn_bmask & xa[rn->rn_offset]) {
361 			rn = rn->rn_right;
362 		} else {
363 			rn = rn->rn_left;
364 		}
365 	}
366 	/* printf("done searching\n"); */
367 
368 	/*
369 	 * Two cases: either we stepped off the end of our mask,
370 	 * in which case last == rn, or we reached a leaf, in which
371 	 * case we want to start from the last node we looked at.
372 	 * Either way, last is the node we want to start from.
373 	 */
374 	rn = last;
375 	lastb = rn->rn_bit;
376 
377 	/* printf("rn %p, lastb %d\n", rn, lastb);*/
378 
379 	/*
380 	 * This gets complicated because we may delete the node
381 	 * while applying the function f to it, so we need to calculate
382 	 * the successor node in advance.
383 	 */
384 	while (rn->rn_bit >= 0) {
385 		rn = rn->rn_left;
386 	}
387 
388 	while (!stopping) {
389 		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
390 		base = rn;
391 		/* If at right child go back up, otherwise, go right */
392 		while (rn->rn_parent->rn_right == rn
393 			&& !(rn->rn_flags & RNF_ROOT)) {
394 			rn = rn->rn_parent;
395 
396 			/* if went up beyond last, stop */
397 			if (rn->rn_bit <= lastb) {
398 				stopping = 1;
399 				/* printf("up too far\n"); */
400 				/*
401 				 * XXX we should jump to the 'Process leaves'
402 				 * part, because the values of 'rn' and 'next'
403 				 * we compute will not be used. Not a big deal
404 				 * because this loop will terminate, but it is
405 				 * inefficient and hard to understand!
406 				 */
407 			}
408 		}
409 
410 		/*
411 		 * At the top of the tree, no need to traverse the right
412 		 * half, prevent the traversal of the entire tree in the
413 		 * case of default route.
414 		 */
415 		if (rn->rn_parent->rn_flags & RNF_ROOT)
416 			stopping = 1;
417 
418 		/* Find the next *leaf* since next node might vanish, too */
419 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
420 			rn = rn->rn_left;
421 		next = rn;
422 		/* Process leaves */
423 		while ((rn = base) != 0) {
424 			base = rn->rn_dupedkey;
425 			/* printf("leaf %p\n", rn); */
426 			if (!(rn->rn_flags & RNF_ROOT)
427 			    && (error = (*f)(rn, w)))
428 				return (error);
429 		}
430 		rn = next;
431 
432 		if (rn->rn_flags & RNF_ROOT) {
433 			/* printf("root, stopping"); */
434 			stopping = 1;
435 		}
436 	}
437 	return 0;
438 }
439 
440 
441 static int
rn_walktree(struct radix_node_head * h,walktree_f_t * f,void * w)442 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
443 {
444 	int error;
445 	struct radix_node *base, *next;
446 	register struct radix_node *rn = h->rnh_treetop;
447 	/*
448 	 * This gets complicated because we may delete the node
449 	 * while applying the function f to it, so we need to calculate
450 	 * the successor node in advance.
451 	 */
452 	/* First time through node, go left */
453 	while (rn->rn_bit >= 0) {
454 		rn = rn->rn_left;
455 	}
456 	for (;;) {
457 		base = rn;
458 		/* If at right child go back up, otherwise, go right */
459 		while (rn->rn_parent->rn_right == rn
460 			&& (rn->rn_flags & RNF_ROOT) == 0) {
461 			rn = rn->rn_parent;
462 		}
463 		/* Find the next *leaf* since next node might vanish, too */
464 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) {
465 			rn = rn->rn_left;
466 		}
467 		next = rn;
468 		/* Process leaves */
469 		while ((rn = base)) {
470 			base = rn->rn_dupedkey;
471 			if (!(rn->rn_flags & RNF_ROOT)
472 			    && (error = (*f)(rn, w)))
473 				return error;
474 		}
475 		rn = next;
476 		if (rn->rn_flags & RNF_ROOT)
477 			return 0;
478 	}
479 	/* NOTREACHED */
480 }
481 
482 
483 //	#pragma mark - public API
484 
485 
486 struct radix_node *
rn_lookup(void * v_arg,void * m_arg,struct radix_node_head * head)487 rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
488 {
489 	register struct radix_node *x;
490 	uint8 *netmask = NULL;
491 
492 	if (m_arg) {
493 		x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
494 		if (x == 0)
495 			return 0;
496 		netmask = x->rn_key;
497 	}
498 	x = rn_match(v_arg, head);
499 	if (x && netmask) {
500 		while (x && x->rn_mask != netmask)
501 			x = x->rn_dupedkey;
502 	}
503 	return x;
504 }
505 
506 
507 struct radix_node *
rn_match(void * v_arg,struct radix_node_head * head)508 rn_match(void *v_arg, struct radix_node_head *head)
509 {
510 	caddr_t v = v_arg;
511 	register struct radix_node *t = head->rnh_treetop, *x;
512 	register caddr_t cp = v, cp2;
513 	caddr_t cplim;
514 	struct radix_node *saved_t, *top = t;
515 	int off = t->rn_offset, vlen = LEN(cp), matched_off;
516 	register int test, b, rn_bit;
517 
518 	/*
519 	 * Open code rn_search(v, top) to avoid overhead of extra
520 	 * subroutine call.
521 	 */
522 	for (; t->rn_bit >= 0; ) {
523 		if (t->rn_bmask & cp[t->rn_offset])
524 			t = t->rn_right;
525 		else
526 			t = t->rn_left;
527 	}
528 	/*
529 	 * See if we match exactly as a host destination
530 	 * or at least learn how many bits match, for normal mask finesse.
531 	 *
532 	 * It doesn't hurt us to limit how many bytes to check
533 	 * to the length of the mask, since if it matches we had a genuine
534 	 * match and the leaf we have is the most specific one anyway;
535 	 * if it didn't match with a shorter length it would fail
536 	 * with a long one.  This wins big for class B&C netmasks which
537 	 * are probably the most common case...
538 	 */
539 	if (t->rn_mask)
540 		vlen = *(u_char *)t->rn_mask;
541 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
542 	for (; cp < cplim; cp++, cp2++) {
543 		if (*cp != *cp2)
544 			goto on1;
545 	}
546 	/*
547 	 * This extra grot is in case we are explicitly asked
548 	 * to look up the default.  Ugh!
549 	 *
550 	 * Never return the root node itself, it seems to cause a
551 	 * lot of confusion.
552 	 */
553 	if (t->rn_flags & RNF_ROOT)
554 		t = t->rn_dupedkey;
555 	return t;
556 on1:
557 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
558 	for (b = 7; (test >>= 1) > 0;)
559 		b--;
560 	matched_off = cp - v;
561 	b += matched_off << 3;
562 	rn_bit = -1 - b;
563 	/*
564 	 * If there is a host route in a duped-key chain, it will be first.
565 	 */
566 	if ((saved_t = t)->rn_mask == 0)
567 		t = t->rn_dupedkey;
568 	for (; t; t = t->rn_dupedkey) {
569 		/*
570 		 * Even if we don't match exactly as a host,
571 		 * we may match if the leaf we wound up at is
572 		 * a route to a net.
573 		 */
574 		if (t->rn_flags & RNF_NORMAL) {
575 			if (rn_bit <= t->rn_bit)
576 				return t;
577 		} else if (rn_satisfies_leaf(v, t, matched_off))
578 				return t;
579 	}
580 
581 	t = saved_t;
582 	/* start searching up the tree */
583 	do {
584 		register struct radix_mask *m;
585 		t = t->rn_parent;
586 		m = t->rn_mklist;
587 		/*
588 		 * If non-contiguous masks ever become important
589 		 * we can restore the masking and open coding of
590 		 * the search and satisfaction test and put the
591 		 * calculation of "off" back before the "do".
592 		 */
593 		while (m) {
594 			if (m->rm_flags & RNF_NORMAL) {
595 				if (rn_bit <= m->rm_bit)
596 					return (m->rm_leaf);
597 			} else {
598 				off = min(t->rn_offset, matched_off);
599 				x = rn_search_m(v, t, m->rm_mask);
600 				while (x && x->rn_mask != m->rm_mask)
601 					x = x->rn_dupedkey;
602 				if (x && rn_satisfies_leaf(v, x, off))
603 					return x;
604 			}
605 			m = m->rm_mklist;
606 		}
607 	} while (t != top);
608 
609 	return 0;
610 }
611 
612 
613 struct radix_node *
rn_addmask(void * n_arg,int search,int skip)614 rn_addmask(void *n_arg, int search, int skip)
615 {
616 	uint8 *netmask = (uint8 *)n_arg;
617 	register struct radix_node *x;
618 	register uint8 *cp, *cplim;
619 	register int b = 0, mlen, j;
620 	int maskduplicated, m0, isnormal;
621 	struct radix_node *saved_x;
622 	static int last_zeroed = 0;
623 
624 	if ((mlen = LEN(netmask)) > max_keylen)
625 		mlen = max_keylen;
626 	if (skip == 0)
627 		skip = 1;
628 	if (mlen <= skip)
629 		return mask_rnhead->rnh_nodes;
630 	if (skip > 1)
631 		memcpy(addmask_key + 1, rn_ones + 1, skip - 1);
632 	if ((m0 = mlen) > skip)
633 		memcpy(addmask_key + skip, netmask + skip, mlen - skip);
634 	/*
635 	 * Trim trailing zeroes.
636 	 */
637 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
638 		cp--;
639 	mlen = cp - addmask_key;
640 	if (mlen <= skip) {
641 		if (m0 >= last_zeroed)
642 			last_zeroed = mlen;
643 		return (mask_rnhead->rnh_nodes);
644 	}
645 	if (m0 < last_zeroed)
646 		memset(addmask_key + m0, 0, last_zeroed - m0);
647 	*addmask_key = last_zeroed = mlen;
648 	x = rn_search(addmask_key, rn_masktop);
649 	if (memcmp(addmask_key, x->rn_key, mlen) != 0)
650 		x = 0;
651 	if (x || search)
652 		return x;
653 	x = (struct radix_node *)calloc(1, max_keylen + 2 * sizeof(*x));
654 	if ((saved_x = x) == 0)
655 		return 0;
656 	netmask = cp = (caddr_t)(x + 2);
657 	memcpy(cp, addmask_key, mlen);
658 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
659 	if (maskduplicated) {
660 		dprintf("rn_addmask: mask impossibly already in tree\n");
661 		free(saved_x);
662 		return x;
663 	}
664 	/*
665 	 * Calculate index of mask, and check for normalcy.
666 	 * First find the first byte with a 0 bit, then if there are
667 	 * more bits left (remember we already trimmed the trailing 0's),
668 	 * the pattern must be one of those in normal_chars[], or we have
669 	 * a non-contiguous mask.
670 	 */
671 	cplim = netmask + mlen;
672 	isnormal = 1;
673 	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) {
674 		cp++;
675 	}
676 	if (cp != cplim) {
677 		static char normal_chars[] = {
678 			0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
679 
680 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
681 			b++;
682 		if (*cp != normal_chars[b] || cp != (cplim - 1))
683 			isnormal = 0;
684 	}
685 	b += (cp - netmask) << 3;
686 	x->rn_bit = -1 - b;
687 	if (isnormal)
688 		x->rn_flags |= RNF_NORMAL;
689 	return x;
690 }
691 
692 
693 struct radix_node *
rn_addroute(void * v_arg,void * n_arg,struct radix_node_head * head,struct radix_node treenodes[2])694 rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head,
695 	struct radix_node treenodes[2])
696 {
697 	uint8 *v = (uint8 *)v_arg, *netmask = (uint8 *)n_arg;
698 	register struct radix_node *t, *x = 0, *tt;
699 	struct radix_node *saved_tt, *top = head->rnh_treetop;
700 	short b = 0, b_leaf = 0;
701 	int keyduplicated;
702 	uint8 *mmask;
703 	struct radix_mask *m, **mp;
704 
705 	/*
706 	 * In dealing with non-contiguous masks, there may be
707 	 * many different routes which have the same mask.
708 	 * We will find it useful to have a unique pointer to
709 	 * the mask to speed avoiding duplicate references at
710 	 * nodes and possibly save time in calculating indices.
711 	 */
712 	if (netmask)  {
713 		if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
714 			return (0);
715 		b_leaf = x->rn_bit;
716 		b = -1 - x->rn_bit;
717 		netmask = x->rn_key;
718 	}
719 	/*
720 	 * Deal with duplicated keys: attach node to previous instance
721 	 */
722 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
723 	if (keyduplicated) {
724 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
725 			if (tt->rn_mask == netmask)
726 				return (0);
727 			if (netmask == 0 ||
728 			    (tt->rn_mask &&
729 			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
730 			      || rn_refines(netmask, tt->rn_mask)
731 			      || rn_lexobetter(netmask, tt->rn_mask))))
732 				break;
733 		}
734 		/*
735 		 * If the mask is not duplicated, we wouldn't
736 		 * find it among possible duplicate key entries
737 		 * anyway, so the above test doesn't hurt.
738 		 *
739 		 * We sort the masks for a duplicated key the same way as
740 		 * in a masklist -- most specific to least specific.
741 		 * This may require the unfortunate nuisance of relocating
742 		 * the head of the list.
743 		 *
744 		 * We also reverse, or doubly link the list through the
745 		 * parent pointer.
746 		 */
747 		if (tt == saved_tt) {
748 			struct	radix_node *xx = x;
749 			/* link in at head of list */
750 			(tt = treenodes)->rn_dupedkey = t;
751 			tt->rn_flags = t->rn_flags;
752 			tt->rn_parent = x = t->rn_parent;
753 			t->rn_parent = tt;	 		/* parent */
754 			if (x->rn_left == t)
755 				x->rn_left = tt;
756 			else
757 				x->rn_right = tt;
758 			saved_tt = tt; x = xx;
759 		} else {
760 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
761 			t->rn_dupedkey = tt;
762 			tt->rn_parent = t;			/* parent */
763 			if (tt->rn_dupedkey)			/* parent */
764 				tt->rn_dupedkey->rn_parent = tt; /* parent */
765 		}
766 		tt->rn_key = (caddr_t) v;
767 		tt->rn_bit = -1;
768 		tt->rn_flags = RNF_ACTIVE;
769 	}
770 	/*
771 	 * Put mask in tree.
772 	 */
773 	if (netmask) {
774 		tt->rn_mask = netmask;
775 		tt->rn_bit = x->rn_bit;
776 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
777 	}
778 	t = saved_tt->rn_parent;
779 	if (keyduplicated)
780 		goto on2;
781 	b_leaf = -1 - t->rn_bit;
782 	if (t->rn_right == saved_tt)
783 		x = t->rn_left;
784 	else
785 		x = t->rn_right;
786 	/* Promote general routes from below */
787 	if (x->rn_bit < 0) {
788 	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
789 		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
790 			*mp = m = rn_new_radix_mask(x, 0);
791 			if (m)
792 				mp = &m->rm_mklist;
793 		}
794 	} else if (x->rn_mklist) {
795 		/*
796 		 * Skip over masks whose index is > that of new node
797 		 */
798 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
799 			if (m->rm_bit >= b_leaf)
800 				break;
801 		t->rn_mklist = m; *mp = 0;
802 	}
803 on2:
804 	/* Add new route to highest possible ancestor's list */
805 	if ((netmask == 0) || (b > t->rn_bit ))
806 		return tt; /* can't lift at all */
807 	b_leaf = tt->rn_bit;
808 	do {
809 		x = t;
810 		t = t->rn_parent;
811 	} while (b <= t->rn_bit && x != top);
812 	/*
813 	 * Search through routes associated with node to
814 	 * insert new route according to index.
815 	 * Need same criteria as when sorting dupedkeys to avoid
816 	 * double loop on deletion.
817 	 */
818 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
819 		if (m->rm_bit < b_leaf)
820 			continue;
821 		if (m->rm_bit > b_leaf)
822 			break;
823 		if (m->rm_flags & RNF_NORMAL) {
824 			mmask = m->rm_leaf->rn_mask;
825 			if (tt->rn_flags & RNF_NORMAL) {
826 			    dprintf("Non-unique normal route, mask not entered\n");
827 				return tt;
828 			}
829 		} else
830 			mmask = m->rm_mask;
831 		if (mmask == netmask) {
832 			m->rm_refs++;
833 			tt->rn_mklist = m;
834 			return tt;
835 		}
836 		if (rn_refines(netmask, mmask)
837 		    || rn_lexobetter(netmask, mmask))
838 			break;
839 	}
840 	*mp = rn_new_radix_mask(tt, *mp);
841 	return tt;
842 }
843 
844 
845 struct radix_node *
rn_delete(void * v_arg,void * netmask_arg,struct radix_node_head * head)846 rn_delete(void *v_arg, void *netmask_arg, struct radix_node_head *head)
847 {
848 	register struct radix_node *t, *p, *x, *tt;
849 	struct radix_mask *m, *saved_m, **mp;
850 	struct radix_node *dupedkey, *saved_tt, *top;
851 	uint8 *v, *netmask;
852 	int b, head_off, vlen;
853 
854 	v = v_arg;
855 	netmask = netmask_arg;
856 	x = head->rnh_treetop;
857 	tt = rn_search(v, x);
858 	head_off = x->rn_offset;
859 	vlen =  LEN(v);
860 	saved_tt = tt;
861 	top = x;
862 	if (tt == 0
863 		|| memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
864 		return 0;
865 	/*
866 	 * Delete our route from mask lists.
867 	 */
868 	if (netmask) {
869 		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
870 			return 0;
871 		netmask = x->rn_key;
872 		while (tt->rn_mask != netmask)
873 			if ((tt = tt->rn_dupedkey) == 0)
874 				return 0;
875 	}
876 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
877 		goto on1;
878 	if (tt->rn_flags & RNF_NORMAL) {
879 		if (m->rm_leaf != tt || m->rm_refs > 0) {
880 			dprintf("rn_delete: inconsistent annotation\n");
881 			return 0;  /* dangling ref could cause disaster */
882 		}
883 	} else {
884 		if (m->rm_mask != tt->rn_mask) {
885 			dprintf("rn_delete: inconsistent annotation\n");
886 			goto on1;
887 		}
888 		if (--m->rm_refs >= 0)
889 			goto on1;
890 	}
891 	b = -1 - tt->rn_bit;
892 	t = saved_tt->rn_parent;
893 	if (b > t->rn_bit)
894 		goto on1; /* Wasn't lifted at all */
895 	do {
896 		x = t;
897 		t = t->rn_parent;
898 	} while (b <= t->rn_bit && x != top);
899 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
900 		if (m == saved_m) {
901 			*mp = m->rm_mklist;
902 			MKFree(m);
903 			break;
904 		}
905 	if (m == 0) {
906 		dprintf("rn_delete: couldn't find our annotation\n");
907 		if (tt->rn_flags & RNF_NORMAL)
908 			return 0; /* Dangling ref to us */
909 	}
910 on1:
911 	/*
912 	 * Eliminate us from tree
913 	 */
914 	if (tt->rn_flags & RNF_ROOT)
915 		return 0;
916 	t = tt->rn_parent;
917 	dupedkey = saved_tt->rn_dupedkey;
918 	if (dupedkey) {
919 		/*
920 		 * Here, tt is the deletion target and
921 		 * saved_tt is the head of the dupekey chain.
922 		 */
923 		if (tt == saved_tt) {
924 			/* remove from head of chain */
925 			x = dupedkey; x->rn_parent = t;
926 			if (t->rn_left == tt)
927 				t->rn_left = x;
928 			else
929 				t->rn_right = x;
930 		} else {
931 			/* find node in front of tt on the chain */
932 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
933 				p = p->rn_dupedkey;
934 			if (p) {
935 				p->rn_dupedkey = tt->rn_dupedkey;
936 				if (tt->rn_dupedkey)		/* parent */
937 					tt->rn_dupedkey->rn_parent = p;
938 								/* parent */
939 			} else
940 				dprintf("rn_delete: couldn't find us\n");
941 		}
942 		t = tt + 1;
943 		if  (t->rn_flags & RNF_ACTIVE) {
944 			*++x = *t;
945 			p = t->rn_parent;
946 			if (p->rn_left == t)
947 				p->rn_left = x;
948 			else
949 				p->rn_right = x;
950 			x->rn_left->rn_parent = x;
951 			x->rn_right->rn_parent = x;
952 		}
953 		goto out;
954 	}
955 	if (t->rn_left == tt)
956 		x = t->rn_right;
957 	else
958 		x = t->rn_left;
959 	p = t->rn_parent;
960 	if (p->rn_right == t)
961 		p->rn_right = x;
962 	else
963 		p->rn_left = x;
964 	x->rn_parent = p;
965 	/*
966 	 * Demote routes attached to us.
967 	 */
968 	if (t->rn_mklist) {
969 		if (x->rn_bit >= 0) {
970 			for (mp = &x->rn_mklist; (m = *mp);)
971 				mp = &m->rm_mklist;
972 			*mp = t->rn_mklist;
973 		} else {
974 			/* If there are any key,mask pairs in a sibling
975 			   duped-key chain, some subset will appear sorted
976 			   in the same order attached to our mklist */
977 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) {
978 				if (m == x->rn_mklist) {
979 					struct radix_mask *mm = m->rm_mklist;
980 					x->rn_mklist = 0;
981 					if (--(m->rm_refs) < 0)
982 						MKFree(m);
983 					m = mm;
984 				}
985 			}
986 			if (m) {
987 				dprintf("rn_delete: Orphaned Mask %p at %p\n",
988 				    (void *)m, (void *)x);
989 			}
990 		}
991 	}
992 	/*
993 	 * We may be holding an active internal node in the tree.
994 	 */
995 	x = tt + 1;
996 	if (t != x) {
997 		*t = *x;
998 		t->rn_left->rn_parent = t;
999 		t->rn_right->rn_parent = t;
1000 		p = x->rn_parent;
1001 		if (p->rn_left == x)
1002 			p->rn_left = t;
1003 		else
1004 			p->rn_right = t;
1005 	}
1006 out:
1007 	tt->rn_flags &= ~RNF_ACTIVE;
1008 	tt[1].rn_flags &= ~RNF_ACTIVE;
1009 	return tt;
1010 }
1011 
1012 
1013 int
rn_refines(void * m_arg,void * n_arg)1014 rn_refines(void *m_arg, void *n_arg)
1015 {
1016 	register caddr_t m = m_arg, n = n_arg;
1017 	register caddr_t lim, lim2 = lim = n + LEN(n);
1018 	int longer = LEN(n++) - (int)LEN(m++);
1019 	int masks_are_equal = 1;
1020 
1021 	if (longer > 0)
1022 		lim -= longer;
1023 	while (n < lim) {
1024 		if (*n & ~(*m))
1025 			return 0;
1026 		if (*n++ != *m++)
1027 			masks_are_equal = 0;
1028 	}
1029 
1030 	while (n < lim2) {
1031 		if (*n++)
1032 			return 0;
1033 	}
1034 
1035 	if (masks_are_equal && (longer < 0)) {
1036 		for (lim2 = m - longer; m < lim2; ) {
1037 			if (*m++)
1038 				return 1;
1039 		}
1040 	}
1041 
1042 	return !masks_are_equal;
1043 }
1044 
1045 
1046 /*!
1047 	Allocate and initialize an empty tree. This has 3 nodes, which are
1048 	part of the radix_node_head (in the order <left,root,right>) and are
1049 	marked RNF_ROOT so they cannot be freed.
1050 	The leaves have all-zero and all-one keys, with significant
1051 	bits starting at 'off'.
1052 	Return 1 on success, 0 on error.
1053 */
1054 int
rn_inithead(void ** head,int off)1055 rn_inithead(void **head, int off)
1056 {
1057 	register struct radix_node_head *rnh;
1058 	register struct radix_node *t, *tt, *ttt;
1059 	if (*head)
1060 		return 1;
1061 	rnh = (struct radix_node_head *)calloc(1, sizeof(*rnh));
1062 	if (rnh == NULL)
1063 		return 0;
1064 
1065 	*head = rnh;
1066 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1067 	ttt = rnh->rnh_nodes + 2;
1068 	t->rn_right = ttt;
1069 	t->rn_parent = t;
1070 	tt = t->rn_left;	/* ... which in turn is rnh->rnh_nodes */
1071 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1072 	tt->rn_bit = -1 - off;
1073 	*ttt = *tt;
1074 	ttt->rn_key = rn_ones;
1075 	rnh->rnh_addaddr = rn_addroute;
1076 	rnh->rnh_deladdr = rn_delete;
1077 	rnh->rnh_matchaddr = rn_match;
1078 	rnh->rnh_lookup = rn_lookup;
1079 	rnh->rnh_walktree = rn_walktree;
1080 	rnh->rnh_walktree_from = rn_walktree_from;
1081 	rnh->rnh_treetop = t;
1082 	return 1;
1083 }
1084 
1085 
1086 void
rn_init()1087 rn_init()
1088 {
1089 	char *cp, *cplim;
1090 #ifdef _KERNEL
1091 	struct domain *dom;
1092 
1093 	for (dom = domains; dom; dom = dom->dom_next)
1094 		if (dom->dom_maxrtkey > max_keylen)
1095 			max_keylen = dom->dom_maxrtkey;
1096 #endif
1097 	if (max_keylen == 0) {
1098 		dprintf("rn_init: radix functions require max_keylen be set\n");
1099 		return;
1100 	}
1101 	rn_zeros = (char *)malloc(3 * max_keylen);
1102 	if (rn_zeros == NULL)
1103 		panic("rn_init");
1104 	memset(rn_zeros, 0, 3 * max_keylen);
1105 	rn_ones = cp = rn_zeros + max_keylen;
1106 	addmask_key = cplim = rn_ones + max_keylen;
1107 	while (cp < cplim)
1108 		*cp++ = -1;
1109 	if (rn_inithead((void **)(void *)&mask_rnhead, 0) == 0)
1110 		panic("rn_init 2");
1111 }
1112