1 /*
2 * Copyright 2006, Haiku, Inc. All Rights Reserved.
3 * Distributed under the terms of the MIT License.
4 */
5
6 /*
7 * Copyright (c) 1988, 1989, 1993
8 * The Regents of the University of California. All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * Routines to build and maintain radix trees for routing lookups.
37 */
38
39 #include "radix.h"
40
41 #include <KernelExport.h>
42
43 #include <stdlib.h>
44 #include <string.h>
45
46
47 static int rn_walktree_from(struct radix_node_head *h, void *a, void *m,
48 walktree_f_t *f, void *w);
49 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
50 static struct radix_node *rn_insert(void *, struct radix_node_head *, int *,
51 struct radix_node [2]);
52 static struct radix_node *rn_newpair(void *, int, struct radix_node[2]);
53 static struct radix_node *rn_search(void *, struct radix_node *);
54 static struct radix_node *rn_search_m(void *, struct radix_node *, void *);
55
56 static int max_keylen;
57 static struct radix_mask *rn_mkfreelist;
58 static struct radix_node_head *mask_rnhead;
59 /*
60 * Work area -- the following point to 3 buffers of size max_keylen,
61 * allocated in this order in a block of memory malloc'ed by rn_init.
62 */
63 static uint8 *rn_zeros, *rn_ones, *addmask_key;
64
65 #define MKFree(m) { (m)->rm_mklist = rn_mkfreelist; rn_mkfreelist = (m);}
66
67 #define rn_masktop (mask_rnhead->rnh_treetop)
68
69 static int rn_lexobetter(void *m_arg, void *n_arg);
70 static struct radix_mask *rn_new_radix_mask(struct radix_node *tt,
71 struct radix_mask *next);
72 static int rn_satisfies_leaf(char *trial, struct radix_node *leaf,
73 int skip);
74
75 /*
76 * The data structure for the keys is a radix tree with one way
77 * branching removed. The index rn_bit at an internal node n represents a bit
78 * position to be tested. The tree is arranged so that all descendants
79 * of a node n have keys whose bits all agree up to position rn_bit - 1.
80 * (We say the index of n is rn_bit.)
81 *
82 * There is at least one descendant which has a one bit at position rn_bit,
83 * and at least one with a zero there.
84 *
85 * A route is determined by a pair of key and mask. We require that the
86 * bit-wise logical and of the key and mask to be the key.
87 * We define the index of a route to associated with the mask to be
88 * the first bit number in the mask where 0 occurs (with bit number 0
89 * representing the highest order bit).
90 *
91 * We say a mask is normal if every bit is 0, past the index of the mask.
92 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
93 * and m is a normal mask, then the route applies to every descendant of n.
94 * If the index(m) < rn_bit, this implies the trailing last few bits of k
95 * before bit b are all 0, (and hence consequently true of every descendant
96 * of n), so the route applies to all descendants of the node as well.
97 *
98 * Similar logic shows that a non-normal mask m such that
99 * index(m) <= index(n) could potentially apply to many children of n.
100 * Thus, for each non-host route, we attach its mask to a list at an internal
101 * node as high in the tree as we can go.
102 *
103 * The present version of the code makes use of normal routes in short-
104 * circuiting an explict mask and compare operation when testing whether
105 * a key satisfies a normal route, and also in remembering the unique leaf
106 * that governs a subtree.
107 */
108
109 /*
110 * Most of the functions in this code assume that the key/mask arguments
111 * are sockaddr-like structures, where the first byte is an u_char
112 * indicating the size of the entire structure.
113 *
114 * To make the assumption more explicit, we use the LEN() macro to access
115 * this field. It is safe to pass an expression with side effects
116 * to LEN() as the argument is evaluated only once.
117 */
118 #define LEN(x) (*(const u_char *)(x))
119
120 /*
121 * XXX THIS NEEDS TO BE FIXED
122 * In the code, pointers to keys and masks are passed as either
123 * 'void *' (because callers use to pass pointers of various kinds), or
124 * 'caddr_t' (which is fine for pointer arithmetics, but not very
125 * clean when you dereference it to access data). Furthermore, caddr_t
126 * is really 'char *', while the natural type to operate on keys and
127 * masks would be 'u_char'. This mismatch require a lot of casts and
128 * intermediate variables to adapt types that clutter the code.
129 */
130
131
132 static int /* XXX: arbitrary ordering for non-contiguous masks */
rn_lexobetter(void * m_arg,void * n_arg)133 rn_lexobetter(void *m_arg, void *n_arg)
134 {
135 register uint8 *mp = m_arg, *np = n_arg, *lim;
136
137 if (LEN(mp) > LEN(np))
138 return 1; /* not really, but need to check longer one first */
139 if (LEN(mp) == LEN(np)) {
140 for (lim = mp + LEN(mp); mp < lim;) {
141 if (*mp++ > *np++)
142 return 1;
143 }
144 }
145 return 0;
146 }
147
148
149 static struct radix_mask *
rn_new_radix_mask(register struct radix_node * tt,register struct radix_mask * next)150 rn_new_radix_mask(register struct radix_node *tt, register struct radix_mask *next)
151 {
152 register struct radix_mask *m;
153
154 if (rn_mkfreelist) {
155 m = rn_mkfreelist;
156 rn_mkfreelist = m->rm_mklist;
157 } else
158 m = (struct radix_mask *)malloc(sizeof(struct radix_mask));
159 if (m == 0) {
160 dprintf("Mask for route not entered\n");
161 return 0;
162 }
163 memset(m, 0, sizeof *m);
164 m->rm_bit = tt->rn_bit;
165 m->rm_flags = tt->rn_flags;
166 if (tt->rn_flags & RNF_NORMAL)
167 m->rm_leaf = tt;
168 else
169 m->rm_mask = tt->rn_mask;
170 m->rm_mklist = next;
171 tt->rn_mklist = m;
172 return m;
173 }
174
175
176 /*!
177 Search a node in the tree matching the key.
178 */
179 static struct radix_node *
rn_search(void * v_arg,struct radix_node * head)180 rn_search(void *v_arg, struct radix_node *head)
181 {
182 register struct radix_node *x;
183 register caddr_t v;
184
185 for (x = head, v = v_arg; x->rn_bit >= 0;) {
186 if (x->rn_bmask & v[x->rn_offset])
187 x = x->rn_right;
188 else
189 x = x->rn_left;
190 }
191 return x;
192 }
193
194
195 /*!
196 Same as above, but with an additional mask.
197 XXX note this function is used only once.
198 */
199 static struct radix_node *
rn_search_m(void * v_arg,struct radix_node * head,void * m_arg)200 rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
201 {
202 register struct radix_node *x;
203 register caddr_t v = v_arg, m = m_arg;
204
205 for (x = head; x->rn_bit >= 0;) {
206 if ((x->rn_bmask & m[x->rn_offset])
207 && (x->rn_bmask & v[x->rn_offset]))
208 x = x->rn_right;
209 else
210 x = x->rn_left;
211 }
212 return x;
213 }
214
215
216 static int
rn_satisfies_leaf(char * trial,register struct radix_node * leaf,int skip)217 rn_satisfies_leaf(char *trial, register struct radix_node *leaf, int skip)
218 {
219 register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
220 char *cplim;
221 int length = min(LEN(cp), LEN(cp2));
222
223 if (cp3 == 0)
224 cp3 = rn_ones;
225 else
226 length = min(length, *(u_char *)cp3);
227 cplim = cp + length; cp3 += skip; cp2 += skip;
228 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
229 if ((*cp ^ *cp2) & *cp3)
230 return 0;
231 return 1;
232 }
233
234
235 /*
236 * Whenever we add a new leaf to the tree, we also add a parent node,
237 * so we allocate them as an array of two elements: the first one must be
238 * the leaf (see RNTORT() in route.c), the second one is the parent.
239 * This routine initializes the relevant fields of the nodes, so that
240 * the leaf is the left child of the parent node, and both nodes have
241 * (almost) all all fields filled as appropriate.
242 * (XXX some fields are left unset, see the '#if 0' section).
243 * The function returns a pointer to the parent node.
244 */
245
246 static struct radix_node *
rn_newpair(void * v,int b,struct radix_node nodes[2])247 rn_newpair(void *v, int b, struct radix_node nodes[2])
248 {
249 register struct radix_node *tt = nodes, *t = tt + 1;
250 t->rn_bit = b;
251 t->rn_bmask = 0x80 >> (b & 7);
252 t->rn_left = tt;
253 t->rn_offset = b >> 3;
254
255 #if 0 /* XXX perhaps we should fill these fields as well. */
256 t->rn_parent = t->rn_right = NULL;
257
258 tt->rn_mask = NULL;
259 tt->rn_dupedkey = NULL;
260 tt->rn_bmask = 0;
261 #endif
262 tt->rn_bit = -1;
263 tt->rn_key = (caddr_t)v;
264 tt->rn_parent = t;
265 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
266 tt->rn_mklist = t->rn_mklist = 0;
267 return t;
268 }
269
270
271 static struct radix_node *
rn_insert(void * v_arg,struct radix_node_head * head,int * dupentry,struct radix_node nodes[2])272 rn_insert(void *v_arg, struct radix_node_head *head, int *dupentry,
273 struct radix_node nodes[2])
274 {
275 uint8 *v = v_arg;
276 struct radix_node *top = head->rnh_treetop;
277 int head_off = top->rn_offset, vlen = (int)LEN(v);
278 register struct radix_node *t = rn_search(v_arg, top);
279 register uint8 *cp = v + head_off;
280 register int b;
281 struct radix_node *tt;
282 /*
283 * Find first bit at which v and t->rn_key differ
284 */
285 {
286 register uint8 *cp2 = t->rn_key + head_off;
287 register int cmp_res;
288 uint8 *cplim = v + vlen;
289
290 while (cp < cplim) {
291 if (*cp2++ != *cp++)
292 goto on1;
293 }
294 *dupentry = 1;
295 return t;
296 on1:
297 *dupentry = 0;
298 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
299 for (b = (cp - v) << 3; cmp_res; b--) {
300 cmp_res >>= 1;
301 }
302 }
303 {
304 register struct radix_node *p, *x = top;
305 cp = v;
306 do {
307 p = x;
308 if (cp[x->rn_offset] & x->rn_bmask)
309 x = x->rn_right;
310 else
311 x = x->rn_left;
312 } while (b > (unsigned) x->rn_bit);
313 /* x->rn_bit < b && x->rn_bit >= 0 */
314 t = rn_newpair(v_arg, b, nodes);
315 tt = t->rn_left;
316 if ((cp[p->rn_offset] & p->rn_bmask) == 0)
317 p->rn_left = t;
318 else
319 p->rn_right = t;
320 x->rn_parent = t;
321 t->rn_parent = p; /* frees x, p as temp vars below */
322 if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
323 t->rn_right = x;
324 } else {
325 t->rn_right = tt;
326 t->rn_left = x;
327 }
328 }
329 return tt;
330 }
331
332
333 /*!
334 This is the same as rn_walktree() except for the parameters and the
335 exit.
336 */
337 static int
rn_walktree_from(struct radix_node_head * h,void * a,void * m,walktree_f_t * f,void * w)338 rn_walktree_from(struct radix_node_head *h, void *a, void *m, walktree_f_t *f, void *w)
339 {
340 int error;
341 struct radix_node *base, *next;
342 u_char *xa = (u_char *)a;
343 u_char *xm = (u_char *)m;
344 register struct radix_node *rn, *last = 0 /* shut up gcc */;
345 int stopping = 0;
346 int lastb;
347
348 /*
349 * rn_search_m is sort-of-open-coded here. We cannot use the
350 * function because we need to keep track of the last node seen.
351 */
352 /* printf("about to search\n"); */
353 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
354 last = rn;
355 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
356 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
357 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
358 break;
359 }
360 if (rn->rn_bmask & xa[rn->rn_offset]) {
361 rn = rn->rn_right;
362 } else {
363 rn = rn->rn_left;
364 }
365 }
366 /* printf("done searching\n"); */
367
368 /*
369 * Two cases: either we stepped off the end of our mask,
370 * in which case last == rn, or we reached a leaf, in which
371 * case we want to start from the last node we looked at.
372 * Either way, last is the node we want to start from.
373 */
374 rn = last;
375 lastb = rn->rn_bit;
376
377 /* printf("rn %p, lastb %d\n", rn, lastb);*/
378
379 /*
380 * This gets complicated because we may delete the node
381 * while applying the function f to it, so we need to calculate
382 * the successor node in advance.
383 */
384 while (rn->rn_bit >= 0) {
385 rn = rn->rn_left;
386 }
387
388 while (!stopping) {
389 /* printf("node %p (%d)\n", rn, rn->rn_bit); */
390 base = rn;
391 /* If at right child go back up, otherwise, go right */
392 while (rn->rn_parent->rn_right == rn
393 && !(rn->rn_flags & RNF_ROOT)) {
394 rn = rn->rn_parent;
395
396 /* if went up beyond last, stop */
397 if (rn->rn_bit <= lastb) {
398 stopping = 1;
399 /* printf("up too far\n"); */
400 /*
401 * XXX we should jump to the 'Process leaves'
402 * part, because the values of 'rn' and 'next'
403 * we compute will not be used. Not a big deal
404 * because this loop will terminate, but it is
405 * inefficient and hard to understand!
406 */
407 }
408 }
409
410 /*
411 * At the top of the tree, no need to traverse the right
412 * half, prevent the traversal of the entire tree in the
413 * case of default route.
414 */
415 if (rn->rn_parent->rn_flags & RNF_ROOT)
416 stopping = 1;
417
418 /* Find the next *leaf* since next node might vanish, too */
419 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
420 rn = rn->rn_left;
421 next = rn;
422 /* Process leaves */
423 while ((rn = base) != 0) {
424 base = rn->rn_dupedkey;
425 /* printf("leaf %p\n", rn); */
426 if (!(rn->rn_flags & RNF_ROOT)
427 && (error = (*f)(rn, w)))
428 return (error);
429 }
430 rn = next;
431
432 if (rn->rn_flags & RNF_ROOT) {
433 /* printf("root, stopping"); */
434 stopping = 1;
435 }
436 }
437 return 0;
438 }
439
440
441 static int
rn_walktree(struct radix_node_head * h,walktree_f_t * f,void * w)442 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
443 {
444 int error;
445 struct radix_node *base, *next;
446 register struct radix_node *rn = h->rnh_treetop;
447 /*
448 * This gets complicated because we may delete the node
449 * while applying the function f to it, so we need to calculate
450 * the successor node in advance.
451 */
452 /* First time through node, go left */
453 while (rn->rn_bit >= 0) {
454 rn = rn->rn_left;
455 }
456 for (;;) {
457 base = rn;
458 /* If at right child go back up, otherwise, go right */
459 while (rn->rn_parent->rn_right == rn
460 && (rn->rn_flags & RNF_ROOT) == 0) {
461 rn = rn->rn_parent;
462 }
463 /* Find the next *leaf* since next node might vanish, too */
464 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) {
465 rn = rn->rn_left;
466 }
467 next = rn;
468 /* Process leaves */
469 while ((rn = base)) {
470 base = rn->rn_dupedkey;
471 if (!(rn->rn_flags & RNF_ROOT)
472 && (error = (*f)(rn, w)))
473 return error;
474 }
475 rn = next;
476 if (rn->rn_flags & RNF_ROOT)
477 return 0;
478 }
479 /* NOTREACHED */
480 }
481
482
483 // #pragma mark - public API
484
485
486 struct radix_node *
rn_lookup(void * v_arg,void * m_arg,struct radix_node_head * head)487 rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
488 {
489 register struct radix_node *x;
490 uint8 *netmask = NULL;
491
492 if (m_arg) {
493 x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
494 if (x == 0)
495 return 0;
496 netmask = x->rn_key;
497 }
498 x = rn_match(v_arg, head);
499 if (x && netmask) {
500 while (x && x->rn_mask != netmask)
501 x = x->rn_dupedkey;
502 }
503 return x;
504 }
505
506
507 struct radix_node *
rn_match(void * v_arg,struct radix_node_head * head)508 rn_match(void *v_arg, struct radix_node_head *head)
509 {
510 caddr_t v = v_arg;
511 register struct radix_node *t = head->rnh_treetop, *x;
512 register caddr_t cp = v, cp2;
513 caddr_t cplim;
514 struct radix_node *saved_t, *top = t;
515 int off = t->rn_offset, vlen = LEN(cp), matched_off;
516 register int test, b, rn_bit;
517
518 /*
519 * Open code rn_search(v, top) to avoid overhead of extra
520 * subroutine call.
521 */
522 for (; t->rn_bit >= 0; ) {
523 if (t->rn_bmask & cp[t->rn_offset])
524 t = t->rn_right;
525 else
526 t = t->rn_left;
527 }
528 /*
529 * See if we match exactly as a host destination
530 * or at least learn how many bits match, for normal mask finesse.
531 *
532 * It doesn't hurt us to limit how many bytes to check
533 * to the length of the mask, since if it matches we had a genuine
534 * match and the leaf we have is the most specific one anyway;
535 * if it didn't match with a shorter length it would fail
536 * with a long one. This wins big for class B&C netmasks which
537 * are probably the most common case...
538 */
539 if (t->rn_mask)
540 vlen = *(u_char *)t->rn_mask;
541 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
542 for (; cp < cplim; cp++, cp2++) {
543 if (*cp != *cp2)
544 goto on1;
545 }
546 /*
547 * This extra grot is in case we are explicitly asked
548 * to look up the default. Ugh!
549 *
550 * Never return the root node itself, it seems to cause a
551 * lot of confusion.
552 */
553 if (t->rn_flags & RNF_ROOT)
554 t = t->rn_dupedkey;
555 return t;
556 on1:
557 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
558 for (b = 7; (test >>= 1) > 0;)
559 b--;
560 matched_off = cp - v;
561 b += matched_off << 3;
562 rn_bit = -1 - b;
563 /*
564 * If there is a host route in a duped-key chain, it will be first.
565 */
566 if ((saved_t = t)->rn_mask == 0)
567 t = t->rn_dupedkey;
568 for (; t; t = t->rn_dupedkey) {
569 /*
570 * Even if we don't match exactly as a host,
571 * we may match if the leaf we wound up at is
572 * a route to a net.
573 */
574 if (t->rn_flags & RNF_NORMAL) {
575 if (rn_bit <= t->rn_bit)
576 return t;
577 } else if (rn_satisfies_leaf(v, t, matched_off))
578 return t;
579 }
580
581 t = saved_t;
582 /* start searching up the tree */
583 do {
584 register struct radix_mask *m;
585 t = t->rn_parent;
586 m = t->rn_mklist;
587 /*
588 * If non-contiguous masks ever become important
589 * we can restore the masking and open coding of
590 * the search and satisfaction test and put the
591 * calculation of "off" back before the "do".
592 */
593 while (m) {
594 if (m->rm_flags & RNF_NORMAL) {
595 if (rn_bit <= m->rm_bit)
596 return (m->rm_leaf);
597 } else {
598 off = min(t->rn_offset, matched_off);
599 x = rn_search_m(v, t, m->rm_mask);
600 while (x && x->rn_mask != m->rm_mask)
601 x = x->rn_dupedkey;
602 if (x && rn_satisfies_leaf(v, x, off))
603 return x;
604 }
605 m = m->rm_mklist;
606 }
607 } while (t != top);
608
609 return 0;
610 }
611
612
613 struct radix_node *
rn_addmask(void * n_arg,int search,int skip)614 rn_addmask(void *n_arg, int search, int skip)
615 {
616 uint8 *netmask = (uint8 *)n_arg;
617 register struct radix_node *x;
618 register uint8 *cp, *cplim;
619 register int b = 0, mlen, j;
620 int maskduplicated, m0, isnormal;
621 struct radix_node *saved_x;
622 static int last_zeroed = 0;
623
624 if ((mlen = LEN(netmask)) > max_keylen)
625 mlen = max_keylen;
626 if (skip == 0)
627 skip = 1;
628 if (mlen <= skip)
629 return mask_rnhead->rnh_nodes;
630 if (skip > 1)
631 memcpy(addmask_key + 1, rn_ones + 1, skip - 1);
632 if ((m0 = mlen) > skip)
633 memcpy(addmask_key + skip, netmask + skip, mlen - skip);
634 /*
635 * Trim trailing zeroes.
636 */
637 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
638 cp--;
639 mlen = cp - addmask_key;
640 if (mlen <= skip) {
641 if (m0 >= last_zeroed)
642 last_zeroed = mlen;
643 return (mask_rnhead->rnh_nodes);
644 }
645 if (m0 < last_zeroed)
646 memset(addmask_key + m0, 0, last_zeroed - m0);
647 *addmask_key = last_zeroed = mlen;
648 x = rn_search(addmask_key, rn_masktop);
649 if (memcmp(addmask_key, x->rn_key, mlen) != 0)
650 x = 0;
651 if (x || search)
652 return x;
653 x = (struct radix_node *)calloc(1, max_keylen + 2 * sizeof(*x));
654 if ((saved_x = x) == 0)
655 return 0;
656 netmask = cp = (caddr_t)(x + 2);
657 memcpy(cp, addmask_key, mlen);
658 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
659 if (maskduplicated) {
660 dprintf("rn_addmask: mask impossibly already in tree\n");
661 free(saved_x);
662 return x;
663 }
664 /*
665 * Calculate index of mask, and check for normalcy.
666 * First find the first byte with a 0 bit, then if there are
667 * more bits left (remember we already trimmed the trailing 0's),
668 * the pattern must be one of those in normal_chars[], or we have
669 * a non-contiguous mask.
670 */
671 cplim = netmask + mlen;
672 isnormal = 1;
673 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) {
674 cp++;
675 }
676 if (cp != cplim) {
677 static char normal_chars[] = {
678 0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
679
680 for (j = 0x80; (j & *cp) != 0; j >>= 1)
681 b++;
682 if (*cp != normal_chars[b] || cp != (cplim - 1))
683 isnormal = 0;
684 }
685 b += (cp - netmask) << 3;
686 x->rn_bit = -1 - b;
687 if (isnormal)
688 x->rn_flags |= RNF_NORMAL;
689 return x;
690 }
691
692
693 struct radix_node *
rn_addroute(void * v_arg,void * n_arg,struct radix_node_head * head,struct radix_node treenodes[2])694 rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head,
695 struct radix_node treenodes[2])
696 {
697 uint8 *v = (uint8 *)v_arg, *netmask = (uint8 *)n_arg;
698 register struct radix_node *t, *x = 0, *tt;
699 struct radix_node *saved_tt, *top = head->rnh_treetop;
700 short b = 0, b_leaf = 0;
701 int keyduplicated;
702 uint8 *mmask;
703 struct radix_mask *m, **mp;
704
705 /*
706 * In dealing with non-contiguous masks, there may be
707 * many different routes which have the same mask.
708 * We will find it useful to have a unique pointer to
709 * the mask to speed avoiding duplicate references at
710 * nodes and possibly save time in calculating indices.
711 */
712 if (netmask) {
713 if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
714 return (0);
715 b_leaf = x->rn_bit;
716 b = -1 - x->rn_bit;
717 netmask = x->rn_key;
718 }
719 /*
720 * Deal with duplicated keys: attach node to previous instance
721 */
722 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
723 if (keyduplicated) {
724 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
725 if (tt->rn_mask == netmask)
726 return (0);
727 if (netmask == 0 ||
728 (tt->rn_mask &&
729 ((b_leaf < tt->rn_bit) /* index(netmask) > node */
730 || rn_refines(netmask, tt->rn_mask)
731 || rn_lexobetter(netmask, tt->rn_mask))))
732 break;
733 }
734 /*
735 * If the mask is not duplicated, we wouldn't
736 * find it among possible duplicate key entries
737 * anyway, so the above test doesn't hurt.
738 *
739 * We sort the masks for a duplicated key the same way as
740 * in a masklist -- most specific to least specific.
741 * This may require the unfortunate nuisance of relocating
742 * the head of the list.
743 *
744 * We also reverse, or doubly link the list through the
745 * parent pointer.
746 */
747 if (tt == saved_tt) {
748 struct radix_node *xx = x;
749 /* link in at head of list */
750 (tt = treenodes)->rn_dupedkey = t;
751 tt->rn_flags = t->rn_flags;
752 tt->rn_parent = x = t->rn_parent;
753 t->rn_parent = tt; /* parent */
754 if (x->rn_left == t)
755 x->rn_left = tt;
756 else
757 x->rn_right = tt;
758 saved_tt = tt; x = xx;
759 } else {
760 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
761 t->rn_dupedkey = tt;
762 tt->rn_parent = t; /* parent */
763 if (tt->rn_dupedkey) /* parent */
764 tt->rn_dupedkey->rn_parent = tt; /* parent */
765 }
766 tt->rn_key = (caddr_t) v;
767 tt->rn_bit = -1;
768 tt->rn_flags = RNF_ACTIVE;
769 }
770 /*
771 * Put mask in tree.
772 */
773 if (netmask) {
774 tt->rn_mask = netmask;
775 tt->rn_bit = x->rn_bit;
776 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
777 }
778 t = saved_tt->rn_parent;
779 if (keyduplicated)
780 goto on2;
781 b_leaf = -1 - t->rn_bit;
782 if (t->rn_right == saved_tt)
783 x = t->rn_left;
784 else
785 x = t->rn_right;
786 /* Promote general routes from below */
787 if (x->rn_bit < 0) {
788 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
789 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
790 *mp = m = rn_new_radix_mask(x, 0);
791 if (m)
792 mp = &m->rm_mklist;
793 }
794 } else if (x->rn_mklist) {
795 /*
796 * Skip over masks whose index is > that of new node
797 */
798 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
799 if (m->rm_bit >= b_leaf)
800 break;
801 t->rn_mklist = m; *mp = 0;
802 }
803 on2:
804 /* Add new route to highest possible ancestor's list */
805 if ((netmask == 0) || (b > t->rn_bit ))
806 return tt; /* can't lift at all */
807 b_leaf = tt->rn_bit;
808 do {
809 x = t;
810 t = t->rn_parent;
811 } while (b <= t->rn_bit && x != top);
812 /*
813 * Search through routes associated with node to
814 * insert new route according to index.
815 * Need same criteria as when sorting dupedkeys to avoid
816 * double loop on deletion.
817 */
818 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
819 if (m->rm_bit < b_leaf)
820 continue;
821 if (m->rm_bit > b_leaf)
822 break;
823 if (m->rm_flags & RNF_NORMAL) {
824 mmask = m->rm_leaf->rn_mask;
825 if (tt->rn_flags & RNF_NORMAL) {
826 dprintf("Non-unique normal route, mask not entered\n");
827 return tt;
828 }
829 } else
830 mmask = m->rm_mask;
831 if (mmask == netmask) {
832 m->rm_refs++;
833 tt->rn_mklist = m;
834 return tt;
835 }
836 if (rn_refines(netmask, mmask)
837 || rn_lexobetter(netmask, mmask))
838 break;
839 }
840 *mp = rn_new_radix_mask(tt, *mp);
841 return tt;
842 }
843
844
845 struct radix_node *
rn_delete(void * v_arg,void * netmask_arg,struct radix_node_head * head)846 rn_delete(void *v_arg, void *netmask_arg, struct radix_node_head *head)
847 {
848 register struct radix_node *t, *p, *x, *tt;
849 struct radix_mask *m, *saved_m, **mp;
850 struct radix_node *dupedkey, *saved_tt, *top;
851 uint8 *v, *netmask;
852 int b, head_off, vlen;
853
854 v = v_arg;
855 netmask = netmask_arg;
856 x = head->rnh_treetop;
857 tt = rn_search(v, x);
858 head_off = x->rn_offset;
859 vlen = LEN(v);
860 saved_tt = tt;
861 top = x;
862 if (tt == 0
863 || memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
864 return 0;
865 /*
866 * Delete our route from mask lists.
867 */
868 if (netmask) {
869 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
870 return 0;
871 netmask = x->rn_key;
872 while (tt->rn_mask != netmask)
873 if ((tt = tt->rn_dupedkey) == 0)
874 return 0;
875 }
876 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
877 goto on1;
878 if (tt->rn_flags & RNF_NORMAL) {
879 if (m->rm_leaf != tt || m->rm_refs > 0) {
880 dprintf("rn_delete: inconsistent annotation\n");
881 return 0; /* dangling ref could cause disaster */
882 }
883 } else {
884 if (m->rm_mask != tt->rn_mask) {
885 dprintf("rn_delete: inconsistent annotation\n");
886 goto on1;
887 }
888 if (--m->rm_refs >= 0)
889 goto on1;
890 }
891 b = -1 - tt->rn_bit;
892 t = saved_tt->rn_parent;
893 if (b > t->rn_bit)
894 goto on1; /* Wasn't lifted at all */
895 do {
896 x = t;
897 t = t->rn_parent;
898 } while (b <= t->rn_bit && x != top);
899 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
900 if (m == saved_m) {
901 *mp = m->rm_mklist;
902 MKFree(m);
903 break;
904 }
905 if (m == 0) {
906 dprintf("rn_delete: couldn't find our annotation\n");
907 if (tt->rn_flags & RNF_NORMAL)
908 return 0; /* Dangling ref to us */
909 }
910 on1:
911 /*
912 * Eliminate us from tree
913 */
914 if (tt->rn_flags & RNF_ROOT)
915 return 0;
916 t = tt->rn_parent;
917 dupedkey = saved_tt->rn_dupedkey;
918 if (dupedkey) {
919 /*
920 * Here, tt is the deletion target and
921 * saved_tt is the head of the dupekey chain.
922 */
923 if (tt == saved_tt) {
924 /* remove from head of chain */
925 x = dupedkey; x->rn_parent = t;
926 if (t->rn_left == tt)
927 t->rn_left = x;
928 else
929 t->rn_right = x;
930 } else {
931 /* find node in front of tt on the chain */
932 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
933 p = p->rn_dupedkey;
934 if (p) {
935 p->rn_dupedkey = tt->rn_dupedkey;
936 if (tt->rn_dupedkey) /* parent */
937 tt->rn_dupedkey->rn_parent = p;
938 /* parent */
939 } else
940 dprintf("rn_delete: couldn't find us\n");
941 }
942 t = tt + 1;
943 if (t->rn_flags & RNF_ACTIVE) {
944 *++x = *t;
945 p = t->rn_parent;
946 if (p->rn_left == t)
947 p->rn_left = x;
948 else
949 p->rn_right = x;
950 x->rn_left->rn_parent = x;
951 x->rn_right->rn_parent = x;
952 }
953 goto out;
954 }
955 if (t->rn_left == tt)
956 x = t->rn_right;
957 else
958 x = t->rn_left;
959 p = t->rn_parent;
960 if (p->rn_right == t)
961 p->rn_right = x;
962 else
963 p->rn_left = x;
964 x->rn_parent = p;
965 /*
966 * Demote routes attached to us.
967 */
968 if (t->rn_mklist) {
969 if (x->rn_bit >= 0) {
970 for (mp = &x->rn_mklist; (m = *mp);)
971 mp = &m->rm_mklist;
972 *mp = t->rn_mklist;
973 } else {
974 /* If there are any key,mask pairs in a sibling
975 duped-key chain, some subset will appear sorted
976 in the same order attached to our mklist */
977 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) {
978 if (m == x->rn_mklist) {
979 struct radix_mask *mm = m->rm_mklist;
980 x->rn_mklist = 0;
981 if (--(m->rm_refs) < 0)
982 MKFree(m);
983 m = mm;
984 }
985 }
986 if (m) {
987 dprintf("rn_delete: Orphaned Mask %p at %p\n",
988 (void *)m, (void *)x);
989 }
990 }
991 }
992 /*
993 * We may be holding an active internal node in the tree.
994 */
995 x = tt + 1;
996 if (t != x) {
997 *t = *x;
998 t->rn_left->rn_parent = t;
999 t->rn_right->rn_parent = t;
1000 p = x->rn_parent;
1001 if (p->rn_left == x)
1002 p->rn_left = t;
1003 else
1004 p->rn_right = t;
1005 }
1006 out:
1007 tt->rn_flags &= ~RNF_ACTIVE;
1008 tt[1].rn_flags &= ~RNF_ACTIVE;
1009 return tt;
1010 }
1011
1012
1013 int
rn_refines(void * m_arg,void * n_arg)1014 rn_refines(void *m_arg, void *n_arg)
1015 {
1016 register caddr_t m = m_arg, n = n_arg;
1017 register caddr_t lim, lim2 = lim = n + LEN(n);
1018 int longer = LEN(n++) - (int)LEN(m++);
1019 int masks_are_equal = 1;
1020
1021 if (longer > 0)
1022 lim -= longer;
1023 while (n < lim) {
1024 if (*n & ~(*m))
1025 return 0;
1026 if (*n++ != *m++)
1027 masks_are_equal = 0;
1028 }
1029
1030 while (n < lim2) {
1031 if (*n++)
1032 return 0;
1033 }
1034
1035 if (masks_are_equal && (longer < 0)) {
1036 for (lim2 = m - longer; m < lim2; ) {
1037 if (*m++)
1038 return 1;
1039 }
1040 }
1041
1042 return !masks_are_equal;
1043 }
1044
1045
1046 /*!
1047 Allocate and initialize an empty tree. This has 3 nodes, which are
1048 part of the radix_node_head (in the order <left,root,right>) and are
1049 marked RNF_ROOT so they cannot be freed.
1050 The leaves have all-zero and all-one keys, with significant
1051 bits starting at 'off'.
1052 Return 1 on success, 0 on error.
1053 */
1054 int
rn_inithead(void ** head,int off)1055 rn_inithead(void **head, int off)
1056 {
1057 register struct radix_node_head *rnh;
1058 register struct radix_node *t, *tt, *ttt;
1059 if (*head)
1060 return 1;
1061 rnh = (struct radix_node_head *)calloc(1, sizeof(*rnh));
1062 if (rnh == NULL)
1063 return 0;
1064
1065 *head = rnh;
1066 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1067 ttt = rnh->rnh_nodes + 2;
1068 t->rn_right = ttt;
1069 t->rn_parent = t;
1070 tt = t->rn_left; /* ... which in turn is rnh->rnh_nodes */
1071 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1072 tt->rn_bit = -1 - off;
1073 *ttt = *tt;
1074 ttt->rn_key = rn_ones;
1075 rnh->rnh_addaddr = rn_addroute;
1076 rnh->rnh_deladdr = rn_delete;
1077 rnh->rnh_matchaddr = rn_match;
1078 rnh->rnh_lookup = rn_lookup;
1079 rnh->rnh_walktree = rn_walktree;
1080 rnh->rnh_walktree_from = rn_walktree_from;
1081 rnh->rnh_treetop = t;
1082 return 1;
1083 }
1084
1085
1086 void
rn_init()1087 rn_init()
1088 {
1089 char *cp, *cplim;
1090 #ifdef _KERNEL
1091 struct domain *dom;
1092
1093 for (dom = domains; dom; dom = dom->dom_next)
1094 if (dom->dom_maxrtkey > max_keylen)
1095 max_keylen = dom->dom_maxrtkey;
1096 #endif
1097 if (max_keylen == 0) {
1098 dprintf("rn_init: radix functions require max_keylen be set\n");
1099 return;
1100 }
1101 rn_zeros = (char *)malloc(3 * max_keylen);
1102 if (rn_zeros == NULL)
1103 panic("rn_init");
1104 memset(rn_zeros, 0, 3 * max_keylen);
1105 rn_ones = cp = rn_zeros + max_keylen;
1106 addmask_key = cplim = rn_ones + max_keylen;
1107 while (cp < cplim)
1108 *cp++ = -1;
1109 if (rn_inithead((void **)(void *)&mask_rnhead, 0) == 0)
1110 panic("rn_init 2");
1111 }
1112