xref: /haiku/src/add-ons/accelerants/nvidia/engine/nv_crtc.c (revision 8d86b84d18535654da5b693537802d6ca115efe0)
1 /* CTRC functionality */
2 /* Author:
3    Rudolf Cornelissen 11/2002-9/2009
4 */
5 
6 #define MODULE_BIT 0x00040000
7 
8 #include "nv_std.h"
9 
10 /*
11 	Enable/Disable interrupts.  Just a wrapper around the
12 	ioctl() to the kernel driver.
13 */
nv_crtc_interrupt_enable(bool flag)14 status_t nv_crtc_interrupt_enable(bool flag)
15 {
16 	status_t result = B_OK;
17 	nv_set_vblank_int svi;
18 
19 	if (si->ps.int_assigned)
20 	{
21 		/* set the magic number so the driver knows we're for real */
22 		svi.magic = NV_PRIVATE_DATA_MAGIC;
23 		svi.crtc = 0;
24 		svi.do_it = flag;
25 		/* contact driver and get a pointer to the registers and shared data */
26 		result = ioctl(fd, NV_RUN_INTERRUPTS, &svi, sizeof(svi));
27 	}
28 
29 	return result;
30 }
31 
32 /* doing general fail-safe default setup here */
33 //fixme: this is a _very_ basic setup, and it's preliminary...
nv_crtc_update_fifo()34 status_t nv_crtc_update_fifo()
35 {
36 	uint8 bytes_per_pixel = 1;
37 	uint32 drain;
38 
39 	/* we are only using this on >>coldstarted<< cards which really need this */
40 	//fixme: re-enable or remove after general user confirmation of behaviour...
41 	if (/*(si->settings.usebios) ||*/ (si->ps.card_type != NV05M64)) return B_OK;
42 
43 	/* enable access to primary head */
44 	set_crtc_owner(0);
45 
46 	/* set CRTC FIFO low watermark according to memory drain */
47 	switch(si->dm.space)
48 	{
49 	case B_CMAP8:
50 		bytes_per_pixel = 1;
51 		break;
52 	case B_RGB15_LITTLE:
53 	case B_RGB16_LITTLE:
54 		bytes_per_pixel = 2;
55 		break;
56 	case B_RGB24_LITTLE:
57 		bytes_per_pixel = 3;
58 		break;
59 	case B_RGB32_LITTLE:
60 		bytes_per_pixel = 4;
61 		break;
62 	}
63 	/* fixme:
64 	 * - I should probably include the refreshrate as well;
65 	 * - and the memory clocking speed, core clocking speed, RAM buswidth.. */
66 	drain = si->dm.timing.h_display * si->dm.timing.v_display * bytes_per_pixel;
67 
68 	/* Doesn't work for other than 32bit space (yet?) */
69 	if (si->dm.space != B_RGB32_LITTLE)
70 	{
71 		/* BIOS defaults */
72 		CRTCW(FIFO, 0x03);
73 		CRTCW(FIFO_LWM, 0x20);
74 		LOG(4,("CRTC: FIFO low-watermark set to $20, burst size 256 (BIOS defaults)\n"));
75 		return B_OK;
76 	}
77 
78 	if (drain > (((uint32)1280) * 1024 * 4))
79 	{
80 		/* set CRTC FIFO burst size for 'smaller' bursts */
81 		CRTCW(FIFO, 0x01);
82 		/* Instruct CRTC to fetch new data 'earlier' */
83 		CRTCW(FIFO_LWM, 0x40);
84 		LOG(4,("CRTC: FIFO low-watermark set to $40, burst size 64\n"));
85 	}
86 	else
87 	{
88 		if (drain > (((uint32)1024) * 768 * 4))
89 		{
90 			/* BIOS default */
91 			CRTCW(FIFO, 0x02);
92 			/* Instruct CRTC to fetch new data 'earlier' */
93 			CRTCW(FIFO_LWM, 0x40);
94 			LOG(4,("CRTC: FIFO low-watermark set to $40, burst size 128\n"));
95 		}
96 		else
97 		{
98 			/* BIOS defaults */
99 			CRTCW(FIFO, 0x03);
100 			CRTCW(FIFO_LWM, 0x20);
101 			LOG(4,("CRTC: FIFO low-watermark set to $20, burst size 256 (BIOS defaults)\n"));
102 		}
103 	}
104 
105 	return B_OK;
106 }
107 
108 /* Adjust passed parameters to a valid mode line */
nv_crtc_validate_timing(uint16 * hd_e,uint16 * hs_s,uint16 * hs_e,uint16 * ht,uint16 * vd_e,uint16 * vs_s,uint16 * vs_e,uint16 * vt)109 status_t nv_crtc_validate_timing(
110 	uint16 *hd_e,uint16 *hs_s,uint16 *hs_e,uint16 *ht,
111 	uint16 *vd_e,uint16 *vs_s,uint16 *vs_e,uint16 *vt
112 )
113 {
114 /* horizontal */
115 	/* make all parameters multiples of 8 */
116 	*hd_e &= 0xfff8;
117 	*hs_s &= 0xfff8;
118 	*hs_e &= 0xfff8;
119 	*ht   &= 0xfff8;
120 
121 	/* confine to required number of bits, taking logic into account */
122 	if (*hd_e > ((0x01ff - 2) << 3)) *hd_e = ((0x01ff - 2) << 3);
123 	if (*hs_s > ((0x01ff - 1) << 3)) *hs_s = ((0x01ff - 1) << 3);
124 	if (*hs_e > ( 0x01ff      << 3)) *hs_e = ( 0x01ff      << 3);
125 	if (*ht   > ((0x01ff + 5) << 3)) *ht   = ((0x01ff + 5) << 3);
126 
127 	/* NOTE: keep horizontal timing at multiples of 8! */
128 	/* confine to a reasonable width */
129 	if (*hd_e < 640) *hd_e = 640;
130 	if (si->ps.card_type > NV04)
131 	{
132 		if (*hd_e > 2048) *hd_e = 2048;
133 	}
134 	else
135 	{
136 		if (*hd_e > 1920) *hd_e = 1920;
137 	}
138 
139 	/* if hor. total does not leave room for a sensible sync pulse, increase it! */
140 	if (*ht < (*hd_e + 80)) *ht = (*hd_e + 80);
141 
142 	/* if hor. total does not adhere to max. blanking pulse width, decrease it! */
143 	if (*ht > (*hd_e + 0x3f8)) *ht = (*hd_e + 0x3f8);
144 
145 	/* make sure sync pulse is not during display */
146 	if (*hs_e > (*ht - 8)) *hs_e = (*ht - 8);
147 	if (*hs_s < (*hd_e + 8)) *hs_s = (*hd_e + 8);
148 
149 	/* correct sync pulse if it is too long:
150 	 * there are only 5 bits available to save this in the card registers! */
151 	if (*hs_e > (*hs_s + 0xf8)) *hs_e = (*hs_s + 0xf8);
152 
153 /*vertical*/
154 	/* confine to required number of bits, taking logic into account */
155 	//fixme if needed: on GeForce cards there are 12 instead of 11 bits...
156 	if (*vd_e > (0x7ff - 2)) *vd_e = (0x7ff - 2);
157 	if (*vs_s > (0x7ff - 1)) *vs_s = (0x7ff - 1);
158 	if (*vs_e >  0x7ff     ) *vs_e =  0x7ff     ;
159 	if (*vt   > (0x7ff + 2)) *vt   = (0x7ff + 2);
160 
161 	/* confine to a reasonable height */
162 	if (*vd_e < 480) *vd_e = 480;
163 	if (si->ps.card_type > NV04)
164 	{
165 		if (*vd_e > 1536) *vd_e = 1536;
166 	}
167 	else
168 	{
169 		if (*vd_e > 1440) *vd_e = 1440;
170 	}
171 
172 	/*if vertical total does not leave room for a sync pulse, increase it!*/
173 	if (*vt < (*vd_e + 3)) *vt = (*vd_e + 3);
174 
175 	/* if vert. total does not adhere to max. blanking pulse width, decrease it! */
176 	if (*vt > (*vd_e + 0xff)) *vt = (*vd_e + 0xff);
177 
178 	/* make sure sync pulse is not during display */
179 	if (*vs_e > (*vt - 1)) *vs_e = (*vt - 1);
180 	if (*vs_s < (*vd_e + 1)) *vs_s = (*vd_e + 1);
181 
182 	/* correct sync pulse if it is too long:
183 	 * there are only 4 bits available to save this in the card registers! */
184 	if (*vs_e > (*vs_s + 0x0f)) *vs_e = (*vs_s + 0x0f);
185 
186 	return B_OK;
187 }
188 
189 /*set a mode line - inputs are in pixels*/
nv_crtc_set_timing(display_mode target)190 status_t nv_crtc_set_timing(display_mode target)
191 {
192 	uint8 temp;
193 
194 	uint32 htotal;		/*total horizontal total VCLKs*/
195 	uint32 hdisp_e;            /*end of horizontal display (begins at 0)*/
196 	uint32 hsync_s;            /*begin of horizontal sync pulse*/
197 	uint32 hsync_e;            /*end of horizontal sync pulse*/
198 	uint32 hblnk_s;            /*begin horizontal blanking*/
199 	uint32 hblnk_e;            /*end horizontal blanking*/
200 
201 	uint32 vtotal;		/*total vertical total scanlines*/
202 	uint32 vdisp_e;            /*end of vertical display*/
203 	uint32 vsync_s;            /*begin of vertical sync pulse*/
204 	uint32 vsync_e;            /*end of vertical sync pulse*/
205 	uint32 vblnk_s;            /*begin vertical blanking*/
206 	uint32 vblnk_e;            /*end vertical blanking*/
207 
208 	uint32 linecomp;	/*split screen and vdisp_e interrupt*/
209 
210 	LOG(4,("CRTC: setting timing\n"));
211 
212 	/* setup tuned internal modeline for flatpanel if connected and active */
213 	/* notes:
214 	 * - the CRTC modeline must end earlier than the panel modeline to keep correct
215 	 *   sync going;
216 	 * - if the CRTC modeline ends too soon, pixelnoise will occur in 8 (or so) pixel
217 	 *   wide horizontal stripes. This can be observed earliest on fullscreen overlay,
218 	 *   and if it gets worse, also normal desktop output will suffer. The stripes
219 	 *   are mainly visible at the left of the screen, over the entire screen height. */
220 	if (si->ps.monitors & CRTC1_TMDS)
221 	{
222 		LOG(2,("CRTC: DFP active: tuning modeline\n"));
223 
224 		/* horizontal timing */
225 		target.timing.h_sync_start =
226 			((uint16)((si->ps.p1_timing.h_sync_start / ((float)si->ps.p1_timing.h_display)) *
227 			target.timing.h_display)) & 0xfff8;
228 
229 		target.timing.h_sync_end =
230 			((uint16)((si->ps.p1_timing.h_sync_end / ((float)si->ps.p1_timing.h_display)) *
231 			target.timing.h_display)) & 0xfff8;
232 
233 		target.timing.h_total =
234 			(((uint16)((si->ps.p1_timing.h_total / ((float)si->ps.p1_timing.h_display)) *
235 			target.timing.h_display)) & 0xfff8) - 8;
236 
237 		/* in native mode the CRTC needs some extra time to keep synced correctly;
238 		 * OTOH the overlay unit distorts if we reserve too much time! */
239 		if (target.timing.h_display == si->ps.p1_timing.h_display)
240 		{
241 			/* NV11 timing has different constraints than later cards */
242 			if (si->ps.card_type == NV11)
243 				target.timing.h_total -= 56;
244 			else
245 				/* confirmed NV34 with 1680x1050 panel */
246 				target.timing.h_total -= 32;
247 		}
248 
249 		/* assure sync pulse is at the correct timing position */
250 		if (target.timing.h_sync_start == target.timing.h_display)
251 			target.timing.h_sync_start += 8;
252 		if (target.timing.h_sync_end == target.timing.h_total)
253 			target.timing.h_sync_end -= 8;
254 		/* assure we (still) have a sync pulse */
255 		if (target.timing.h_sync_start == target.timing.h_sync_end) {
256 			if (target.timing.h_sync_end < (target.timing.h_total - 8)) {
257 				target.timing.h_sync_end += 8;
258 			} else {
259 				if (target.timing.h_sync_start > (target.timing.h_display + 8)) {
260 					target.timing.h_sync_start -= 8;
261 				} else {
262 					LOG(2,("CRTC: tuning modeline, not enough room for Hsync pulse, forcing it anyway..\n"));
263 					target.timing.h_sync_start -= 8;
264 				}
265 			}
266 		}
267 
268 		/* vertical timing */
269 		target.timing.v_sync_start =
270 			((uint16)((si->ps.p1_timing.v_sync_start / ((float)si->ps.p1_timing.v_display)) *
271 			target.timing.v_display));
272 
273 		target.timing.v_sync_end =
274 			((uint16)((si->ps.p1_timing.v_sync_end / ((float)si->ps.p1_timing.v_display)) *
275 			target.timing.v_display));
276 
277 		target.timing.v_total =
278 			((uint16)((si->ps.p1_timing.v_total / ((float)si->ps.p1_timing.v_display)) *
279 			target.timing.v_display)) - 1;
280 
281 		/* assure sync pulse is at the correct timing position */
282 		if (target.timing.v_sync_start == target.timing.v_display)
283 			target.timing.v_sync_start += 1;
284 		if (target.timing.v_sync_end == target.timing.v_total)
285 			target.timing.v_sync_end -= 1;
286 		/* assure we (still) have a sync pulse */
287 		if (target.timing.v_sync_start == target.timing.v_sync_end) {
288 			if (target.timing.v_sync_end < (target.timing.v_total - 1)) {
289 				target.timing.v_sync_end += 1;
290 			} else {
291 				if (target.timing.v_sync_start > (target.timing.v_display + 1)) {
292 					target.timing.v_sync_start -= 1;
293 				} else {
294 					LOG(2,("CRTC: tuning modeline, not enough room for Vsync pulse, forcing it anyway..\n"));
295 					target.timing.v_sync_start -= 1;
296 				}
297 			}
298 		}
299 
300 		/* disable GPU scaling testmode so automatic scaling will be done */
301 		DACW(FP_DEBUG1, 0);
302 	}
303 
304 	/* Modify parameters as required by standard VGA */
305 	htotal = ((target.timing.h_total >> 3) - 5);
306 	hdisp_e = ((target.timing.h_display >> 3) - 1);
307 	hblnk_s = hdisp_e;
308 	hblnk_e = (htotal + 4);
309 	hsync_s = (target.timing.h_sync_start >> 3);
310 	hsync_e = (target.timing.h_sync_end >> 3);
311 
312 	vtotal = target.timing.v_total - 2;
313 	vdisp_e = target.timing.v_display - 1;
314 	vblnk_s = vdisp_e;
315 	vblnk_e = (vtotal + 1);
316 	vsync_s = target.timing.v_sync_start;
317 	vsync_e = target.timing.v_sync_end;
318 
319 	/* prevent memory adress counter from being reset (linecomp may not occur) */
320 	linecomp = target.timing.v_display;
321 
322 	/* enable access to primary head */
323 	set_crtc_owner(0);
324 
325 	/* Note for laptop and DVI flatpanels:
326 	 * CRTC timing has a seperate set of registers from flatpanel timing.
327 	 * The flatpanel timing registers have scaling registers that are used to match
328 	 * these two modelines. */
329 	{
330 		LOG(4,("CRTC: Setting full timing...\n"));
331 
332 		/* log the mode that will be set */
333 		LOG(2,("CRTC:\n\tHTOT:%x\n\tHDISPEND:%x\n\tHBLNKS:%x\n\tHBLNKE:%x\n\tHSYNCS:%x\n\tHSYNCE:%x\n\t",htotal,hdisp_e,hblnk_s,hblnk_e,hsync_s,hsync_e));
334 		LOG(2,("VTOT:%x\n\tVDISPEND:%x\n\tVBLNKS:%x\n\tVBLNKE:%x\n\tVSYNCS:%x\n\tVSYNCE:%x\n",vtotal,vdisp_e,vblnk_s,vblnk_e,vsync_s,vsync_e));
335 
336 		/* actually program the card! */
337 		/* unlock CRTC registers at index 0-7 */
338 		CRTCW(VSYNCE, (CRTCR(VSYNCE) & 0x7f));
339 		/* horizontal standard VGA regs */
340 		CRTCW(HTOTAL, (htotal & 0xff));
341 		CRTCW(HDISPE, (hdisp_e & 0xff));
342 		CRTCW(HBLANKS, (hblnk_s & 0xff));
343 		/* also unlock vertical retrace registers in advance */
344 		CRTCW(HBLANKE, ((hblnk_e & 0x1f) | 0x80));
345 		CRTCW(HSYNCS, (hsync_s & 0xff));
346 		CRTCW(HSYNCE, ((hsync_e & 0x1f) | ((hblnk_e & 0x20) << 2)));
347 
348 		/* vertical standard VGA regs */
349 		CRTCW(VTOTAL, (vtotal & 0xff));
350 		CRTCW(OVERFLOW,
351 		(
352 			((vtotal & 0x100) >> (8 - 0)) | ((vtotal & 0x200) >> (9 - 5)) |
353 			((vdisp_e & 0x100) >> (8 - 1)) | ((vdisp_e & 0x200) >> (9 - 6)) |
354 			((vsync_s & 0x100) >> (8 - 2)) | ((vsync_s & 0x200) >> (9 - 7)) |
355 			((vblnk_s & 0x100) >> (8 - 3)) | ((linecomp & 0x100) >> (8 - 4))
356 		));
357 		CRTCW(PRROWSCN, 0x00); /* not used */
358 		CRTCW(MAXSCLIN, (((vblnk_s & 0x200) >> (9 - 5)) | ((linecomp & 0x200) >> (9 - 6))));
359 		CRTCW(VSYNCS, (vsync_s & 0xff));
360 		CRTCW(VSYNCE, ((CRTCR(VSYNCE) & 0xf0) | (vsync_e & 0x0f)));
361 		CRTCW(VDISPE, (vdisp_e & 0xff));
362 		CRTCW(VBLANKS, (vblnk_s & 0xff));
363 		CRTCW(VBLANKE, (vblnk_e & 0xff));
364 		CRTCW(LINECOMP, (linecomp & 0xff));
365 
366 		/* horizontal extended regs */
367 		//fixme: we reset bit4. is this correct??
368 		CRTCW(HEB, (CRTCR(HEB) & 0xe0) |
369 			(
370 		 	((htotal & 0x100) >> (8 - 0)) |
371 			((hdisp_e & 0x100) >> (8 - 1)) |
372 			((hblnk_s & 0x100) >> (8 - 2)) |
373 			((hsync_s & 0x100) >> (8 - 3))
374 			));
375 
376 		/* (mostly) vertical extended regs */
377 		CRTCW(LSR,
378 			(
379 		 	((vtotal & 0x400) >> (10 - 0)) |
380 			((vdisp_e & 0x400) >> (10 - 1)) |
381 			((vsync_s & 0x400) >> (10 - 2)) |
382 			((vblnk_s & 0x400) >> (10 - 3)) |
383 			((hblnk_e & 0x040) >> (6 - 4))
384 			//fixme: we still miss one linecomp bit!?! is this it??
385 			//| ((linecomp & 0x400) >> 3)
386 			));
387 
388 		/* more vertical extended regs (on GeForce cards only) */
389 		if (si->ps.card_arch >= NV10A)
390 		{
391 			CRTCW(EXTRA,
392 				(
393 			 	((vtotal & 0x800) >> (11 - 0)) |
394 				((vdisp_e & 0x800) >> (11 - 2)) |
395 				((vsync_s & 0x800) >> (11 - 4)) |
396 				((vblnk_s & 0x800) >> (11 - 6))
397 				//fixme: do we miss another linecomp bit!?!
398 				));
399 		}
400 
401 		/* setup 'large screen' mode */
402 		if (target.timing.h_display >= 1280)
403 			CRTCW(REPAINT1, (CRTCR(REPAINT1) & 0xfb));
404 		else
405 			CRTCW(REPAINT1, (CRTCR(REPAINT1) | 0x04));
406 
407 		/* setup HSYNC & VSYNC polarity */
408 		LOG(2,("CRTC: sync polarity: "));
409 		temp = NV_REG8(NV8_MISCR);
410 		if (target.timing.flags & B_POSITIVE_HSYNC)
411 		{
412 			LOG(2,("H:pos "));
413 			temp &= ~0x40;
414 		}
415 		else
416 		{
417 			LOG(2,("H:neg "));
418 			temp |= 0x40;
419 		}
420 		if (target.timing.flags & B_POSITIVE_VSYNC)
421 		{
422 			LOG(2,("V:pos "));
423 			temp &= ~0x80;
424 		}
425 		else
426 		{
427 			LOG(2,("V:neg "));
428 			temp |= 0x80;
429 		}
430 		NV_REG8(NV8_MISCW) = temp;
431 
432 		LOG(2,(", MISC reg readback: $%02x\n", NV_REG8(NV8_MISCR)));
433 	}
434 
435 	/* always disable interlaced operation */
436 	/* (interlace is supported on upto and including NV10, NV15, and NV30 and up) */
437 	CRTCW(INTERLACE, 0xff);
438 
439 	/* disable CRTC slaved mode unless a panel is in use */
440 	// fixme: this kills TVout when it was in use...
441 	if (!(si->ps.monitors & CRTC1_TMDS)) CRTCW(PIXEL, (CRTCR(PIXEL) & 0x7f));
442 
443 	/* setup flatpanel if connected and active */
444 	if (si->ps.monitors & CRTC1_TMDS)
445 	{
446 		uint32 iscale_x, iscale_y;
447 
448 		/* calculate inverse scaling factors used by hardware in 20.12 format */
449 		iscale_x = (((1 << 12) * target.timing.h_display) / si->ps.p1_timing.h_display);
450 		iscale_y = (((1 << 12) * target.timing.v_display) / si->ps.p1_timing.v_display);
451 
452 		/* unblock flatpanel timing programming (or something like that..) */
453 		CRTCW(FP_HTIMING, 0);
454 		CRTCW(FP_VTIMING, 0);
455 		LOG(2,("CRTC: FP_HTIMING reg readback: $%02x\n", CRTCR(FP_HTIMING)));
456 		LOG(2,("CRTC: FP_VTIMING reg readback: $%02x\n", CRTCR(FP_VTIMING)));
457 
458 		/* enable full width visibility on flatpanel */
459 		DACW(FP_HVALID_S, 0);
460 		DACW(FP_HVALID_E, (si->ps.p1_timing.h_display - 1));
461 		/* enable full height visibility on flatpanel */
462 		DACW(FP_VVALID_S, 0);
463 		DACW(FP_VVALID_E, (si->ps.p1_timing.v_display - 1));
464 
465 		/* nVidia cards support upscaling except on ??? */
466 		/* NV11 cards can upscale after all! */
467 		if (0)//si->ps.card_type == NV11)
468 		{
469 			/* disable last fetched line limiting */
470 			DACW(FP_DEBUG2, 0x00000000);
471 			/* inform panel to scale if needed */
472 			if ((iscale_x != (1 << 12)) || (iscale_y != (1 << 12)))
473 			{
474 				LOG(2,("CRTC: DFP needs to do scaling\n"));
475 				DACW(FP_TG_CTRL, (DACR(FP_TG_CTRL) | 0x00000100));
476 			}
477 			else
478 			{
479 				LOG(2,("CRTC: no scaling for DFP needed\n"));
480 				DACW(FP_TG_CTRL, (DACR(FP_TG_CTRL) & 0xfffffeff));
481 			}
482 		}
483 		else
484 		{
485 			float dm_aspect;
486 
487 			LOG(2,("CRTC: GPU scales for DFP if needed\n"));
488 
489 			/* calculate display mode aspect */
490 			dm_aspect = (target.timing.h_display / ((float)target.timing.v_display));
491 
492 			/* limit last fetched line if vertical scaling is done */
493 			if (iscale_y != (1 << 12))
494 				DACW(FP_DEBUG2, ((1 << 28) | ((target.timing.v_display - 1) << 16)));
495 			else
496 				DACW(FP_DEBUG2, 0x00000000);
497 
498 			/* inform panel not to scale */
499 			DACW(FP_TG_CTRL, (DACR(FP_TG_CTRL) & 0xfffffeff));
500 
501 			/* GPU scaling is automatically setup by hardware, so only modify this
502 			 * scalingfactor for non 4:3 (1.33) aspect panels;
503 			 * let's consider 1280x1024 1:33 aspect (it's 1.25 aspect actually!) */
504 
505 			/* correct for widescreen panels relative to mode...
506 			 * (so if panel is more widescreen than mode being set) */
507 			/* BTW: known widescreen panels:
508 			 * 1280 x  800 (1.60),
509 			 * 1440 x  900 (1.60),
510 			 * 1680 x 1050 (1.60),
511 			 * 1920 x 1200 (1.60). */
512 			/* known 4:3 aspect non-standard resolution panels:
513 			 * 1400 x 1050 (1.33). */
514 			/* NOTE:
515 			 * allow 0.10 difference so 1280x1024 panels will be used fullscreen! */
516 			if ((iscale_x != (1 << 12)) && (si->ps.crtc1_screen.aspect > (dm_aspect + 0.10)))
517 			{
518 				uint16 diff;
519 
520 				LOG(2,("CRTC: (relative) widescreen panel: tuning horizontal scaling\n"));
521 
522 				/* X-scaling should be the same as Y-scaling */
523 				iscale_x = iscale_y;
524 				/* enable testmode (b12) and program modified X-scaling factor */
525 				DACW(FP_DEBUG1, (((iscale_x >> 1) & 0x00000fff) | (1 << 12)));
526 				/* center/cut-off left and right side of screen */
527 				diff = ((si->ps.p1_timing.h_display -
528 						((target.timing.h_display * (1 << 12)) / iscale_x))
529 						/ 2);
530 				DACW(FP_HVALID_S, diff);
531 				DACW(FP_HVALID_E, ((si->ps.p1_timing.h_display - diff) - 1));
532 			}
533 			/* correct for portrait panels... */
534 			/* NOTE:
535 			 * allow 0.10 difference so 1280x1024 panels will be used fullscreen! */
536 			if ((iscale_y != (1 << 12)) && (si->ps.crtc1_screen.aspect < (dm_aspect - 0.10)))
537 			{
538 				LOG(2,("CRTC: (relative) portrait panel: should tune vertical scaling\n"));
539 				/* fixme: implement if this kind of portrait panels exist on nVidia... */
540 			}
541 		}
542 
543 		/* do some logging.. */
544 		LOG(2,("CRTC: FP_HVALID_S reg readback: $%08x\n", DACR(FP_HVALID_S)));
545 		LOG(2,("CRTC: FP_HVALID_E reg readback: $%08x\n", DACR(FP_HVALID_E)));
546 		LOG(2,("CRTC: FP_VVALID_S reg readback: $%08x\n", DACR(FP_VVALID_S)));
547 		LOG(2,("CRTC: FP_VVALID_E reg readback: $%08x\n", DACR(FP_VVALID_E)));
548 		LOG(2,("CRTC: FP_DEBUG0 reg readback: $%08x\n", DACR(FP_DEBUG0)));
549 		LOG(2,("CRTC: FP_DEBUG1 reg readback: $%08x\n", DACR(FP_DEBUG1)));
550 		LOG(2,("CRTC: FP_DEBUG2 reg readback: $%08x\n", DACR(FP_DEBUG2)));
551 		LOG(2,("CRTC: FP_DEBUG3 reg readback: $%08x\n", DACR(FP_DEBUG3)));
552 		LOG(2,("CRTC: FP_TG_CTRL reg readback: $%08x\n", DACR(FP_TG_CTRL)));
553 	}
554 
555 	return B_OK;
556 }
557 
nv_crtc_depth(int mode)558 status_t nv_crtc_depth(int mode)
559 {
560 	uint8 viddelay = 0;
561 	uint32 genctrl = 0;
562 
563 	/* set VCLK scaling */
564 	switch(mode)
565 	{
566 	case BPP8:
567 		viddelay = 0x01;
568 		/* genctrl b4 & b5 reset: 'direct mode' */
569 		genctrl = 0x00101100;
570 		break;
571 	case BPP15:
572 		viddelay = 0x02;
573 		/* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */
574 		genctrl = 0x00100130;
575 		break;
576 	case BPP16:
577 		viddelay = 0x02;
578 		/* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */
579 		genctrl = 0x00101130;
580 		break;
581 	case BPP24:
582 		viddelay = 0x03;
583 		/* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */
584 		genctrl = 0x00100130;
585 		break;
586 	case BPP32:
587 		viddelay = 0x03;
588 		/* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */
589 		genctrl = 0x00101130;
590 		break;
591 	}
592 	/* enable access to primary head */
593 	set_crtc_owner(0);
594 
595 	CRTCW(PIXEL, ((CRTCR(PIXEL) & 0xfc) | viddelay));
596 	DACW(GENCTRL, genctrl);
597 
598 	return B_OK;
599 }
600 
nv_crtc_dpms(bool display,bool h,bool v,bool do_panel)601 status_t nv_crtc_dpms(bool display, bool h, bool v, bool do_panel)
602 {
603 	uint8 temp;
604 	char msg[100];
605 
606 	strlcpy(msg, "CRTC: setting DPMS: ", sizeof(msg));
607 
608 	/* enable access to primary head */
609 	set_crtc_owner(0);
610 
611 	/* start synchronous reset: required before turning screen off! */
612 	SEQW(RESET, 0x01);
613 
614 	temp = SEQR(CLKMODE);
615 	if (display)
616 	{
617 		/* turn screen on */
618 		SEQW(CLKMODE, (temp & ~0x20));
619 
620 		/* end synchronous reset because display should be enabled */
621 		SEQW(RESET, 0x03);
622 
623 		if (do_panel && (si->ps.monitors & CRTC1_TMDS))
624 		{
625 			if (!si->ps.laptop)
626 			{
627 				/* restore original panelsync and panel-enable */
628 				uint32 panelsync = 0x00000000;
629 				if(si->ps.p1_timing.flags & B_POSITIVE_VSYNC) panelsync |= 0x00000001;
630 				if(si->ps.p1_timing.flags & B_POSITIVE_HSYNC) panelsync |= 0x00000010;
631 				/* display enable polarity (not an official flag) */
632 				if(si->ps.p1_timing.flags & B_BLANK_PEDESTAL) panelsync |= 0x10000000;
633 				DACW(FP_TG_CTRL, ((DACR(FP_TG_CTRL) & 0xcfffffcc) | panelsync));
634 
635 				//fixme?: looks like we don't need this after all:
636 				/* powerup both LVDS (laptop panellink) and TMDS (DVI panellink)
637 				 * internal transmitters... */
638 				/* note:
639 				 * the powerbits in this register are hardwired to the DVI connectors,
640 				 * instead of to the DACs! (confirmed NV34) */
641 				//fixme...
642 				//DACW(FP_DEBUG0, (DACR(FP_DEBUG0) & 0xcfffffff));
643 				/* ... and powerup external TMDS transmitter if it exists */
644 				/* (confirmed OK on NV28 and NV34) */
645 				//CRTCW(0x59, (CRTCR(0x59) | 0x01));
646 
647 				strlcat(msg, "(panel-)", sizeof(msg));
648 			}
649 			else
650 			{
651 				//fixme? linux only does this on dualhead cards...
652 				//fixme: see if LVDS head can be determined with two panels there...
653 				if (!(si->ps.monitors & CRTC2_TMDS) && (si->ps.card_type != NV11))
654 				{
655 					/* b2 = 0 = enable laptop panel backlight */
656 					/* note: this seems to be a write-only register. */
657 					NV_REG32(NV32_LVDS_PWR) = 0x00000003;
658 
659 					strlcat(msg, "(panel-)", sizeof(msg));
660 				}
661 			}
662 		}
663 
664 		strlcat(msg, "display on, ", sizeof(msg));
665 	}
666 	else
667 	{
668 		/* turn screen off */
669 		SEQW(CLKMODE, (temp | 0x20));
670 
671 		if (do_panel && (si->ps.monitors & CRTC1_TMDS))
672 		{
673 			if (!si->ps.laptop)
674 			{
675 				/* shutoff panelsync and disable panel */
676 				DACW(FP_TG_CTRL, ((DACR(FP_TG_CTRL) & 0xcfffffcc) | 0x20000022));
677 
678 				//fixme?: looks like we don't need this after all:
679 				/* powerdown both LVDS (laptop panellink) and TMDS (DVI panellink)
680 				 * internal transmitters... */
681 				/* note:
682 				 * the powerbits in this register are hardwired to the DVI connectors,
683 				 * instead of to the DACs! (confirmed NV34) */
684 				//fixme...
685 				//DACW(FP_DEBUG0, (DACR(FP_DEBUG0) | 0x30000000));
686 				/* ... and powerdown external TMDS transmitter if it exists */
687 				/* (confirmed OK on NV28 and NV34) */
688 				//CRTCW(0x59, (CRTCR(0x59) & 0xfe));
689 
690 				strlcat(msg, "(panel-)", sizeof(msg));
691 			}
692 			else
693 			{
694 				//fixme? linux only does this on dualhead cards...
695 				//fixme: see if LVDS head can be determined with two panels there...
696 				if (!(si->ps.monitors & CRTC2_TMDS) && (si->ps.card_type != NV11))
697 				{
698 					/* b2 = 1 = disable laptop panel backlight */
699 					/* note: this seems to be a write-only register. */
700 					NV_REG32(NV32_LVDS_PWR) = 0x00000007;
701 
702 					strlcat(msg, "(panel-)", sizeof(msg));
703 				}
704 			}
705 		}
706 
707 		strlcat(msg, "display off, ", sizeof(msg));
708 	}
709 
710 	if (h)
711 	{
712 		CRTCW(REPAINT1, (CRTCR(REPAINT1) & 0x7f));
713 		strlcat(msg, "hsync enabled, ", sizeof(msg));
714 	}
715 	else
716 	{
717 		CRTCW(REPAINT1, (CRTCR(REPAINT1) | 0x80));
718 		strlcat(msg, "hsync disabled, ", sizeof(msg));
719 	}
720 	if (v)
721 	{
722 		CRTCW(REPAINT1, (CRTCR(REPAINT1) & 0xbf));
723 		strlcat(msg, "vsync enabled\n", sizeof(msg));
724 	}
725 	else
726 	{
727 		CRTCW(REPAINT1, (CRTCR(REPAINT1) | 0x40));
728 		strlcat(msg, "vsync disabled\n", sizeof(msg));
729 	}
730 
731 	LOG(4, (msg));
732 
733 	return B_OK;
734 }
735 
nv_crtc_set_display_pitch()736 status_t nv_crtc_set_display_pitch()
737 {
738 	uint32 offset;
739 
740 	LOG(4,("CRTC: setting card pitch (offset between lines)\n"));
741 
742 	/* figure out offset value hardware needs */
743 	offset = si->fbc.bytes_per_row / 8;
744 
745 	LOG(2,("CRTC: offset register set to: $%04x\n", offset));
746 
747 	/* enable access to primary head */
748 	set_crtc_owner(0);
749 
750 	/* program the card */
751 	CRTCW(PITCHL, (offset & 0x00ff));
752 	CRTCW(REPAINT0, ((CRTCR(REPAINT0) & 0x1f) | ((offset & 0x0700) >> 3)));
753 
754 	return B_OK;
755 }
756 
nv_crtc_set_display_start(uint32 startadd,uint8 bpp)757 status_t nv_crtc_set_display_start(uint32 startadd,uint8 bpp)
758 {
759 	uint8 temp;
760 	uint32 timeout = 0;
761 
762 	LOG(4,("CRTC: setting card RAM to be displayed bpp %d\n", bpp));
763 
764 	LOG(2,("CRTC: startadd: $%08x\n", startadd));
765 	LOG(2,("CRTC: frameRAM: $%08x\n", si->framebuffer));
766 	LOG(2,("CRTC: framebuffer: $%08x\n", si->fbc.frame_buffer));
767 
768 	/* we might have no retraces during setmode! */
769 	/* wait 25mS max. for retrace to occur (refresh > 40Hz) */
770 	while (((NV_REG32(NV32_RASTER) & 0x000007ff) < si->dm.timing.v_display) &&
771 			(timeout < (25000/10)))
772 	{
773 		/* don't snooze much longer or retrace might get missed! */
774 		snooze(10);
775 		timeout++;
776 	}
777 
778 	/* enable access to primary head */
779 	set_crtc_owner(0);
780 
781 	if (si->ps.card_arch == NV04A)
782 	{
783 		/* upto 32Mb RAM adressing: must be used this way on pre-NV10! */
784 
785 		/* set standard registers */
786 		/* (NVidia: startadress in 32bit words (b2 - b17) */
787 		CRTCW(FBSTADDL, ((startadd & 0x000003fc) >> 2));
788 		CRTCW(FBSTADDH, ((startadd & 0x0003fc00) >> 10));
789 
790 		/* set extended registers */
791 		/* NV4 extended bits: (b18-22) */
792 		temp = (CRTCR(REPAINT0) & 0xe0);
793 		CRTCW(REPAINT0, (temp | ((startadd & 0x007c0000) >> 18)));
794 		/* NV4 extended bits: (b23-24) */
795 		temp = (CRTCR(HEB) & 0x9f);
796 		CRTCW(HEB, (temp | ((startadd & 0x01800000) >> 18)));
797 	}
798 	else
799 	{
800 		/* upto 4Gb RAM adressing: must be used on NV10 and later! */
801 		/* NOTE:
802 		 * While this register also exists on pre-NV10 cards, it will
803 		 * wrap-around at 16Mb boundaries!! */
804 
805 		/* 30bit adress in 32bit words */
806 		NV_REG32(NV32_NV10FBSTADD32) = (startadd & 0xfffffffc);
807 	}
808 
809 	/* set NV4/NV10 byte adress: (b0 - 1) */
810 	ATBW(HORPIXPAN, ((startadd & 0x00000003) << 1));
811 
812 	return B_OK;
813 }
814 
nv_crtc_cursor_init()815 status_t nv_crtc_cursor_init()
816 {
817 	int i;
818 	vuint32 * fb;
819 	/* cursor bitmap will be stored at the start of the framebuffer */
820 	const uint32 curadd = 0;
821 
822 	/* enable access to primary head */
823 	set_crtc_owner(0);
824 
825 	/* set cursor bitmap adress ... */
826 	if ((si->ps.card_arch == NV04A) || (si->ps.laptop))
827 	{
828 		/* must be used this way on pre-NV10 and on all 'Go' cards! */
829 
830 		/* cursorbitmap must start on 2Kbyte boundary: */
831 		/* set adress bit11-16, and set 'no doublescan' (registerbit 1 = 0) */
832 		CRTCW(CURCTL0, ((curadd & 0x0001f800) >> 9));
833 		/* set adress bit17-23, and set graphics mode cursor(?) (registerbit 7 = 1) */
834 		CRTCW(CURCTL1, (((curadd & 0x00fe0000) >> 17) | 0x80));
835 		/* set adress bit24-31 */
836 		CRTCW(CURCTL2, ((curadd & 0xff000000) >> 24));
837 	}
838 	else
839 	{
840 		/* upto 4Gb RAM adressing:
841 		 * can be used on NV10 and later (except for 'Go' cards)! */
842 		/* NOTE:
843 		 * This register does not exist on pre-NV10 and 'Go' cards. */
844 
845 		/* cursorbitmap must still start on 2Kbyte boundary: */
846 		NV_REG32(NV32_NV10CURADD32) = (curadd & 0xfffff800);
847 	}
848 
849 	/* set cursor colour: not needed because of direct nature of cursor bitmap. */
850 
851 	/*clear cursor*/
852 	fb = (vuint32 *) si->framebuffer + curadd;
853 	for (i=0;i<(2048/4);i++)
854 	{
855 		fb[i]=0;
856 	}
857 
858 	/* select 32x32 pixel, 16bit color cursorbitmap, no doublescan */
859 	NV_REG32(NV32_CURCONF) = 0x02000100;
860 
861 	/* activate hardware-sync between cursor updates and vertical retrace where
862 	 * available */
863 	if (si->ps.card_arch >= NV10A)
864 		DACW(NV10_CURSYNC, (DACR(NV10_CURSYNC) | 0x02000000));
865 
866 	/* activate hardware cursor */
867 	nv_crtc_cursor_show();
868 
869 	return B_OK;
870 }
871 
nv_crtc_cursor_show()872 status_t nv_crtc_cursor_show()
873 {
874 	LOG(4,("CRTC: enabling cursor\n"));
875 
876 	/* enable access to CRTC1 on dualhead cards */
877 	set_crtc_owner(0);
878 
879 	/* b0 = 1 enables cursor */
880 	CRTCW(CURCTL0, (CRTCR(CURCTL0) | 0x01));
881 
882 	/* workaround for hardware bug confirmed existing on NV43:
883 	 * Cursor visibility is not updated without a position update if its hardware
884 	 * retrace sync is enabled. */
885 	if (si->ps.card_arch == NV40A) DACW(CURPOS, (DACR(CURPOS)));
886 
887 	return B_OK;
888 }
889 
nv_crtc_cursor_hide()890 status_t nv_crtc_cursor_hide()
891 {
892 	LOG(4,("CRTC: disabling cursor\n"));
893 
894 	/* enable access to primary head */
895 	set_crtc_owner(0);
896 
897 	/* b0 = 0 disables cursor */
898 	CRTCW(CURCTL0, (CRTCR(CURCTL0) & 0xfe));
899 
900 	/* workaround for hardware bug confirmed existing on NV43:
901 	 * Cursor visibility is not updated without a position update if its hardware
902 	 * retrace sync is enabled. */
903 	if (si->ps.card_arch == NV40A) DACW(CURPOS, (DACR(CURPOS)));
904 
905 	return B_OK;
906 }
907 
908 /*set up cursor shape*/
nv_crtc_cursor_define(uint8 * andMask,uint8 * xorMask)909 status_t nv_crtc_cursor_define(uint8* andMask,uint8* xorMask)
910 {
911 	int x, y;
912 	uint8 b;
913 	vuint16 *cursor;
914 	uint16 pixel;
915 
916 	/* get a pointer to the cursor */
917 	cursor = (vuint16*) si->framebuffer;
918 
919 	/* draw the cursor */
920 	/* (Nvidia cards have a RGB15 direct color cursor bitmap, bit #16 is transparancy) */
921 	for (y = 0; y < 16; y++)
922 	{
923 		b = 0x80;
924 		for (x = 0; x < 8; x++)
925 		{
926 			/* preset transparant */
927 			pixel = 0x0000;
928 			/* set white if requested */
929 			if ((!(*andMask & b)) && (!(*xorMask & b))) pixel = 0xffff;
930 			/* set black if requested */
931 			if ((!(*andMask & b)) &&   (*xorMask & b))  pixel = 0x8000;
932 			/* set invert if requested */
933 			if (  (*andMask & b)  &&   (*xorMask & b))  pixel = 0x7fff;
934 			/* place the pixel in the bitmap */
935 			cursor[x + (y * 32)] = pixel;
936 			b >>= 1;
937 		}
938 		xorMask++;
939 		andMask++;
940 		b = 0x80;
941 		for (; x < 16; x++)
942 		{
943 			/* preset transparant */
944 			pixel = 0x0000;
945 			/* set white if requested */
946 			if ((!(*andMask & b)) && (!(*xorMask & b))) pixel = 0xffff;
947 			/* set black if requested */
948 			if ((!(*andMask & b)) &&   (*xorMask & b))  pixel = 0x8000;
949 			/* set invert if requested */
950 			if (  (*andMask & b)  &&   (*xorMask & b))  pixel = 0x7fff;
951 			/* place the pixel in the bitmap */
952 			cursor[x + (y * 32)] = pixel;
953 			b >>= 1;
954 		}
955 		xorMask++;
956 		andMask++;
957 	}
958 
959 	return B_OK;
960 }
961 
962 /* position the cursor */
nv_crtc_cursor_position(uint16 x,uint16 y)963 status_t nv_crtc_cursor_position(uint16 x, uint16 y)
964 {
965 	/* the cursor position is updated during retrace by card hardware except for
966 	 * pre-GeForce cards */
967 	if (si->ps.card_arch < NV10A)
968 	{
969 		uint16 yhigh;
970 		uint32 timeout = 0;
971 
972 		/* make sure we are beyond the first line of the cursorbitmap being drawn during
973 		 * updating the position to prevent distortions: no double buffering feature */
974 		/* Note:
975 		 * we need to return as quick as possible or some apps will exhibit lagging.. */
976 
977 		/* read the old cursor Y position */
978 		yhigh = ((DACR(CURPOS) & 0x0fff0000) >> 16);
979 		/* make sure we will wait until we are below both the old and new Y position:
980 		 * visible cursorbitmap drawing needs to be done at least... */
981 		if (y > yhigh) yhigh = y;
982 
983 		if (yhigh < (si->dm.timing.v_display - 16))
984 		{
985 			/* we have vertical lines below old and new cursorposition to spare. So we
986 			 * update the cursor postion 'mid-screen', but below that area. */
987 			/* wait 25mS max. (refresh > 40Hz) */
988 			while ((((uint16)(NV_REG32(NV32_RASTER) & 0x000007ff)) < (yhigh + 16)) &&
989 			(timeout < (25000/10)))
990 			{
991 				snooze(10);
992 				timeout++;
993 			}
994 		}
995 		else
996 		{
997 			timeout = 0;
998 			/* no room to spare, just wait for retrace (is relatively slow) */
999 			/* wait 25mS max. (refresh > 40Hz) */
1000 			while (((NV_REG32(NV32_RASTER) & 0x000007ff) < si->dm.timing.v_display) &&
1001 			(timeout < (25000/10)))
1002 			{
1003 				/* don't snooze much longer or retrace might get missed! */
1004 				snooze(10);
1005 				timeout++;
1006 			}
1007 		}
1008 	}
1009 
1010 	/* update cursorposition */
1011 	DACW(CURPOS, ((x & 0x0fff) | ((y & 0x0fff) << 16)));
1012 
1013 	return B_OK;
1014 }
1015 
nv_crtc_stop_tvout(void)1016 status_t nv_crtc_stop_tvout(void)
1017 {
1018 	uint16 cnt;
1019 
1020 	LOG(4,("CRTC: stopping TV output\n"));
1021 
1022 	/* enable access to primary head */
1023 	set_crtc_owner(0);
1024 
1025 	/* just to be sure Vsync is _really_ enabled */
1026 	CRTCW(REPAINT1, (CRTCR(REPAINT1) & 0xbf));
1027 
1028 	/* wait for one image to be generated to make sure VGA has kicked in and is
1029 	 * running OK before continuing...
1030 	 * (Kicking in will fail often if we do not wait here) */
1031 	/* Note:
1032 	 * The used CRTC's Vsync is required to be enabled here. The DPMS state
1033 	 * programming in the driver makes sure this is the case.
1034 	 * (except for driver startup: see nv_general.c.) */
1035 
1036 	/* make sure we are 'in' active VGA picture: wait with timeout! */
1037 	cnt = 1;
1038 	while ((NV_REG8(NV8_INSTAT1) & 0x08) && cnt)
1039 	{
1040 		snooze(1);
1041 		cnt++;
1042 	}
1043 	/* wait for next vertical retrace start on VGA: wait with timeout! */
1044 	cnt = 1;
1045 	while ((!(NV_REG8(NV8_INSTAT1) & 0x08)) && cnt)
1046 	{
1047 		snooze(1);
1048 		cnt++;
1049 	}
1050 	/* now wait until we are 'in' active VGA picture again: wait with timeout! */
1051 	cnt = 1;
1052 	while ((NV_REG8(NV8_INSTAT1) & 0x08) && cnt)
1053 	{
1054 		snooze(1);
1055 		cnt++;
1056 	}
1057 
1058 	/* set CRTC to master mode (b7 = 0) if it wasn't slaved for a panel before */
1059 	if (!(si->ps.slaved_tmds1))	CRTCW(PIXEL, (CRTCR(PIXEL) & 0x03));
1060 
1061 	/* CAUTION:
1062 	 * On old cards, PLLSEL (and TV_SETUP?) cannot be read (sometimes?), but
1063 	 * write actions do succeed ...
1064 	 * This is confirmed for both ISA and PCI access, on NV04 and NV11. */
1065 
1066 	/* setup TVencoder connection */
1067 	/* b1-0 = %00: encoder type is SLAVE;
1068 	 * b24 = 1: VIP datapos is b0-7 */
1069 	//fixme if needed: setup completely instead of relying on pre-init by BIOS..
1070 	//(it seems to work OK on NV04 and NV11 although read reg. doesn't seem to work)
1071 	DACW(TV_SETUP, ((DACR(TV_SETUP) & ~0x00000003) | 0x01000000));
1072 
1073 	/* tell GPU to use pixelclock from internal source instead of using TVencoder */
1074 	if (si->ps.secondary_head)
1075 		DACW(PLLSEL, 0x30000f00);
1076 	else
1077 		DACW(PLLSEL, 0x10000700);
1078 
1079 	/* HTOTAL, VTOTAL and OVERFLOW return their default CRTC use, instead of
1080 	 * H, V-low and V-high 'shadow' counters(?)(b0, 4 and 6 = 0) (b7 use = unknown) */
1081 	CRTCW(TREG, 0x00);
1082 
1083 	/* select panel encoder, not TV encoder if needed (b0 = 1).
1084 	 * Note:
1085 	 * Both are devices (often) using the CRTC in slaved mode. */
1086 	if (si->ps.slaved_tmds1) CRTCW(LCD, (CRTCR(LCD) | 0x01));
1087 
1088 	return B_OK;
1089 }
1090 
nv_crtc_start_tvout(void)1091 status_t nv_crtc_start_tvout(void)
1092 {
1093 	LOG(4,("CRTC: starting TV output\n"));
1094 
1095 	if (si->ps.secondary_head)
1096 	{
1097 		/* switch TV encoder to CRTC1 */
1098 		NV_REG32(NV32_2FUNCSEL) &= ~0x00000100;
1099 		NV_REG32(NV32_FUNCSEL) |= 0x00000100;
1100 	}
1101 
1102 	/* enable access to primary head */
1103 	set_crtc_owner(0);
1104 
1105 	/* CAUTION:
1106 	 * On old cards, PLLSEL (and TV_SETUP?) cannot be read (sometimes?), but
1107 	 * write actions do succeed ...
1108 	 * This is confirmed for both ISA and PCI access, on NV04 and NV11. */
1109 
1110 	/* setup TVencoder connection */
1111 	/* b1-0 = %01: encoder type is MASTER;
1112 	 * b24 = 1: VIP datapos is b0-7 */
1113 	//fixme if needed: setup completely instead of relying on pre-init by BIOS..
1114 	//(it seems to work OK on NV04 and NV11 although read reg. doesn't seem to work)
1115 	DACW(TV_SETUP, ((DACR(TV_SETUP) & ~0x00000002) | 0x01000001));
1116 
1117 	/* tell GPU to use pixelclock from TVencoder instead of using internal source */
1118 	/* (nessecary or display will 'shiver' on both TV and VGA.) */
1119 	if (si->ps.secondary_head)
1120 		DACW(PLLSEL, 0x20030f00);
1121 	else
1122 		DACW(PLLSEL, 0x00030700);
1123 
1124 	/* Set overscan color to 'black' */
1125 	/* note:
1126 	 * Change this instruction for a visible overscan color if you're trying to
1127 	 * center the output on TV. Use it as a guide-'line' then ;-) */
1128 	ATBW(OSCANCOLOR, 0x00);
1129 
1130 	/* set CRTC to slaved mode (b7 = 1) and clear TVadjust (b3-5 = %000) */
1131 	CRTCW(PIXEL, ((CRTCR(PIXEL) & 0xc7) | 0x80));
1132 	/* select TV encoder, not panel encoder (b0 = 0).
1133 	 * Note:
1134 	 * Both are devices (often) using the CRTC in slaved mode. */
1135 	CRTCW(LCD, (CRTCR(LCD) & 0xfe));
1136 
1137 	/* HTOTAL, VTOTAL and OVERFLOW return their default CRTC use, instead of
1138 	 * H, V-low and V-high 'shadow' counters(?)(b0, 4 and 6 = 0) (b7 use = unknown) */
1139 	CRTCW(TREG, 0x80);
1140 
1141 	return B_OK;
1142 }
1143