1 2 /* 3 * IBM Accurate Mathematical Library 4 * Written by International Business Machines Corp. 5 * Copyright (C) 2001 Free Software Foundation, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU Lesser General Public License as published by 9 * the Free Software Foundation; either version 2.1 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 20 */ 21 22 /************************************************************************/ 23 /* MODULE_NAME: mpa.h */ 24 /* */ 25 /* FUNCTIONS: */ 26 /* mcr */ 27 /* acr */ 28 /* cr */ 29 /* cpy */ 30 /* cpymn */ 31 /* mp_dbl */ 32 /* dbl_mp */ 33 /* add */ 34 /* sub */ 35 /* mul */ 36 /* inv */ 37 /* dvd */ 38 /* */ 39 /* Arithmetic functions for multiple precision numbers. */ 40 /* Common types and definition */ 41 /************************************************************************/ 42 43 44 typedef struct {/* This structure holds the details of a multi-precision */ 45 int e; /* floating point number, x: d[0] holds its sign (-1,0 or 1) */ 46 double d[40]; /* e holds its exponent (...,-2,-1,0,1,2,...) and */ 47 } mp_no; /* d[1]...d[p] hold its mantissa digits. The value of x is, */ 48 /* x = d[1]*r**(e-1) + d[2]*r**(e-2) + ... + d[p]*r**(e-p). */ 49 /* Here r = 2**24, 0 <= d[i] < r and 1 <= p <= 32. */ 50 /* p is a global variable. A multi-precision number is */ 51 /* always normalized. Namely, d[1] > 0. An exception is */ 52 /* a zero which is characterized by d[0] = 0. The terms */ 53 /* d[p+1], d[p+2], ... of a none zero number have no */ 54 /* significance and so are the terms e, d[1],d[2],... */ 55 /* of a zero. */ 56 57 typedef union { int i[2]; double d; } number; 58 59 #define X x->d 60 #define Y y->d 61 #define Z z->d 62 #define EX x->e 63 #define EY y->e 64 #define EZ z->e 65 66 #define MAX(x,y) ((x) < (y) ? (y) : (x)) 67 #define MIN(x,y) ((x) < (y) ? (x) : (y)) 68 #define ABS(x) ((x) < 0 ? -(x) : (x)) 69 70 int __acr(const mp_no *, const mp_no *, int); 71 int __cr(const mp_no *, const mp_no *, int); 72 void __cpy(const mp_no *, mp_no *, int); 73 void __cpymn(const mp_no *, int, mp_no *, int); 74 void __mp_dbl(const mp_no *, double *, int); 75 void __dbl_mp(double, mp_no *, int); 76 void __add(const mp_no *, const mp_no *, mp_no *, int); 77 void __sub(const mp_no *, const mp_no *, mp_no *, int); 78 void __mul(const mp_no *, const mp_no *, mp_no *, int); 79 void __inv(const mp_no *, mp_no *, int); 80 void __dvd(const mp_no *, const mp_no *, mp_no *, int); 81 82 extern void __mpatan (mp_no *, mp_no *, int); 83 extern void __mpatan2 (mp_no *, mp_no *, mp_no *, int); 84 extern void __mpsqrt (mp_no *, mp_no *, int); 85 extern void __mpexp (mp_no *, mp_no *__y, int); 86 extern void __c32 (mp_no *, mp_no *, mp_no *, int); 87 extern int __mpranred (double, mp_no *, int); 88