1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2004, 2005
5 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
6 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
7 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice unmodified, this list of conditions, and the following
14 * disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 /*-
34 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
36 */
37
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/module.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/proc.h>
52 #include <sys/mount.h>
53 #include <sys/namei.h>
54 #include <sys/linker.h>
55 #include <sys/firmware.h>
56 #include <sys/taskqueue.h>
57
58 #include <machine/bus.h>
59 #include <machine/resource.h>
60 #include <sys/rman.h>
61
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64
65 #include <net/bpf.h>
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_types.h>
73
74 #include <net80211/ieee80211_var.h>
75 #include <net80211/ieee80211_radiotap.h>
76 #include <net80211/ieee80211_input.h>
77 #include <net80211/ieee80211_regdomain.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/in_var.h>
82 #include <netinet/ip.h>
83 #include <netinet/if_ether.h>
84
85 #include <dev/iwi/if_iwireg.h>
86 #include <dev/iwi/if_iwivar.h>
87 #include <dev/iwi/if_iwi_ioctl.h>
88
89 #define IWI_DEBUG
90 #ifdef IWI_DEBUG
91 #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0)
92 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0)
93 int iwi_debug = 0;
94 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
95
96 static const char *iwi_fw_states[] = {
97 "IDLE", /* IWI_FW_IDLE */
98 "LOADING", /* IWI_FW_LOADING */
99 "ASSOCIATING", /* IWI_FW_ASSOCIATING */
100 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */
101 "SCANNING", /* IWI_FW_SCANNING */
102 };
103 #else
104 #define DPRINTF(x)
105 #define DPRINTFN(n, x)
106 #endif
107
108 MODULE_DEPEND(iwi, pci, 1, 1, 1);
109 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
110 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
111
112 enum {
113 IWI_LED_TX,
114 IWI_LED_RX,
115 IWI_LED_POLL,
116 };
117
118 struct iwi_ident {
119 uint16_t vendor;
120 uint16_t device;
121 const char *name;
122 };
123
124 static const struct iwi_ident iwi_ident_table[] = {
125 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
126 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
127 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
128 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
129
130 { 0, 0, NULL }
131 };
132
133 static const uint8_t def_chan_5ghz_band1[] =
134 { 36, 40, 44, 48, 52, 56, 60, 64 };
135 static const uint8_t def_chan_5ghz_band2[] =
136 { 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 };
137 static const uint8_t def_chan_5ghz_band3[] =
138 { 149, 153, 157, 161, 165 };
139
140 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
141 const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
142 const uint8_t [IEEE80211_ADDR_LEN],
143 const uint8_t [IEEE80211_ADDR_LEN]);
144 static void iwi_vap_delete(struct ieee80211vap *);
145 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
146 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
147 int);
148 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
149 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
150 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
151 int, bus_addr_t, bus_addr_t);
152 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
153 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
154 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
155 int);
156 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
157 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
158 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
159 const uint8_t [IEEE80211_ADDR_LEN]);
160 static void iwi_node_free(struct ieee80211_node *);
161 static void iwi_media_status(if_t, struct ifmediareq *);
162 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
163 static void iwi_wme_init(struct iwi_softc *);
164 static int iwi_wme_setparams(struct iwi_softc *);
165 static int iwi_wme_update(struct ieee80211com *);
166 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t);
167 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
168 struct iwi_frame *);
169 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
170 static void iwi_rx_intr(struct iwi_softc *);
171 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
172 static void iwi_intr(void *);
173 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
174 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [IEEE80211_ADDR_LEN], int);
175 static int iwi_tx_start(struct iwi_softc *, struct mbuf *,
176 struct ieee80211_node *, int);
177 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
178 const struct ieee80211_bpf_params *);
179 static void iwi_start(struct iwi_softc *);
180 static int iwi_transmit(struct ieee80211com *, struct mbuf *);
181 static void iwi_watchdog(void *);
182 static int iwi_ioctl(struct ieee80211com *, u_long, void *);
183 static void iwi_parent(struct ieee80211com *);
184 static void iwi_stop_master(struct iwi_softc *);
185 static int iwi_reset(struct iwi_softc *);
186 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
187 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
188 static void iwi_release_fw_dma(struct iwi_softc *sc);
189 static int iwi_config(struct iwi_softc *);
190 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
191 static void iwi_put_firmware(struct iwi_softc *);
192 static void iwi_monitor_scan(void *, int);
193 static int iwi_scanchan(struct iwi_softc *, unsigned long, int);
194 static void iwi_scan_start(struct ieee80211com *);
195 static void iwi_scan_end(struct ieee80211com *);
196 static void iwi_set_channel(struct ieee80211com *);
197 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
198 static void iwi_scan_mindwell(struct ieee80211_scan_state *);
199 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
200 static void iwi_disassoc(void *, int);
201 static int iwi_disassociate(struct iwi_softc *, int quiet);
202 static void iwi_init_locked(struct iwi_softc *);
203 static void iwi_init(void *);
204 static int iwi_init_fw_dma(struct iwi_softc *, int);
205 static void iwi_stop_locked(void *);
206 static void iwi_stop(struct iwi_softc *);
207 static void iwi_restart(void *, int);
208 static int iwi_getrfkill(struct iwi_softc *);
209 static void iwi_radio_on(void *, int);
210 static void iwi_radio_off(void *, int);
211 static void iwi_sysctlattach(struct iwi_softc *);
212 static void iwi_led_event(struct iwi_softc *, int);
213 static void iwi_ledattach(struct iwi_softc *);
214 static void iwi_collect_bands(struct ieee80211com *, uint8_t [], size_t);
215 static void iwi_getradiocaps(struct ieee80211com *, int, int *,
216 struct ieee80211_channel []);
217
218 static int iwi_probe(device_t);
219 static int iwi_attach(device_t);
220 static int iwi_detach(device_t);
221 static int iwi_shutdown(device_t);
222 static int iwi_suspend(device_t);
223 static int iwi_resume(device_t);
224
225 static device_method_t iwi_methods[] = {
226 /* Device interface */
227 DEVMETHOD(device_probe, iwi_probe),
228 DEVMETHOD(device_attach, iwi_attach),
229 DEVMETHOD(device_detach, iwi_detach),
230 DEVMETHOD(device_shutdown, iwi_shutdown),
231 DEVMETHOD(device_suspend, iwi_suspend),
232 DEVMETHOD(device_resume, iwi_resume),
233
234 DEVMETHOD_END
235 };
236
237 static driver_t iwi_driver = {
238 "iwi",
239 iwi_methods,
240 sizeof (struct iwi_softc)
241 };
242
243 DRIVER_MODULE(iwi, pci, iwi_driver, NULL, NULL);
244
245 MODULE_VERSION(iwi, 1);
246
247 static __inline uint8_t
MEM_READ_1(struct iwi_softc * sc,uint32_t addr)248 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
249 {
250 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
251 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
252 }
253
254 static __inline uint32_t
MEM_READ_4(struct iwi_softc * sc,uint32_t addr)255 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
256 {
257 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
258 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
259 }
260
261 static int
iwi_probe(device_t dev)262 iwi_probe(device_t dev)
263 {
264 const struct iwi_ident *ident;
265
266 for (ident = iwi_ident_table; ident->name != NULL; ident++) {
267 if (pci_get_vendor(dev) == ident->vendor &&
268 pci_get_device(dev) == ident->device) {
269 device_set_desc(dev, ident->name);
270 return (BUS_PROBE_DEFAULT);
271 }
272 }
273 return ENXIO;
274 }
275
276 static int
iwi_attach(device_t dev)277 iwi_attach(device_t dev)
278 {
279 struct iwi_softc *sc = device_get_softc(dev);
280 struct ieee80211com *ic = &sc->sc_ic;
281 uint16_t val;
282 int i, error;
283
284 sc->sc_dev = dev;
285 sc->sc_ledevent = ticks;
286
287 IWI_LOCK_INIT(sc);
288 mbufq_init(&sc->sc_snd, ifqmaxlen);
289
290 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
291
292 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
293 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
294 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
295 TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc);
296 TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc);
297
298 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0);
299 callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0);
300
301 pci_write_config(dev, 0x41, 0, 1);
302
303 /* enable bus-mastering */
304 pci_enable_busmaster(dev);
305
306 i = PCIR_BAR(0);
307 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE);
308 if (sc->mem == NULL) {
309 device_printf(dev, "could not allocate memory resource\n");
310 goto fail;
311 }
312
313 sc->sc_st = rman_get_bustag(sc->mem);
314 sc->sc_sh = rman_get_bushandle(sc->mem);
315
316 i = 0;
317 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
318 RF_ACTIVE | RF_SHAREABLE);
319 if (sc->irq == NULL) {
320 device_printf(dev, "could not allocate interrupt resource\n");
321 goto fail;
322 }
323
324 if (iwi_reset(sc) != 0) {
325 device_printf(dev, "could not reset adapter\n");
326 goto fail;
327 }
328
329 /*
330 * Allocate rings.
331 */
332 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
333 device_printf(dev, "could not allocate Cmd ring\n");
334 goto fail;
335 }
336
337 for (i = 0; i < 4; i++) {
338 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
339 IWI_CSR_TX1_RIDX + i * 4,
340 IWI_CSR_TX1_WIDX + i * 4);
341 if (error != 0) {
342 device_printf(dev, "could not allocate Tx ring %d\n",
343 i+i);
344 goto fail;
345 }
346 }
347
348 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
349 device_printf(dev, "could not allocate Rx ring\n");
350 goto fail;
351 }
352
353 iwi_wme_init(sc);
354
355 ic->ic_softc = sc;
356 ic->ic_name = device_get_nameunit(dev);
357 ic->ic_opmode = IEEE80211_M_STA;
358 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
359
360 /* set device capabilities */
361 ic->ic_caps =
362 IEEE80211_C_STA /* station mode supported */
363 | IEEE80211_C_IBSS /* IBSS mode supported */
364 | IEEE80211_C_MONITOR /* monitor mode supported */
365 | IEEE80211_C_PMGT /* power save supported */
366 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
367 | IEEE80211_C_WPA /* 802.11i */
368 | IEEE80211_C_WME /* 802.11e */
369 #if 0
370 | IEEE80211_C_BGSCAN /* capable of bg scanning */
371 #endif
372 ;
373
374 /* read MAC address from EEPROM */
375 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
376 ic->ic_macaddr[0] = val & 0xff;
377 ic->ic_macaddr[1] = val >> 8;
378 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
379 ic->ic_macaddr[2] = val & 0xff;
380 ic->ic_macaddr[3] = val >> 8;
381 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
382 ic->ic_macaddr[4] = val & 0xff;
383 ic->ic_macaddr[5] = val >> 8;
384
385 iwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
386 ic->ic_channels);
387
388 ieee80211_ifattach(ic);
389 /* override default methods */
390 ic->ic_node_alloc = iwi_node_alloc;
391 sc->sc_node_free = ic->ic_node_free;
392 ic->ic_node_free = iwi_node_free;
393 ic->ic_raw_xmit = iwi_raw_xmit;
394 ic->ic_scan_start = iwi_scan_start;
395 ic->ic_scan_end = iwi_scan_end;
396 ic->ic_set_channel = iwi_set_channel;
397 ic->ic_scan_curchan = iwi_scan_curchan;
398 ic->ic_scan_mindwell = iwi_scan_mindwell;
399 ic->ic_wme.wme_update = iwi_wme_update;
400
401 ic->ic_vap_create = iwi_vap_create;
402 ic->ic_vap_delete = iwi_vap_delete;
403 ic->ic_ioctl = iwi_ioctl;
404 ic->ic_transmit = iwi_transmit;
405 ic->ic_parent = iwi_parent;
406 ic->ic_getradiocaps = iwi_getradiocaps;
407
408 ieee80211_radiotap_attach(ic,
409 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
410 IWI_TX_RADIOTAP_PRESENT,
411 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
412 IWI_RX_RADIOTAP_PRESENT);
413
414 iwi_sysctlattach(sc);
415 iwi_ledattach(sc);
416
417 /*
418 * Hook our interrupt after all initialization is complete.
419 */
420 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
421 NULL, iwi_intr, sc, &sc->sc_ih);
422 if (error != 0) {
423 device_printf(dev, "could not set up interrupt\n");
424 goto fail;
425 }
426
427 if (bootverbose)
428 ieee80211_announce(ic);
429
430 return 0;
431 fail:
432 /* XXX fix */
433 iwi_detach(dev);
434 return ENXIO;
435 }
436
437 static int
iwi_detach(device_t dev)438 iwi_detach(device_t dev)
439 {
440 struct iwi_softc *sc = device_get_softc(dev);
441 struct ieee80211com *ic = &sc->sc_ic;
442
443 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
444
445 /* NB: do early to drain any pending tasks */
446 ieee80211_draintask(ic, &sc->sc_radiontask);
447 ieee80211_draintask(ic, &sc->sc_radiofftask);
448 ieee80211_draintask(ic, &sc->sc_restarttask);
449 ieee80211_draintask(ic, &sc->sc_disassoctask);
450 ieee80211_draintask(ic, &sc->sc_monitortask);
451
452 iwi_stop(sc);
453
454 ieee80211_ifdetach(ic);
455
456 iwi_put_firmware(sc);
457 iwi_release_fw_dma(sc);
458
459 iwi_free_cmd_ring(sc, &sc->cmdq);
460 iwi_free_tx_ring(sc, &sc->txq[0]);
461 iwi_free_tx_ring(sc, &sc->txq[1]);
462 iwi_free_tx_ring(sc, &sc->txq[2]);
463 iwi_free_tx_ring(sc, &sc->txq[3]);
464 iwi_free_rx_ring(sc, &sc->rxq);
465
466 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq);
467
468 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem),
469 sc->mem);
470
471 delete_unrhdr(sc->sc_unr);
472 mbufq_drain(&sc->sc_snd);
473
474 IWI_LOCK_DESTROY(sc);
475
476 return 0;
477 }
478
479 static struct ieee80211vap *
iwi_vap_create(struct ieee80211com * ic,const char name[IFNAMSIZ],int unit,enum ieee80211_opmode opmode,int flags,const uint8_t bssid[IEEE80211_ADDR_LEN],const uint8_t mac[IEEE80211_ADDR_LEN])480 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
481 enum ieee80211_opmode opmode, int flags,
482 const uint8_t bssid[IEEE80211_ADDR_LEN],
483 const uint8_t mac[IEEE80211_ADDR_LEN])
484 {
485 struct iwi_softc *sc = ic->ic_softc;
486 struct iwi_vap *ivp;
487 struct ieee80211vap *vap;
488 int i;
489
490 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
491 return NULL;
492 /*
493 * Get firmware image (and possibly dma memory) on mode change.
494 */
495 if (iwi_get_firmware(sc, opmode))
496 return NULL;
497 /* allocate DMA memory for mapping firmware image */
498 i = sc->fw_fw.size;
499 if (sc->fw_boot.size > i)
500 i = sc->fw_boot.size;
501 /* XXX do we dma the ucode as well ? */
502 if (sc->fw_uc.size > i)
503 i = sc->fw_uc.size;
504 if (iwi_init_fw_dma(sc, i))
505 return NULL;
506
507 ivp = malloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
508 vap = &ivp->iwi_vap;
509 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
510 /* override the default, the setting comes from the linux driver */
511 vap->iv_bmissthreshold = 24;
512 /* override with driver methods */
513 ivp->iwi_newstate = vap->iv_newstate;
514 vap->iv_newstate = iwi_newstate;
515
516 /* complete setup */
517 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status,
518 mac);
519 ic->ic_opmode = opmode;
520 return vap;
521 }
522
523 static void
iwi_vap_delete(struct ieee80211vap * vap)524 iwi_vap_delete(struct ieee80211vap *vap)
525 {
526 struct iwi_vap *ivp = IWI_VAP(vap);
527
528 ieee80211_vap_detach(vap);
529 free(ivp, M_80211_VAP);
530 }
531
532 static void
iwi_dma_map_addr(void * arg,bus_dma_segment_t * segs,int nseg,int error)533 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
534 {
535 if (error != 0)
536 return;
537
538 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
539
540 *(bus_addr_t *)arg = segs[0].ds_addr;
541 }
542
543 static int
iwi_alloc_cmd_ring(struct iwi_softc * sc,struct iwi_cmd_ring * ring,int count)544 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
545 {
546 int error;
547
548 ring->count = count;
549 ring->queued = 0;
550 ring->cur = ring->next = 0;
551
552 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
553 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
554 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0,
555 NULL, NULL, &ring->desc_dmat);
556 if (error != 0) {
557 device_printf(sc->sc_dev, "could not create desc DMA tag\n");
558 goto fail;
559 }
560
561 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
562 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
563 if (error != 0) {
564 device_printf(sc->sc_dev, "could not allocate DMA memory\n");
565 goto fail;
566 }
567
568 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
569 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
570 if (error != 0) {
571 device_printf(sc->sc_dev, "could not load desc DMA map\n");
572 goto fail;
573 }
574
575 return 0;
576
577 fail: iwi_free_cmd_ring(sc, ring);
578 return error;
579 }
580
581 static void
iwi_reset_cmd_ring(struct iwi_softc * sc,struct iwi_cmd_ring * ring)582 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
583 {
584 ring->queued = 0;
585 ring->cur = ring->next = 0;
586 }
587
588 static void
iwi_free_cmd_ring(struct iwi_softc * sc,struct iwi_cmd_ring * ring)589 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
590 {
591 if (ring->desc != NULL) {
592 bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
593 BUS_DMASYNC_POSTWRITE);
594 bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
595 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
596 }
597
598 if (ring->desc_dmat != NULL)
599 bus_dma_tag_destroy(ring->desc_dmat);
600 }
601
602 static int
iwi_alloc_tx_ring(struct iwi_softc * sc,struct iwi_tx_ring * ring,int count,bus_addr_t csr_ridx,bus_addr_t csr_widx)603 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
604 bus_addr_t csr_ridx, bus_addr_t csr_widx)
605 {
606 int i, error;
607
608 ring->count = count;
609 ring->queued = 0;
610 ring->cur = ring->next = 0;
611 ring->csr_ridx = csr_ridx;
612 ring->csr_widx = csr_widx;
613
614 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
615 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
616 count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL,
617 NULL, &ring->desc_dmat);
618 if (error != 0) {
619 device_printf(sc->sc_dev, "could not create desc DMA tag\n");
620 goto fail;
621 }
622
623 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
624 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
625 if (error != 0) {
626 device_printf(sc->sc_dev, "could not allocate DMA memory\n");
627 goto fail;
628 }
629
630 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
631 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
632 if (error != 0) {
633 device_printf(sc->sc_dev, "could not load desc DMA map\n");
634 goto fail;
635 }
636
637 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
638 M_NOWAIT | M_ZERO);
639 if (ring->data == NULL) {
640 device_printf(sc->sc_dev, "could not allocate soft data\n");
641 error = ENOMEM;
642 goto fail;
643 }
644
645 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
646 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
647 IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
648 if (error != 0) {
649 device_printf(sc->sc_dev, "could not create data DMA tag\n");
650 goto fail;
651 }
652
653 for (i = 0; i < count; i++) {
654 error = bus_dmamap_create(ring->data_dmat, 0,
655 &ring->data[i].map);
656 if (error != 0) {
657 device_printf(sc->sc_dev, "could not create DMA map\n");
658 goto fail;
659 }
660 }
661
662 return 0;
663
664 fail: iwi_free_tx_ring(sc, ring);
665 return error;
666 }
667
668 static void
iwi_reset_tx_ring(struct iwi_softc * sc,struct iwi_tx_ring * ring)669 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
670 {
671 struct iwi_tx_data *data;
672 int i;
673
674 for (i = 0; i < ring->count; i++) {
675 data = &ring->data[i];
676
677 if (data->m != NULL) {
678 bus_dmamap_sync(ring->data_dmat, data->map,
679 BUS_DMASYNC_POSTWRITE);
680 bus_dmamap_unload(ring->data_dmat, data->map);
681 m_freem(data->m);
682 data->m = NULL;
683 }
684
685 if (data->ni != NULL) {
686 ieee80211_free_node(data->ni);
687 data->ni = NULL;
688 }
689 }
690
691 ring->queued = 0;
692 ring->cur = ring->next = 0;
693 }
694
695 static void
iwi_free_tx_ring(struct iwi_softc * sc,struct iwi_tx_ring * ring)696 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
697 {
698 struct iwi_tx_data *data;
699 int i;
700
701 if (ring->desc != NULL) {
702 bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
703 BUS_DMASYNC_POSTWRITE);
704 bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
705 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
706 }
707
708 if (ring->desc_dmat != NULL)
709 bus_dma_tag_destroy(ring->desc_dmat);
710
711 if (ring->data != NULL) {
712 for (i = 0; i < ring->count; i++) {
713 data = &ring->data[i];
714
715 if (data->m != NULL) {
716 bus_dmamap_sync(ring->data_dmat, data->map,
717 BUS_DMASYNC_POSTWRITE);
718 bus_dmamap_unload(ring->data_dmat, data->map);
719 m_freem(data->m);
720 }
721
722 if (data->ni != NULL)
723 ieee80211_free_node(data->ni);
724
725 if (data->map != NULL)
726 bus_dmamap_destroy(ring->data_dmat, data->map);
727 }
728
729 free(ring->data, M_DEVBUF);
730 }
731
732 if (ring->data_dmat != NULL)
733 bus_dma_tag_destroy(ring->data_dmat);
734 }
735
736 static int
iwi_alloc_rx_ring(struct iwi_softc * sc,struct iwi_rx_ring * ring,int count)737 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
738 {
739 struct iwi_rx_data *data;
740 int i, error;
741
742 ring->count = count;
743 ring->cur = 0;
744
745 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
746 M_NOWAIT | M_ZERO);
747 if (ring->data == NULL) {
748 device_printf(sc->sc_dev, "could not allocate soft data\n");
749 error = ENOMEM;
750 goto fail;
751 }
752
753 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
754 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
755 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
756 if (error != 0) {
757 device_printf(sc->sc_dev, "could not create data DMA tag\n");
758 goto fail;
759 }
760
761 for (i = 0; i < count; i++) {
762 data = &ring->data[i];
763
764 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
765 if (error != 0) {
766 device_printf(sc->sc_dev, "could not create DMA map\n");
767 goto fail;
768 }
769
770 data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
771 if (data->m == NULL) {
772 device_printf(sc->sc_dev,
773 "could not allocate rx mbuf\n");
774 error = ENOMEM;
775 goto fail;
776 }
777
778 error = bus_dmamap_load(ring->data_dmat, data->map,
779 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
780 &data->physaddr, 0);
781 if (error != 0) {
782 device_printf(sc->sc_dev,
783 "could not load rx buf DMA map");
784 goto fail;
785 }
786
787 data->reg = IWI_CSR_RX_BASE + i * 4;
788 }
789
790 return 0;
791
792 fail: iwi_free_rx_ring(sc, ring);
793 return error;
794 }
795
796 static void
iwi_reset_rx_ring(struct iwi_softc * sc,struct iwi_rx_ring * ring)797 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
798 {
799 ring->cur = 0;
800 }
801
802 static void
iwi_free_rx_ring(struct iwi_softc * sc,struct iwi_rx_ring * ring)803 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
804 {
805 struct iwi_rx_data *data;
806 int i;
807
808 if (ring->data != NULL) {
809 for (i = 0; i < ring->count; i++) {
810 data = &ring->data[i];
811
812 if (data->m != NULL) {
813 bus_dmamap_sync(ring->data_dmat, data->map,
814 BUS_DMASYNC_POSTREAD);
815 bus_dmamap_unload(ring->data_dmat, data->map);
816 m_freem(data->m);
817 }
818
819 if (data->map != NULL)
820 bus_dmamap_destroy(ring->data_dmat, data->map);
821 }
822
823 free(ring->data, M_DEVBUF);
824 }
825
826 if (ring->data_dmat != NULL)
827 bus_dma_tag_destroy(ring->data_dmat);
828 }
829
830 static int
iwi_shutdown(device_t dev)831 iwi_shutdown(device_t dev)
832 {
833 struct iwi_softc *sc = device_get_softc(dev);
834
835 iwi_stop(sc);
836 iwi_put_firmware(sc); /* ??? XXX */
837
838 return 0;
839 }
840
841 static int
iwi_suspend(device_t dev)842 iwi_suspend(device_t dev)
843 {
844 struct iwi_softc *sc = device_get_softc(dev);
845 struct ieee80211com *ic = &sc->sc_ic;
846
847 ieee80211_suspend_all(ic);
848 return 0;
849 }
850
851 static int
iwi_resume(device_t dev)852 iwi_resume(device_t dev)
853 {
854 struct iwi_softc *sc = device_get_softc(dev);
855 struct ieee80211com *ic = &sc->sc_ic;
856
857 pci_write_config(dev, 0x41, 0, 1);
858
859 ieee80211_resume_all(ic);
860 return 0;
861 }
862
863 static struct ieee80211_node *
iwi_node_alloc(struct ieee80211vap * vap,const uint8_t mac[IEEE80211_ADDR_LEN])864 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
865 {
866 struct iwi_node *in;
867
868 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
869 if (in == NULL)
870 return NULL;
871 /* XXX assign sta table entry for adhoc */
872 in->in_station = -1;
873
874 return &in->in_node;
875 }
876
877 static void
iwi_node_free(struct ieee80211_node * ni)878 iwi_node_free(struct ieee80211_node *ni)
879 {
880 struct ieee80211com *ic = ni->ni_ic;
881 struct iwi_softc *sc = ic->ic_softc;
882 struct iwi_node *in = (struct iwi_node *)ni;
883
884 if (in->in_station != -1) {
885 DPRINTF(("%s mac %6D station %u\n", __func__,
886 ni->ni_macaddr, ":", in->in_station));
887 free_unr(sc->sc_unr, in->in_station);
888 }
889
890 sc->sc_node_free(ni);
891 }
892
893 /*
894 * Convert h/w rate code to IEEE rate code.
895 */
896 static int
iwi_cvtrate(int iwirate)897 iwi_cvtrate(int iwirate)
898 {
899 switch (iwirate) {
900 case IWI_RATE_DS1: return 2;
901 case IWI_RATE_DS2: return 4;
902 case IWI_RATE_DS5: return 11;
903 case IWI_RATE_DS11: return 22;
904 case IWI_RATE_OFDM6: return 12;
905 case IWI_RATE_OFDM9: return 18;
906 case IWI_RATE_OFDM12: return 24;
907 case IWI_RATE_OFDM18: return 36;
908 case IWI_RATE_OFDM24: return 48;
909 case IWI_RATE_OFDM36: return 72;
910 case IWI_RATE_OFDM48: return 96;
911 case IWI_RATE_OFDM54: return 108;
912 }
913 return 0;
914 }
915
916 /*
917 * The firmware automatically adapts the transmit speed. We report its current
918 * value here.
919 */
920 static void
iwi_media_status(if_t ifp,struct ifmediareq * imr)921 iwi_media_status(if_t ifp, struct ifmediareq *imr)
922 {
923 struct ieee80211vap *vap = if_getsoftc(ifp);
924 struct ieee80211com *ic = vap->iv_ic;
925 struct iwi_softc *sc = ic->ic_softc;
926 struct ieee80211_node *ni;
927
928 /* read current transmission rate from adapter */
929 ni = ieee80211_ref_node(vap->iv_bss);
930 ni->ni_txrate =
931 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
932 ieee80211_free_node(ni);
933 ieee80211_media_status(ifp, imr);
934 }
935
936 static int
iwi_newstate(struct ieee80211vap * vap,enum ieee80211_state nstate,int arg)937 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
938 {
939 struct iwi_vap *ivp = IWI_VAP(vap);
940 struct ieee80211com *ic = vap->iv_ic;
941 struct iwi_softc *sc = ic->ic_softc;
942 IWI_LOCK_DECL;
943
944 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
945 ieee80211_state_name[vap->iv_state],
946 ieee80211_state_name[nstate], sc->flags));
947
948 IEEE80211_UNLOCK(ic);
949 IWI_LOCK(sc);
950 switch (nstate) {
951 case IEEE80211_S_INIT:
952 /*
953 * NB: don't try to do this if iwi_stop_master has
954 * shutdown the firmware and disabled interrupts.
955 */
956 if (vap->iv_state == IEEE80211_S_RUN &&
957 (sc->flags & IWI_FLAG_FW_INITED))
958 iwi_disassociate(sc, 0);
959 break;
960 case IEEE80211_S_AUTH:
961 iwi_auth_and_assoc(sc, vap);
962 break;
963 case IEEE80211_S_RUN:
964 if (vap->iv_opmode == IEEE80211_M_IBSS &&
965 vap->iv_state == IEEE80211_S_SCAN) {
966 /*
967 * XXX when joining an ibss network we are called
968 * with a SCAN -> RUN transition on scan complete.
969 * Use that to call iwi_auth_and_assoc. On completing
970 * the join we are then called again with an
971 * AUTH -> RUN transition and we want to do nothing.
972 * This is all totally bogus and needs to be redone.
973 */
974 iwi_auth_and_assoc(sc, vap);
975 } else if (vap->iv_opmode == IEEE80211_M_MONITOR)
976 ieee80211_runtask(ic, &sc->sc_monitortask);
977 break;
978 case IEEE80211_S_ASSOC:
979 /*
980 * If we are transitioning from AUTH then just wait
981 * for the ASSOC status to come back from the firmware.
982 * Otherwise we need to issue the association request.
983 */
984 if (vap->iv_state == IEEE80211_S_AUTH)
985 break;
986 iwi_auth_and_assoc(sc, vap);
987 break;
988 default:
989 break;
990 }
991 IWI_UNLOCK(sc);
992 IEEE80211_LOCK(ic);
993 return ivp->iwi_newstate(vap, nstate, arg);
994 }
995
996 /*
997 * WME parameters coming from IEEE 802.11e specification. These values are
998 * already declared in ieee80211_proto.c, but they are static so they can't
999 * be reused here.
1000 */
1001 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1002 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */
1003 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */
1004 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */
1005 { 0, 2, 3, 4, 102 } /* WME_AC_VO */
1006 };
1007
1008 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1009 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */
1010 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */
1011 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */
1012 { 0, 2, 2, 3, 47 } /* WME_AC_VO */
1013 };
1014 #define IWI_EXP2(v) htole16((1 << (v)) - 1)
1015 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
1016
1017 static void
iwi_wme_init(struct iwi_softc * sc)1018 iwi_wme_init(struct iwi_softc *sc)
1019 {
1020 const struct wmeParams *wmep;
1021 int ac;
1022
1023 memset(sc->wme, 0, sizeof sc->wme);
1024 for (ac = 0; ac < WME_NUM_AC; ac++) {
1025 /* set WME values for CCK modulation */
1026 wmep = &iwi_wme_cck_params[ac];
1027 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1028 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1029 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1030 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1031 sc->wme[1].acm[ac] = wmep->wmep_acm;
1032
1033 /* set WME values for OFDM modulation */
1034 wmep = &iwi_wme_ofdm_params[ac];
1035 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1036 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1037 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1038 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1039 sc->wme[2].acm[ac] = wmep->wmep_acm;
1040 }
1041 }
1042
1043 static int
iwi_wme_setparams(struct iwi_softc * sc)1044 iwi_wme_setparams(struct iwi_softc *sc)
1045 {
1046 struct ieee80211com *ic = &sc->sc_ic;
1047 struct chanAccParams chp;
1048 const struct wmeParams *wmep;
1049 int ac;
1050
1051 ieee80211_wme_ic_getparams(ic, &chp);
1052
1053 for (ac = 0; ac < WME_NUM_AC; ac++) {
1054 /* set WME values for current operating mode */
1055 wmep = &chp.cap_wmeParams[ac];
1056 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1057 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1058 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1059 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1060 sc->wme[0].acm[ac] = wmep->wmep_acm;
1061 }
1062
1063 DPRINTF(("Setting WME parameters\n"));
1064 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1065 }
1066 #undef IWI_USEC
1067 #undef IWI_EXP2
1068
1069 static int
iwi_wme_update(struct ieee80211com * ic)1070 iwi_wme_update(struct ieee80211com *ic)
1071 {
1072 struct iwi_softc *sc = ic->ic_softc;
1073 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1074 IWI_LOCK_DECL;
1075
1076 /*
1077 * We may be called to update the WME parameters in
1078 * the adapter at various places. If we're already
1079 * associated then initiate the request immediately;
1080 * otherwise we assume the params will get sent down
1081 * to the adapter as part of the work iwi_auth_and_assoc
1082 * does.
1083 */
1084 if (vap->iv_state == IEEE80211_S_RUN) {
1085 IWI_LOCK(sc);
1086 iwi_wme_setparams(sc);
1087 IWI_UNLOCK(sc);
1088 }
1089 return (0);
1090 }
1091
1092 static int
iwi_wme_setie(struct iwi_softc * sc)1093 iwi_wme_setie(struct iwi_softc *sc)
1094 {
1095 struct ieee80211_wme_info wme;
1096
1097 memset(&wme, 0, sizeof wme);
1098 wme.wme_id = IEEE80211_ELEMID_VENDOR;
1099 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1100 wme.wme_oui[0] = 0x00;
1101 wme.wme_oui[1] = 0x50;
1102 wme.wme_oui[2] = 0xf2;
1103 wme.wme_type = WME_OUI_TYPE;
1104 wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1105 wme.wme_version = WME_VERSION;
1106 wme.wme_info = 0;
1107
1108 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1109 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1110 }
1111
1112 /*
1113 * Read 16 bits at address 'addr' from the serial EEPROM.
1114 */
1115 static uint16_t
iwi_read_prom_word(struct iwi_softc * sc,uint8_t addr)1116 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1117 {
1118 uint32_t tmp;
1119 uint16_t val;
1120 int n;
1121
1122 /* clock C once before the first command */
1123 IWI_EEPROM_CTL(sc, 0);
1124 IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1125 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1126 IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1127
1128 /* write start bit (1) */
1129 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1130 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1131
1132 /* write READ opcode (10) */
1133 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1134 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1135 IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1136 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1137
1138 /* write address A7-A0 */
1139 for (n = 7; n >= 0; n--) {
1140 IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1141 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1142 IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1143 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1144 }
1145
1146 IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1147
1148 /* read data Q15-Q0 */
1149 val = 0;
1150 for (n = 15; n >= 0; n--) {
1151 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1152 IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1153 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1154 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1155 }
1156
1157 IWI_EEPROM_CTL(sc, 0);
1158
1159 /* clear Chip Select and clock C */
1160 IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1161 IWI_EEPROM_CTL(sc, 0);
1162 IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1163
1164 return val;
1165 }
1166
1167 static void
iwi_setcurchan(struct iwi_softc * sc,int chan)1168 iwi_setcurchan(struct iwi_softc *sc, int chan)
1169 {
1170 struct ieee80211com *ic = &sc->sc_ic;
1171
1172 sc->curchan = chan;
1173 ieee80211_radiotap_chan_change(ic);
1174 }
1175
1176 static void
iwi_frame_intr(struct iwi_softc * sc,struct iwi_rx_data * data,int i,struct iwi_frame * frame)1177 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1178 struct iwi_frame *frame)
1179 {
1180 struct ieee80211com *ic = &sc->sc_ic;
1181 struct mbuf *mnew, *m;
1182 struct ieee80211_node *ni;
1183 int type, error, framelen;
1184 int8_t rssi, nf;
1185 IWI_LOCK_DECL;
1186
1187 framelen = le16toh(frame->len);
1188 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1189 /*
1190 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1191 * out of bounds; need to figure out how to limit
1192 * frame size in the firmware
1193 */
1194 /* XXX stat */
1195 DPRINTFN(1,
1196 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1197 le16toh(frame->len), frame->chan, frame->rssi,
1198 frame->rssi_dbm));
1199 return;
1200 }
1201
1202 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1203 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1204
1205 if (frame->chan != sc->curchan)
1206 iwi_setcurchan(sc, frame->chan);
1207
1208 /*
1209 * Try to allocate a new mbuf for this ring element and load it before
1210 * processing the current mbuf. If the ring element cannot be loaded,
1211 * drop the received packet and reuse the old mbuf. In the unlikely
1212 * case that the old mbuf can't be reloaded either, explicitly panic.
1213 */
1214 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1215 if (mnew == NULL) {
1216 counter_u64_add(ic->ic_ierrors, 1);
1217 return;
1218 }
1219
1220 bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1221
1222 error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1223 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1224 0);
1225 if (error != 0) {
1226 m_freem(mnew);
1227
1228 /* try to reload the old mbuf */
1229 error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1230 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1231 &data->physaddr, 0);
1232 if (error != 0) {
1233 /* very unlikely that it will fail... */
1234 panic("%s: could not load old rx mbuf",
1235 device_get_name(sc->sc_dev));
1236 }
1237 counter_u64_add(ic->ic_ierrors, 1);
1238 return;
1239 }
1240
1241 /*
1242 * New mbuf successfully loaded, update Rx ring and continue
1243 * processing.
1244 */
1245 m = data->m;
1246 data->m = mnew;
1247 CSR_WRITE_4(sc, data->reg, data->physaddr);
1248
1249 /* finalize mbuf */
1250 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1251 sizeof (struct iwi_frame) + framelen;
1252
1253 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1254
1255 rssi = frame->rssi_dbm;
1256 nf = -95;
1257 if (ieee80211_radiotap_active(ic)) {
1258 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1259
1260 tap->wr_flags = 0;
1261 tap->wr_antsignal = rssi;
1262 tap->wr_antnoise = nf;
1263 tap->wr_rate = iwi_cvtrate(frame->rate);
1264 tap->wr_antenna = frame->antenna;
1265 }
1266 IWI_UNLOCK(sc);
1267
1268 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1269 if (ni != NULL) {
1270 type = ieee80211_input(ni, m, rssi, nf);
1271 ieee80211_free_node(ni);
1272 } else
1273 type = ieee80211_input_all(ic, m, rssi, nf);
1274
1275 IWI_LOCK(sc);
1276 if (sc->sc_softled) {
1277 /*
1278 * Blink for any data frame. Otherwise do a
1279 * heartbeat-style blink when idle. The latter
1280 * is mainly for station mode where we depend on
1281 * periodic beacon frames to trigger the poll event.
1282 */
1283 if (type == IEEE80211_FC0_TYPE_DATA) {
1284 sc->sc_rxrate = frame->rate;
1285 iwi_led_event(sc, IWI_LED_RX);
1286 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1287 iwi_led_event(sc, IWI_LED_POLL);
1288 }
1289 }
1290
1291 /*
1292 * Check for an association response frame to see if QoS
1293 * has been negotiated. We parse just enough to figure
1294 * out if we're supposed to use QoS. The proper solution
1295 * is to pass the frame up so ieee80211_input can do the
1296 * work but that's made hard by how things currently are
1297 * done in the driver.
1298 */
1299 static void
iwi_checkforqos(struct ieee80211vap * vap,const struct ieee80211_frame * wh,int len)1300 iwi_checkforqos(struct ieee80211vap *vap,
1301 const struct ieee80211_frame *wh, int len)
1302 {
1303 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1304 const uint8_t *frm, *efrm, *wme;
1305 struct ieee80211_node *ni;
1306 uint16_t capinfo, associd;
1307
1308 /* NB: +8 for capinfo, status, associd, and first ie */
1309 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1310 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1311 return;
1312 /*
1313 * asresp frame format
1314 * [2] capability information
1315 * [2] status
1316 * [2] association ID
1317 * [tlv] supported rates
1318 * [tlv] extended supported rates
1319 * [tlv] WME
1320 */
1321 frm = (const uint8_t *)&wh[1];
1322 efrm = ((const uint8_t *) wh) + len;
1323
1324 capinfo = le16toh(*(const uint16_t *)frm);
1325 frm += 2;
1326 /* status */
1327 frm += 2;
1328 associd = le16toh(*(const uint16_t *)frm);
1329 frm += 2;
1330
1331 wme = NULL;
1332 while (efrm - frm > 1) {
1333 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return);
1334 switch (*frm) {
1335 case IEEE80211_ELEMID_VENDOR:
1336 if (iswmeoui(frm))
1337 wme = frm;
1338 break;
1339 }
1340 frm += frm[1] + 2;
1341 }
1342
1343 ni = ieee80211_ref_node(vap->iv_bss);
1344 ni->ni_capinfo = capinfo;
1345 ni->ni_associd = associd & 0x3fff;
1346 if (wme != NULL)
1347 ni->ni_flags |= IEEE80211_NODE_QOS;
1348 else
1349 ni->ni_flags &= ~IEEE80211_NODE_QOS;
1350 ieee80211_free_node(ni);
1351 #undef SUBTYPE
1352 }
1353
1354 static void
iwi_notif_link_quality(struct iwi_softc * sc,struct iwi_notif * notif)1355 iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif)
1356 {
1357 struct iwi_notif_link_quality *lq;
1358 int len;
1359
1360 len = le16toh(notif->len);
1361
1362 DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n",
1363 notif->type,
1364 len,
1365 sizeof(struct iwi_notif_link_quality)
1366 ));
1367
1368 /* enforce length */
1369 if (len != sizeof(struct iwi_notif_link_quality)) {
1370 DPRINTFN(5, ("Notification: (%u) too short (%d)\n",
1371 notif->type,
1372 len));
1373 return;
1374 }
1375
1376 lq = (struct iwi_notif_link_quality *)(notif + 1);
1377 memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual));
1378 sc->sc_linkqual_valid = 1;
1379 }
1380
1381 /*
1382 * Task queue callbacks for iwi_notification_intr used to avoid LOR's.
1383 */
1384
1385 static void
iwi_notification_intr(struct iwi_softc * sc,struct iwi_notif * notif)1386 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1387 {
1388 struct ieee80211com *ic = &sc->sc_ic;
1389 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1390 struct iwi_notif_scan_channel *chan;
1391 struct iwi_notif_scan_complete *scan;
1392 struct iwi_notif_authentication *auth;
1393 struct iwi_notif_association *assoc;
1394 struct iwi_notif_beacon_state *beacon;
1395
1396 switch (notif->type) {
1397 case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1398 chan = (struct iwi_notif_scan_channel *)(notif + 1);
1399
1400 DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1401 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
1402
1403 /* Reset the timer, the scan is still going */
1404 sc->sc_state_timer = 3;
1405 break;
1406
1407 case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1408 scan = (struct iwi_notif_scan_complete *)(notif + 1);
1409
1410 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1411 scan->status));
1412
1413 IWI_STATE_END(sc, IWI_FW_SCANNING);
1414
1415 /*
1416 * Monitor mode works by doing a passive scan to set
1417 * the channel and enable rx. Because we don't want
1418 * to abort a scan lest the firmware crash we scan
1419 * for a short period of time and automatically restart
1420 * the scan when notified the sweep has completed.
1421 */
1422 if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1423 ieee80211_runtask(ic, &sc->sc_monitortask);
1424 break;
1425 }
1426
1427 if (scan->status == IWI_SCAN_COMPLETED) {
1428 /* NB: don't need to defer, net80211 does it for us */
1429 ieee80211_scan_next(vap);
1430 }
1431 break;
1432
1433 case IWI_NOTIF_TYPE_AUTHENTICATION:
1434 auth = (struct iwi_notif_authentication *)(notif + 1);
1435 switch (auth->state) {
1436 case IWI_AUTH_SUCCESS:
1437 DPRINTFN(2, ("Authentication succeeeded\n"));
1438 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
1439 break;
1440 case IWI_AUTH_FAIL:
1441 /*
1442 * These are delivered as an unsolicited deauth
1443 * (e.g. due to inactivity) or in response to an
1444 * associate request.
1445 */
1446 sc->flags &= ~IWI_FLAG_ASSOCIATED;
1447 if (vap->iv_state != IEEE80211_S_RUN) {
1448 DPRINTFN(2, ("Authentication failed\n"));
1449 vap->iv_stats.is_rx_auth_fail++;
1450 IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1451 } else {
1452 DPRINTFN(2, ("Deauthenticated\n"));
1453 vap->iv_stats.is_rx_deauth++;
1454 }
1455 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1456 break;
1457 case IWI_AUTH_SENT_1:
1458 case IWI_AUTH_RECV_2:
1459 case IWI_AUTH_SEQ1_PASS:
1460 break;
1461 case IWI_AUTH_SEQ1_FAIL:
1462 DPRINTFN(2, ("Initial authentication handshake failed; "
1463 "you probably need shared key\n"));
1464 vap->iv_stats.is_rx_auth_fail++;
1465 IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1466 /* XXX retry shared key when in auto */
1467 break;
1468 default:
1469 device_printf(sc->sc_dev,
1470 "unknown authentication state %u\n", auth->state);
1471 break;
1472 }
1473 break;
1474
1475 case IWI_NOTIF_TYPE_ASSOCIATION:
1476 assoc = (struct iwi_notif_association *)(notif + 1);
1477 switch (assoc->state) {
1478 case IWI_AUTH_SUCCESS:
1479 /* re-association, do nothing */
1480 break;
1481 case IWI_ASSOC_SUCCESS:
1482 DPRINTFN(2, ("Association succeeded\n"));
1483 sc->flags |= IWI_FLAG_ASSOCIATED;
1484 IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1485 iwi_checkforqos(vap,
1486 (const struct ieee80211_frame *)(assoc+1),
1487 le16toh(notif->len) - sizeof(*assoc) - 1);
1488 ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
1489 break;
1490 case IWI_ASSOC_INIT:
1491 sc->flags &= ~IWI_FLAG_ASSOCIATED;
1492 switch (sc->fw_state) {
1493 case IWI_FW_ASSOCIATING:
1494 DPRINTFN(2, ("Association failed\n"));
1495 IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1496 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1497 break;
1498
1499 case IWI_FW_DISASSOCIATING:
1500 DPRINTFN(2, ("Dissassociated\n"));
1501 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
1502 vap->iv_stats.is_rx_disassoc++;
1503 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1504 break;
1505 }
1506 break;
1507 default:
1508 device_printf(sc->sc_dev,
1509 "unknown association state %u\n", assoc->state);
1510 break;
1511 }
1512 break;
1513
1514 case IWI_NOTIF_TYPE_BEACON:
1515 /* XXX check struct length */
1516 beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1517
1518 DPRINTFN(5, ("Beacon state (%u, %u)\n",
1519 beacon->state, le32toh(beacon->number)));
1520
1521 if (beacon->state == IWI_BEACON_MISS) {
1522 /*
1523 * The firmware notifies us of every beacon miss
1524 * so we need to track the count against the
1525 * configured threshold before notifying the
1526 * 802.11 layer.
1527 * XXX try to roam, drop assoc only on much higher count
1528 */
1529 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
1530 DPRINTF(("Beacon miss: %u >= %u\n",
1531 le32toh(beacon->number),
1532 vap->iv_bmissthreshold));
1533 vap->iv_stats.is_beacon_miss++;
1534 /*
1535 * It's pointless to notify the 802.11 layer
1536 * as it'll try to send a probe request (which
1537 * we'll discard) and then timeout and drop us
1538 * into scan state. Instead tell the firmware
1539 * to disassociate and then on completion we'll
1540 * kick the state machine to scan.
1541 */
1542 ieee80211_runtask(ic, &sc->sc_disassoctask);
1543 }
1544 }
1545 break;
1546
1547 case IWI_NOTIF_TYPE_CALIBRATION:
1548 case IWI_NOTIF_TYPE_NOISE:
1549 /* XXX handle? */
1550 DPRINTFN(5, ("Notification (%u)\n", notif->type));
1551 break;
1552 case IWI_NOTIF_TYPE_LINK_QUALITY:
1553 iwi_notif_link_quality(sc, notif);
1554 break;
1555
1556 default:
1557 DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1558 notif->type, notif->flags, le16toh(notif->len)));
1559 break;
1560 }
1561 }
1562
1563 static void
iwi_rx_intr(struct iwi_softc * sc)1564 iwi_rx_intr(struct iwi_softc *sc)
1565 {
1566 struct iwi_rx_data *data;
1567 struct iwi_hdr *hdr;
1568 uint32_t hw;
1569
1570 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1571
1572 for (; sc->rxq.cur != hw;) {
1573 data = &sc->rxq.data[sc->rxq.cur];
1574
1575 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1576 BUS_DMASYNC_POSTREAD);
1577
1578 hdr = mtod(data->m, struct iwi_hdr *);
1579
1580 switch (hdr->type) {
1581 case IWI_HDR_TYPE_FRAME:
1582 iwi_frame_intr(sc, data, sc->rxq.cur,
1583 (struct iwi_frame *)(hdr + 1));
1584 break;
1585
1586 case IWI_HDR_TYPE_NOTIF:
1587 iwi_notification_intr(sc,
1588 (struct iwi_notif *)(hdr + 1));
1589 break;
1590
1591 default:
1592 device_printf(sc->sc_dev, "unknown hdr type %u\n",
1593 hdr->type);
1594 }
1595
1596 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1597
1598 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1599 }
1600
1601 /* tell the firmware what we have processed */
1602 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1603 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1604 }
1605
1606 static void
iwi_tx_intr(struct iwi_softc * sc,struct iwi_tx_ring * txq)1607 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1608 {
1609 struct iwi_tx_data *data;
1610 uint32_t hw;
1611
1612 hw = CSR_READ_4(sc, txq->csr_ridx);
1613
1614 while (txq->next != hw) {
1615 data = &txq->data[txq->next];
1616 DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1617 bus_dmamap_sync(txq->data_dmat, data->map,
1618 BUS_DMASYNC_POSTWRITE);
1619 bus_dmamap_unload(txq->data_dmat, data->map);
1620 ieee80211_tx_complete(data->ni, data->m, 0);
1621 data->ni = NULL;
1622 data->m = NULL;
1623 txq->queued--;
1624 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1625 }
1626 sc->sc_tx_timer = 0;
1627 if (sc->sc_softled)
1628 iwi_led_event(sc, IWI_LED_TX);
1629 iwi_start(sc);
1630 }
1631
1632 static void
iwi_fatal_error_intr(struct iwi_softc * sc)1633 iwi_fatal_error_intr(struct iwi_softc *sc)
1634 {
1635 struct ieee80211com *ic = &sc->sc_ic;
1636 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1637
1638 device_printf(sc->sc_dev, "firmware error\n");
1639 if (vap != NULL)
1640 ieee80211_cancel_scan(vap);
1641 ieee80211_runtask(ic, &sc->sc_restarttask);
1642
1643 sc->flags &= ~IWI_FLAG_BUSY;
1644 sc->sc_busy_timer = 0;
1645 wakeup(sc);
1646 }
1647
1648 static void
iwi_radio_off_intr(struct iwi_softc * sc)1649 iwi_radio_off_intr(struct iwi_softc *sc)
1650 {
1651
1652 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask);
1653 }
1654
1655 static void
iwi_intr(void * arg)1656 iwi_intr(void *arg)
1657 {
1658 struct iwi_softc *sc = arg;
1659 uint32_t r;
1660 IWI_LOCK_DECL;
1661
1662 IWI_LOCK(sc);
1663
1664 #if !defined(__HAIKU__)
1665 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1666 IWI_UNLOCK(sc);
1667 return;
1668 }
1669 #else
1670 r = atomic_get((int32 *)&sc->sc_intr_status);
1671 #endif
1672
1673 /* acknowledge interrupts */
1674 CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1675
1676 if (r & IWI_INTR_FATAL_ERROR) {
1677 iwi_fatal_error_intr(sc);
1678 goto done;
1679 }
1680
1681 if (r & IWI_INTR_FW_INITED) {
1682 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1683 wakeup(sc);
1684 }
1685
1686 if (r & IWI_INTR_RADIO_OFF)
1687 iwi_radio_off_intr(sc);
1688
1689 if (r & IWI_INTR_CMD_DONE) {
1690 sc->flags &= ~IWI_FLAG_BUSY;
1691 sc->sc_busy_timer = 0;
1692 wakeup(sc);
1693 }
1694
1695 if (r & IWI_INTR_TX1_DONE)
1696 iwi_tx_intr(sc, &sc->txq[0]);
1697
1698 if (r & IWI_INTR_TX2_DONE)
1699 iwi_tx_intr(sc, &sc->txq[1]);
1700
1701 if (r & IWI_INTR_TX3_DONE)
1702 iwi_tx_intr(sc, &sc->txq[2]);
1703
1704 if (r & IWI_INTR_TX4_DONE)
1705 iwi_tx_intr(sc, &sc->txq[3]);
1706
1707 if (r & IWI_INTR_RX_DONE)
1708 iwi_rx_intr(sc);
1709
1710 if (r & IWI_INTR_PARITY_ERROR) {
1711 /* XXX rate-limit */
1712 device_printf(sc->sc_dev, "parity error\n");
1713 }
1714 done:
1715 IWI_UNLOCK(sc);
1716 }
1717
1718 static int
iwi_cmd(struct iwi_softc * sc,uint8_t type,void * data,uint8_t len)1719 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1720 {
1721 struct iwi_cmd_desc *desc;
1722
1723 IWI_LOCK_ASSERT(sc);
1724
1725 if (sc->flags & IWI_FLAG_BUSY) {
1726 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1727 __func__, type);
1728 return EAGAIN;
1729 }
1730 sc->flags |= IWI_FLAG_BUSY;
1731 sc->sc_busy_timer = 2;
1732
1733 desc = &sc->cmdq.desc[sc->cmdq.cur];
1734
1735 desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1736 desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1737 desc->type = type;
1738 desc->len = len;
1739 memcpy(desc->data, data, len);
1740
1741 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1742 BUS_DMASYNC_PREWRITE);
1743
1744 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1745 type, len));
1746
1747 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1748 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1749
1750 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
1751 }
1752
1753 static void
iwi_write_ibssnode(struct iwi_softc * sc,const u_int8_t addr[IEEE80211_ADDR_LEN],int entry)1754 iwi_write_ibssnode(struct iwi_softc *sc,
1755 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1756 {
1757 struct iwi_ibssnode node;
1758
1759 /* write node information into NIC memory */
1760 memset(&node, 0, sizeof node);
1761 IEEE80211_ADDR_COPY(node.bssid, addr);
1762
1763 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1764
1765 CSR_WRITE_REGION_1(sc,
1766 IWI_CSR_NODE_BASE + entry * sizeof node,
1767 (uint8_t *)&node, sizeof node);
1768 }
1769
1770 static int
iwi_tx_start(struct iwi_softc * sc,struct mbuf * m0,struct ieee80211_node * ni,int ac)1771 iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1772 int ac)
1773 {
1774 struct ieee80211vap *vap = ni->ni_vap;
1775 struct iwi_node *in = (struct iwi_node *)ni;
1776 const struct ieee80211_frame *wh;
1777 struct ieee80211_key *k;
1778 struct iwi_tx_ring *txq = &sc->txq[ac];
1779 struct iwi_tx_data *data;
1780 struct iwi_tx_desc *desc;
1781 struct mbuf *mnew;
1782 bus_dma_segment_t segs[IWI_MAX_NSEG];
1783 int error, nsegs, hdrlen, i;
1784 int ismcast, flags, xflags, staid;
1785
1786 IWI_LOCK_ASSERT(sc);
1787 wh = mtod(m0, const struct ieee80211_frame *);
1788 /* NB: only data frames use this path */
1789 hdrlen = ieee80211_hdrsize(wh);
1790 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1791 flags = xflags = 0;
1792
1793 if (!ismcast)
1794 flags |= IWI_DATA_FLAG_NEED_ACK;
1795 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
1796 flags |= IWI_DATA_FLAG_SHPREAMBLE;
1797 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1798 xflags |= IWI_DATA_XFLAG_QOS;
1799 if (ieee80211_wme_vap_ac_is_noack(vap, ac))
1800 flags &= ~IWI_DATA_FLAG_NEED_ACK;
1801 }
1802
1803 /*
1804 * This is only used in IBSS mode where the firmware expect an index
1805 * in a h/w table instead of a destination address.
1806 */
1807 if (vap->iv_opmode == IEEE80211_M_IBSS) {
1808 if (!ismcast) {
1809 if (in->in_station == -1) {
1810 in->in_station = alloc_unr(sc->sc_unr);
1811 if (in->in_station == -1) {
1812 /* h/w table is full */
1813 if_inc_counter(ni->ni_vap->iv_ifp,
1814 IFCOUNTER_OERRORS, 1);
1815 m_freem(m0);
1816 ieee80211_free_node(ni);
1817 return 0;
1818 }
1819 iwi_write_ibssnode(sc,
1820 ni->ni_macaddr, in->in_station);
1821 }
1822 staid = in->in_station;
1823 } else {
1824 /*
1825 * Multicast addresses have no associated node
1826 * so there will be no station entry. We reserve
1827 * entry 0 for one mcast address and use that.
1828 * If there are many being used this will be
1829 * expensive and we'll need to do a better job
1830 * but for now this handles the broadcast case.
1831 */
1832 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1833 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1834 iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1835 }
1836 staid = 0;
1837 }
1838 } else
1839 staid = 0;
1840
1841 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1842 k = ieee80211_crypto_encap(ni, m0);
1843 if (k == NULL) {
1844 m_freem(m0);
1845 return ENOBUFS;
1846 }
1847
1848 /* packet header may have moved, reset our local pointer */
1849 wh = mtod(m0, struct ieee80211_frame *);
1850 }
1851
1852 if (ieee80211_radiotap_active_vap(vap)) {
1853 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1854
1855 tap->wt_flags = 0;
1856
1857 ieee80211_radiotap_tx(vap, m0);
1858 }
1859
1860 data = &txq->data[txq->cur];
1861 desc = &txq->desc[txq->cur];
1862
1863 /* save and trim IEEE802.11 header */
1864 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1865 m_adj(m0, hdrlen);
1866
1867 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1868 &nsegs, 0);
1869 if (error != 0 && error != EFBIG) {
1870 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1871 error);
1872 m_freem(m0);
1873 return error;
1874 }
1875 if (error != 0) {
1876 mnew = m_defrag(m0, M_NOWAIT);
1877 if (mnew == NULL) {
1878 device_printf(sc->sc_dev,
1879 "could not defragment mbuf\n");
1880 m_freem(m0);
1881 return ENOBUFS;
1882 }
1883 m0 = mnew;
1884
1885 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
1886 m0, segs, &nsegs, 0);
1887 if (error != 0) {
1888 device_printf(sc->sc_dev,
1889 "could not map mbuf (error %d)\n", error);
1890 m_freem(m0);
1891 return error;
1892 }
1893 }
1894
1895 data->m = m0;
1896 data->ni = ni;
1897
1898 desc->hdr.type = IWI_HDR_TYPE_DATA;
1899 desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1900 desc->station = staid;
1901 desc->cmd = IWI_DATA_CMD_TX;
1902 desc->len = htole16(m0->m_pkthdr.len);
1903 desc->flags = flags;
1904 desc->xflags = xflags;
1905
1906 #if 0
1907 if (vap->iv_flags & IEEE80211_F_PRIVACY)
1908 desc->wep_txkey = vap->iv_def_txkey;
1909 else
1910 #endif
1911 desc->flags |= IWI_DATA_FLAG_NO_WEP;
1912
1913 desc->nseg = htole32(nsegs);
1914 for (i = 0; i < nsegs; i++) {
1915 desc->seg_addr[i] = htole32(segs[i].ds_addr);
1916 desc->seg_len[i] = htole16(segs[i].ds_len);
1917 }
1918
1919 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1920 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1921
1922 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1923 ac, txq->cur, le16toh(desc->len), nsegs));
1924
1925 txq->queued++;
1926 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1927 CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1928
1929 return 0;
1930 }
1931
1932 static int
iwi_raw_xmit(struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_bpf_params * params)1933 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1934 const struct ieee80211_bpf_params *params)
1935 {
1936 /* no support; just discard */
1937 m_freem(m);
1938 ieee80211_free_node(ni);
1939 return 0;
1940 }
1941
1942 static int
iwi_transmit(struct ieee80211com * ic,struct mbuf * m)1943 iwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1944 {
1945 struct iwi_softc *sc = ic->ic_softc;
1946 int error;
1947 IWI_LOCK_DECL;
1948
1949 IWI_LOCK(sc);
1950 if (!sc->sc_running) {
1951 IWI_UNLOCK(sc);
1952 return (ENXIO);
1953 }
1954 error = mbufq_enqueue(&sc->sc_snd, m);
1955 if (error) {
1956 IWI_UNLOCK(sc);
1957 return (error);
1958 }
1959 iwi_start(sc);
1960 IWI_UNLOCK(sc);
1961 return (0);
1962 }
1963
1964 static void
iwi_start(struct iwi_softc * sc)1965 iwi_start(struct iwi_softc *sc)
1966 {
1967 struct mbuf *m;
1968 struct ieee80211_node *ni;
1969 int ac;
1970
1971 IWI_LOCK_ASSERT(sc);
1972
1973 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1974 ac = M_WME_GETAC(m);
1975 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1976 /* there is no place left in this ring; tail drop */
1977 /* XXX tail drop */
1978 mbufq_prepend(&sc->sc_snd, m);
1979 break;
1980 }
1981 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1982 if (iwi_tx_start(sc, m, ni, ac) != 0) {
1983 if_inc_counter(ni->ni_vap->iv_ifp,
1984 IFCOUNTER_OERRORS, 1);
1985 ieee80211_free_node(ni);
1986 break;
1987 }
1988 sc->sc_tx_timer = 5;
1989 }
1990 }
1991
1992 static void
iwi_watchdog(void * arg)1993 iwi_watchdog(void *arg)
1994 {
1995 struct iwi_softc *sc = arg;
1996 struct ieee80211com *ic = &sc->sc_ic;
1997
1998 IWI_LOCK_ASSERT(sc);
1999
2000 if (sc->sc_tx_timer > 0) {
2001 if (--sc->sc_tx_timer == 0) {
2002 device_printf(sc->sc_dev, "device timeout\n");
2003 counter_u64_add(ic->ic_oerrors, 1);
2004 ieee80211_runtask(ic, &sc->sc_restarttask);
2005 }
2006 }
2007 if (sc->sc_state_timer > 0) {
2008 if (--sc->sc_state_timer == 0) {
2009 device_printf(sc->sc_dev,
2010 "firmware stuck in state %d, resetting\n",
2011 sc->fw_state);
2012 if (sc->fw_state == IWI_FW_SCANNING)
2013 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
2014 ieee80211_runtask(ic, &sc->sc_restarttask);
2015 sc->sc_state_timer = 3;
2016 }
2017 }
2018 if (sc->sc_busy_timer > 0) {
2019 if (--sc->sc_busy_timer == 0) {
2020 device_printf(sc->sc_dev,
2021 "firmware command timeout, resetting\n");
2022 ieee80211_runtask(ic, &sc->sc_restarttask);
2023 }
2024 }
2025 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
2026 }
2027
2028 static void
iwi_parent(struct ieee80211com * ic)2029 iwi_parent(struct ieee80211com *ic)
2030 {
2031 struct iwi_softc *sc = ic->ic_softc;
2032 int startall = 0;
2033 IWI_LOCK_DECL;
2034
2035 IWI_LOCK(sc);
2036 if (ic->ic_nrunning > 0) {
2037 if (!sc->sc_running) {
2038 iwi_init_locked(sc);
2039 startall = 1;
2040 }
2041 } else if (sc->sc_running)
2042 iwi_stop_locked(sc);
2043 IWI_UNLOCK(sc);
2044 if (startall)
2045 ieee80211_start_all(ic);
2046 }
2047
2048 static int
iwi_ioctl(struct ieee80211com * ic,u_long cmd,void * data)2049 iwi_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
2050 {
2051 struct ifreq *ifr = data;
2052 struct iwi_softc *sc = ic->ic_softc;
2053 int error;
2054 IWI_LOCK_DECL;
2055
2056 IWI_LOCK(sc);
2057 switch (cmd) {
2058 #ifndef __HAIKU__
2059 case SIOCGIWISTATS:
2060 /* XXX validate permissions/memory/etc? */
2061 error = copyout(&sc->sc_linkqual, ifr_data_get_ptr(ifr),
2062 sizeof(struct iwi_notif_link_quality));
2063 break;
2064 #endif
2065 case SIOCZIWISTATS:
2066 memset(&sc->sc_linkqual, 0,
2067 sizeof(struct iwi_notif_link_quality));
2068 error = 0;
2069 break;
2070 default:
2071 error = ENOTTY;
2072 break;
2073 }
2074 IWI_UNLOCK(sc);
2075
2076 return (error);
2077 }
2078
2079 static void
iwi_stop_master(struct iwi_softc * sc)2080 iwi_stop_master(struct iwi_softc *sc)
2081 {
2082 uint32_t tmp;
2083 int ntries;
2084
2085 /* disable interrupts */
2086 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2087
2088 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2089 for (ntries = 0; ntries < 5; ntries++) {
2090 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2091 break;
2092 DELAY(10);
2093 }
2094 if (ntries == 5)
2095 device_printf(sc->sc_dev, "timeout waiting for master\n");
2096
2097 tmp = CSR_READ_4(sc, IWI_CSR_RST);
2098 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2099
2100 sc->flags &= ~IWI_FLAG_FW_INITED;
2101 }
2102
2103 static int
iwi_reset(struct iwi_softc * sc)2104 iwi_reset(struct iwi_softc *sc)
2105 {
2106 uint32_t tmp;
2107 int i, ntries;
2108
2109 iwi_stop_master(sc);
2110
2111 tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2112 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2113
2114 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2115
2116 /* wait for clock stabilization */
2117 for (ntries = 0; ntries < 1000; ntries++) {
2118 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2119 break;
2120 DELAY(200);
2121 }
2122 if (ntries == 1000) {
2123 device_printf(sc->sc_dev,
2124 "timeout waiting for clock stabilization\n");
2125 return EIO;
2126 }
2127
2128 tmp = CSR_READ_4(sc, IWI_CSR_RST);
2129 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2130
2131 DELAY(10);
2132
2133 tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2134 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2135
2136 /* clear NIC memory */
2137 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2138 for (i = 0; i < 0xc000; i++)
2139 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2140
2141 return 0;
2142 }
2143
2144 static const struct iwi_firmware_ohdr *
iwi_setup_ofw(struct iwi_softc * sc,struct iwi_fw * fw)2145 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2146 {
2147 const struct firmware *fp = fw->fp;
2148 const struct iwi_firmware_ohdr *hdr;
2149
2150 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2151 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2152 return NULL;
2153 }
2154 hdr = (const struct iwi_firmware_ohdr *)fp->data;
2155 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2156 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2157 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2158 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2159 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2160 IWI_FW_REQ_MINOR);
2161 return NULL;
2162 }
2163 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2164 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2165 fw->name = fp->name;
2166 return hdr;
2167 }
2168
2169 static const struct iwi_firmware_ohdr *
iwi_setup_oucode(struct iwi_softc * sc,struct iwi_fw * fw)2170 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2171 {
2172 const struct iwi_firmware_ohdr *hdr;
2173
2174 hdr = iwi_setup_ofw(sc, fw);
2175 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2176 device_printf(sc->sc_dev, "%s is not a ucode image\n",
2177 fw->name);
2178 hdr = NULL;
2179 }
2180 return hdr;
2181 }
2182
2183 static void
iwi_getfw(struct iwi_fw * fw,const char * fwname,struct iwi_fw * uc,const char * ucname)2184 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2185 struct iwi_fw *uc, const char *ucname)
2186 {
2187 if (fw->fp == NULL)
2188 fw->fp = firmware_get(fwname);
2189 /* NB: pre-3.0 ucode is packaged separately */
2190 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2191 uc->fp = firmware_get(ucname);
2192 }
2193
2194 /*
2195 * Get the required firmware images if not already loaded.
2196 * Note that we hold firmware images so long as the device
2197 * is marked up in case we need to reload them on device init.
2198 * This is necessary because we re-init the device sometimes
2199 * from a context where we cannot read from the filesystem
2200 * (e.g. from the taskqueue thread when rfkill is re-enabled).
2201 * XXX return 0 on success, 1 on error.
2202 *
2203 * NB: the order of get'ing and put'ing images here is
2204 * intentional to support handling firmware images bundled
2205 * by operating mode and/or all together in one file with
2206 * the boot firmware as "master".
2207 */
2208 static int
iwi_get_firmware(struct iwi_softc * sc,enum ieee80211_opmode opmode)2209 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
2210 {
2211 const struct iwi_firmware_hdr *hdr;
2212 const struct firmware *fp;
2213
2214 /* invalidate cached firmware on mode change */
2215 if (sc->fw_mode != opmode)
2216 iwi_put_firmware(sc);
2217
2218 switch (opmode) {
2219 case IEEE80211_M_STA:
2220 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2221 break;
2222 case IEEE80211_M_IBSS:
2223 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2224 break;
2225 case IEEE80211_M_MONITOR:
2226 iwi_getfw(&sc->fw_fw, "iwi_monitor",
2227 &sc->fw_uc, "iwi_ucode_monitor");
2228 break;
2229 default:
2230 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
2231 return EINVAL;
2232 }
2233 fp = sc->fw_fw.fp;
2234 if (fp == NULL) {
2235 device_printf(sc->sc_dev, "could not load firmware\n");
2236 goto bad;
2237 }
2238 if (fp->version < 300) {
2239 /*
2240 * Firmware prior to 3.0 was packaged as separate
2241 * boot, firmware, and ucode images. Verify the
2242 * ucode image was read in, retrieve the boot image
2243 * if needed, and check version stamps for consistency.
2244 * The version stamps in the data are also checked
2245 * above; this is a bit paranoid but is a cheap
2246 * safeguard against mis-packaging.
2247 */
2248 if (sc->fw_uc.fp == NULL) {
2249 device_printf(sc->sc_dev, "could not load ucode\n");
2250 goto bad;
2251 }
2252 if (sc->fw_boot.fp == NULL) {
2253 sc->fw_boot.fp = firmware_get("iwi_boot");
2254 if (sc->fw_boot.fp == NULL) {
2255 device_printf(sc->sc_dev,
2256 "could not load boot firmware\n");
2257 goto bad;
2258 }
2259 }
2260 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2261 sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2262 device_printf(sc->sc_dev,
2263 "firmware version mismatch: "
2264 "'%s' is %d, '%s' is %d, '%s' is %d\n",
2265 sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2266 sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2267 sc->fw_fw.fp->name, sc->fw_fw.fp->version
2268 );
2269 goto bad;
2270 }
2271 /*
2272 * Check and setup each image.
2273 */
2274 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2275 iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2276 iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2277 goto bad;
2278 } else {
2279 /*
2280 * Check and setup combined image.
2281 */
2282 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2283 device_printf(sc->sc_dev, "image '%s' too small\n",
2284 fp->name);
2285 goto bad;
2286 }
2287 hdr = (const struct iwi_firmware_hdr *)fp->data;
2288 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2289 + le32toh(hdr->fsize)) {
2290 device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2291 fp->name);
2292 goto bad;
2293 }
2294 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2295 sc->fw_boot.size = le32toh(hdr->bsize);
2296 sc->fw_boot.name = fp->name;
2297 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2298 sc->fw_uc.size = le32toh(hdr->usize);
2299 sc->fw_uc.name = fp->name;
2300 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2301 sc->fw_fw.size = le32toh(hdr->fsize);
2302 sc->fw_fw.name = fp->name;
2303 }
2304 #if 0
2305 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2306 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2307 #endif
2308
2309 sc->fw_mode = opmode;
2310 return 0;
2311 bad:
2312 iwi_put_firmware(sc);
2313 return 1;
2314 }
2315
2316 static void
iwi_put_fw(struct iwi_fw * fw)2317 iwi_put_fw(struct iwi_fw *fw)
2318 {
2319 if (fw->fp != NULL) {
2320 firmware_put(fw->fp, FIRMWARE_UNLOAD);
2321 fw->fp = NULL;
2322 }
2323 fw->data = NULL;
2324 fw->size = 0;
2325 fw->name = NULL;
2326 }
2327
2328 /*
2329 * Release any cached firmware images.
2330 */
2331 static void
iwi_put_firmware(struct iwi_softc * sc)2332 iwi_put_firmware(struct iwi_softc *sc)
2333 {
2334 iwi_put_fw(&sc->fw_uc);
2335 iwi_put_fw(&sc->fw_fw);
2336 iwi_put_fw(&sc->fw_boot);
2337 }
2338
2339 static int
iwi_load_ucode(struct iwi_softc * sc,const struct iwi_fw * fw)2340 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2341 {
2342 uint32_t tmp;
2343 const uint16_t *w;
2344 const char *uc = fw->data;
2345 size_t size = fw->size;
2346 int i, ntries, error;
2347
2348 IWI_LOCK_ASSERT(sc);
2349 error = 0;
2350 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2351 IWI_RST_STOP_MASTER);
2352 for (ntries = 0; ntries < 5; ntries++) {
2353 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2354 break;
2355 DELAY(10);
2356 }
2357 if (ntries == 5) {
2358 device_printf(sc->sc_dev, "timeout waiting for master\n");
2359 error = EIO;
2360 goto fail;
2361 }
2362
2363 MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2364 DELAY(5000);
2365
2366 tmp = CSR_READ_4(sc, IWI_CSR_RST);
2367 tmp &= ~IWI_RST_PRINCETON_RESET;
2368 CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2369
2370 DELAY(5000);
2371 MEM_WRITE_4(sc, 0x3000e0, 0);
2372 DELAY(1000);
2373 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2374 DELAY(1000);
2375 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2376 DELAY(1000);
2377 MEM_WRITE_1(sc, 0x200000, 0x00);
2378 MEM_WRITE_1(sc, 0x200000, 0x40);
2379 DELAY(1000);
2380
2381 /* write microcode into adapter memory */
2382 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2383 MEM_WRITE_2(sc, 0x200010, htole16(*w));
2384
2385 MEM_WRITE_1(sc, 0x200000, 0x00);
2386 MEM_WRITE_1(sc, 0x200000, 0x80);
2387
2388 /* wait until we get an answer */
2389 for (ntries = 0; ntries < 100; ntries++) {
2390 if (MEM_READ_1(sc, 0x200000) & 1)
2391 break;
2392 DELAY(100);
2393 }
2394 if (ntries == 100) {
2395 device_printf(sc->sc_dev,
2396 "timeout waiting for ucode to initialize\n");
2397 error = EIO;
2398 goto fail;
2399 }
2400
2401 /* read the answer or the firmware will not initialize properly */
2402 for (i = 0; i < 7; i++)
2403 MEM_READ_4(sc, 0x200004);
2404
2405 MEM_WRITE_1(sc, 0x200000, 0x00);
2406
2407 fail:
2408 return error;
2409 }
2410
2411 /* macro to handle unaligned little endian data in firmware image */
2412 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2413
2414 static int
iwi_load_firmware(struct iwi_softc * sc,const struct iwi_fw * fw)2415 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2416 {
2417 u_char *p, *end;
2418 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2419 int ntries, error;
2420
2421 IWI_LOCK_ASSERT(sc);
2422
2423 /* copy firmware image to DMA memory */
2424 memcpy(sc->fw_virtaddr, fw->data, fw->size);
2425
2426 /* make sure the adapter will get up-to-date values */
2427 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2428
2429 /* tell the adapter where the command blocks are stored */
2430 MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2431
2432 /*
2433 * Store command blocks into adapter's internal memory using register
2434 * indirections. The adapter will read the firmware image through DMA
2435 * using information stored in command blocks.
2436 */
2437 src = sc->fw_physaddr;
2438 p = sc->fw_virtaddr;
2439 end = p + fw->size;
2440 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2441
2442 while (p < end) {
2443 dst = GETLE32(p); p += 4; src += 4;
2444 len = GETLE32(p); p += 4; src += 4;
2445 p += len;
2446
2447 while (len > 0) {
2448 mlen = min(len, IWI_CB_MAXDATALEN);
2449
2450 ctl = IWI_CB_DEFAULT_CTL | mlen;
2451 sum = ctl ^ src ^ dst;
2452
2453 /* write a command block */
2454 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2455 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2456 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2457 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2458
2459 src += mlen;
2460 dst += mlen;
2461 len -= mlen;
2462 }
2463 }
2464
2465 /* write a fictive final command block (sentinel) */
2466 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2467 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2468
2469 tmp = CSR_READ_4(sc, IWI_CSR_RST);
2470 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2471 CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2472
2473 /* tell the adapter to start processing command blocks */
2474 MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2475
2476 /* wait until the adapter reaches the sentinel */
2477 for (ntries = 0; ntries < 400; ntries++) {
2478 if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2479 break;
2480 DELAY(100);
2481 }
2482 /* sync dma, just in case */
2483 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2484 if (ntries == 400) {
2485 device_printf(sc->sc_dev,
2486 "timeout processing command blocks for %s firmware\n",
2487 fw->name);
2488 return EIO;
2489 }
2490
2491 /* we're done with command blocks processing */
2492 MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2493
2494 /* allow interrupts so we know when the firmware is ready */
2495 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2496
2497 /* tell the adapter to initialize the firmware */
2498 CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2499
2500 tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2501 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2502
2503 /* wait at most one second for firmware initialization to complete */
2504 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
2505 device_printf(sc->sc_dev, "timeout waiting for %s firmware "
2506 "initialization to complete\n", fw->name);
2507 }
2508
2509 return error;
2510 }
2511
2512 static int
iwi_setpowermode(struct iwi_softc * sc,struct ieee80211vap * vap)2513 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
2514 {
2515 uint32_t data;
2516
2517 if (vap->iv_flags & IEEE80211_F_PMGTON) {
2518 /* XXX set more fine-grained operation */
2519 data = htole32(IWI_POWER_MODE_MAX);
2520 } else
2521 data = htole32(IWI_POWER_MODE_CAM);
2522
2523 DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2524 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2525 }
2526
2527 static int
iwi_setwepkeys(struct iwi_softc * sc,struct ieee80211vap * vap)2528 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
2529 {
2530 struct iwi_wep_key wepkey;
2531 struct ieee80211_key *wk;
2532 int error, i;
2533
2534 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2535 wk = &vap->iv_nw_keys[i];
2536
2537 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2538 wepkey.idx = i;
2539 wepkey.len = wk->wk_keylen;
2540 memset(wepkey.key, 0, sizeof wepkey.key);
2541 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2542 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2543 wepkey.len));
2544 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2545 sizeof wepkey);
2546 if (error != 0)
2547 return error;
2548 }
2549 return 0;
2550 }
2551
2552 static int
iwi_set_rateset(struct iwi_softc * sc,const struct ieee80211_rateset * net_rs,int mode,int type)2553 iwi_set_rateset(struct iwi_softc *sc, const struct ieee80211_rateset *net_rs,
2554 int mode, int type)
2555 {
2556 struct iwi_rateset rs;
2557
2558 memset(&rs, 0, sizeof(rs));
2559 rs.mode = mode;
2560 rs.type = type;
2561 rs.nrates = net_rs->rs_nrates;
2562 if (rs.nrates > nitems(rs.rates)) {
2563 DPRINTF(("Truncating negotiated rate set from %u\n",
2564 rs.nrates));
2565 rs.nrates = nitems(rs.rates);
2566 }
2567 memcpy(rs.rates, net_rs->rs_rates, rs.nrates);
2568 DPRINTF(("Setting .11%c%s %s rates (%u)\n",
2569 mode == IWI_MODE_11A ? 'a' : 'b',
2570 mode == IWI_MODE_11G ? "g" : "",
2571 type == IWI_RATESET_TYPE_SUPPORTED ? "supported" : "negotiated",
2572 rs.nrates));
2573
2574 return (iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof(rs)));
2575 }
2576
2577 static int
iwi_config(struct iwi_softc * sc)2578 iwi_config(struct iwi_softc *sc)
2579 {
2580 struct ieee80211com *ic = &sc->sc_ic;
2581 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2582 struct iwi_configuration config;
2583 struct iwi_txpower power;
2584 uint8_t *macaddr;
2585 uint32_t data;
2586 int error, i;
2587
2588 IWI_LOCK_ASSERT(sc);
2589
2590 macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
2591 DPRINTF(("Setting MAC address to %6D\n", macaddr, ":"));
2592 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, macaddr,
2593 IEEE80211_ADDR_LEN);
2594 if (error != 0)
2595 return error;
2596
2597 memset(&config, 0, sizeof config);
2598 config.bluetooth_coexistence = sc->bluetooth;
2599 config.silence_threshold = 0x1e;
2600 config.antenna = sc->antenna;
2601 config.multicast_enabled = 1;
2602 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2603 config.disable_unicast_decryption = 1;
2604 config.disable_multicast_decryption = 1;
2605 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2606 config.allow_invalid_frames = 1;
2607 config.allow_beacon_and_probe_resp = 1;
2608 config.allow_mgt = 1;
2609 }
2610 DPRINTF(("Configuring adapter\n"));
2611 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2612 if (error != 0)
2613 return error;
2614 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2615 power.mode = IWI_MODE_11B;
2616 power.nchan = 11;
2617 for (i = 0; i < 11; i++) {
2618 power.chan[i].chan = i + 1;
2619 power.chan[i].power = IWI_TXPOWER_MAX;
2620 }
2621 DPRINTF(("Setting .11b channels tx power\n"));
2622 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2623 if (error != 0)
2624 return error;
2625
2626 power.mode = IWI_MODE_11G;
2627 DPRINTF(("Setting .11g channels tx power\n"));
2628 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2629 if (error != 0)
2630 return error;
2631 }
2632
2633 error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11G],
2634 IWI_MODE_11G, IWI_RATESET_TYPE_SUPPORTED);
2635 if (error != 0)
2636 return error;
2637
2638 error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11A],
2639 IWI_MODE_11A, IWI_RATESET_TYPE_SUPPORTED);
2640 if (error != 0)
2641 return error;
2642
2643 data = htole32(arc4random());
2644 DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2645 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2646 if (error != 0)
2647 return error;
2648
2649 /* enable adapter */
2650 DPRINTF(("Enabling adapter\n"));
2651 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2652 }
2653
2654 static __inline void
set_scan_type(struct iwi_scan_ext * scan,int ix,int scan_type)2655 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2656 {
2657 uint8_t *st = &scan->scan_type[ix / 2];
2658 if (ix % 2)
2659 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2660 else
2661 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2662 }
2663
2664 static int
scan_type(const struct ieee80211_scan_state * ss,const struct ieee80211_channel * chan)2665 scan_type(const struct ieee80211_scan_state *ss,
2666 const struct ieee80211_channel *chan)
2667 {
2668 /* We can only set one essid for a directed scan */
2669 if (ss->ss_nssid != 0)
2670 return IWI_SCAN_TYPE_BDIRECTED;
2671 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
2672 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
2673 return IWI_SCAN_TYPE_BROADCAST;
2674 return IWI_SCAN_TYPE_PASSIVE;
2675 }
2676
2677 static __inline int
scan_band(const struct ieee80211_channel * c)2678 scan_band(const struct ieee80211_channel *c)
2679 {
2680 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
2681 }
2682
2683 static void
iwi_monitor_scan(void * arg,int npending)2684 iwi_monitor_scan(void *arg, int npending)
2685 {
2686 struct iwi_softc *sc = arg;
2687 IWI_LOCK_DECL;
2688
2689 IWI_LOCK(sc);
2690 (void) iwi_scanchan(sc, 2000, 0);
2691 IWI_UNLOCK(sc);
2692 }
2693
2694 /*
2695 * Start a scan on the current channel or all channels.
2696 */
2697 static int
iwi_scanchan(struct iwi_softc * sc,unsigned long maxdwell,int allchan)2698 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan)
2699 {
2700 struct ieee80211com *ic = &sc->sc_ic;
2701 struct ieee80211_channel *chan;
2702 struct ieee80211_scan_state *ss;
2703 struct iwi_scan_ext scan;
2704 int error = 0;
2705
2706 IWI_LOCK_ASSERT(sc);
2707 if (sc->fw_state == IWI_FW_SCANNING) {
2708 /*
2709 * This should not happen as we only trigger scan_next after
2710 * completion
2711 */
2712 DPRINTF(("%s: called too early - still scanning\n", __func__));
2713 return (EBUSY);
2714 }
2715 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
2716
2717 ss = ic->ic_scan;
2718
2719 memset(&scan, 0, sizeof scan);
2720 scan.full_scan_index = htole32(++sc->sc_scangen);
2721 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
2722 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
2723 /*
2724 * Use very short dwell times for when we send probe request
2725 * frames. Without this bg scans hang. Ideally this should
2726 * be handled with early-termination as done by net80211 but
2727 * that's not feasible (aborting a scan is problematic).
2728 */
2729 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
2730 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
2731 } else {
2732 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
2733 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
2734 }
2735
2736 /* We can only set one essid for a directed scan */
2737 if (ss->ss_nssid != 0) {
2738 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
2739 ss->ss_ssid[0].len);
2740 if (error)
2741 return (error);
2742 }
2743
2744 if (allchan) {
2745 int i, next, band, b, bstart;
2746 /*
2747 * Convert scan list to run-length encoded channel list
2748 * the firmware requires (preserving the order setup by
2749 * net80211). The first entry in each run specifies the
2750 * band and the count of items in the run.
2751 */
2752 next = 0; /* next open slot */
2753 bstart = 0; /* NB: not needed, silence compiler */
2754 band = -1; /* NB: impossible value */
2755 KASSERT(ss->ss_last > 0, ("no channels"));
2756 for (i = 0; i < ss->ss_last; i++) {
2757 chan = ss->ss_chans[i];
2758 b = scan_band(chan);
2759 if (b != band) {
2760 if (band != -1)
2761 scan.channels[bstart] =
2762 (next - bstart) | band;
2763 /* NB: this allocates a slot for the run-len */
2764 band = b, bstart = next++;
2765 }
2766 if (next >= IWI_SCAN_CHANNELS) {
2767 DPRINTF(("truncating scan list\n"));
2768 break;
2769 }
2770 scan.channels[next] = ieee80211_chan2ieee(ic, chan);
2771 set_scan_type(&scan, next, scan_type(ss, chan));
2772 next++;
2773 }
2774 scan.channels[bstart] = (next - bstart) | band;
2775 } else {
2776 /* Scan the current channel only */
2777 chan = ic->ic_curchan;
2778 scan.channels[0] = 1 | scan_band(chan);
2779 scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2780 set_scan_type(&scan, 1, scan_type(ss, chan));
2781 }
2782 #ifdef IWI_DEBUG
2783 if (iwi_debug > 0) {
2784 static const char *scantype[8] =
2785 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
2786 int i;
2787 printf("Scan request: index %u dwell %d/%d/%d\n"
2788 , le32toh(scan.full_scan_index)
2789 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
2790 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
2791 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
2792 );
2793 i = 0;
2794 do {
2795 int run = scan.channels[i];
2796 if (run == 0)
2797 break;
2798 printf("Scan %d %s channels:", run & 0x3f,
2799 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
2800 for (run &= 0x3f, i++; run > 0; run--, i++) {
2801 uint8_t type = scan.scan_type[i/2];
2802 printf(" %u/%s", scan.channels[i],
2803 scantype[(i & 1 ? type : type>>4) & 7]);
2804 }
2805 printf("\n");
2806 } while (i < IWI_SCAN_CHANNELS);
2807 }
2808 #endif
2809
2810 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
2811 }
2812
2813 static int
iwi_set_sensitivity(struct iwi_softc * sc,int8_t rssi_dbm)2814 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2815 {
2816 struct iwi_sensitivity sens;
2817
2818 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2819
2820 memset(&sens, 0, sizeof sens);
2821 sens.rssi = htole16(rssi_dbm);
2822 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2823 }
2824
2825 static int
iwi_auth_and_assoc(struct iwi_softc * sc,struct ieee80211vap * vap)2826 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
2827 {
2828 struct ieee80211com *ic = vap->iv_ic;
2829 if_t ifp = vap->iv_ifp;
2830 struct ieee80211_node *ni;
2831 struct iwi_configuration config;
2832 struct iwi_associate *assoc = &sc->assoc;
2833 uint16_t capinfo;
2834 uint32_t data;
2835 int error, mode;
2836
2837 IWI_LOCK_ASSERT(sc);
2838
2839 if (sc->flags & IWI_FLAG_ASSOCIATED) {
2840 DPRINTF(("Already associated\n"));
2841 return (-1);
2842 }
2843
2844 ni = ieee80211_ref_node(vap->iv_bss);
2845
2846 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
2847 error = 0;
2848 mode = 0;
2849
2850 if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
2851 mode = IWI_MODE_11A;
2852 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
2853 mode = IWI_MODE_11G;
2854 if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
2855 mode = IWI_MODE_11B;
2856
2857 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2858 memset(&config, 0, sizeof config);
2859 config.bluetooth_coexistence = sc->bluetooth;
2860 config.antenna = sc->antenna;
2861 config.multicast_enabled = 1;
2862 if (mode == IWI_MODE_11G)
2863 config.use_protection = 1;
2864 config.answer_pbreq =
2865 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2866 config.disable_unicast_decryption = 1;
2867 config.disable_multicast_decryption = 1;
2868 DPRINTF(("Configuring adapter\n"));
2869 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2870 if (error != 0)
2871 goto done;
2872 }
2873
2874 #ifdef IWI_DEBUG
2875 if (iwi_debug > 0) {
2876 printf("Setting ESSID to ");
2877 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2878 printf("\n");
2879 }
2880 #endif
2881 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2882 if (error != 0)
2883 goto done;
2884
2885 error = iwi_setpowermode(sc, vap);
2886 if (error != 0)
2887 goto done;
2888
2889 data = htole32(vap->iv_rtsthreshold);
2890 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2891 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2892 if (error != 0)
2893 goto done;
2894
2895 data = htole32(vap->iv_fragthreshold);
2896 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2897 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2898 if (error != 0)
2899 goto done;
2900
2901 /* the rate set has already been "negotiated" */
2902 error = iwi_set_rateset(sc, &ni->ni_rates, mode,
2903 IWI_RATESET_TYPE_NEGOTIATED);
2904 if (error != 0)
2905 goto done;
2906
2907 memset(assoc, 0, sizeof *assoc);
2908
2909 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
2910 /* NB: don't treat WME setup as failure */
2911 if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0)
2912 assoc->policy |= htole16(IWI_POLICY_WME);
2913 /* XXX complain on failure? */
2914 }
2915
2916 if (vap->iv_appie_wpa != NULL) {
2917 struct ieee80211_appie *ie = vap->iv_appie_wpa;
2918
2919 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
2920 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
2921 if (error != 0)
2922 goto done;
2923 }
2924
2925 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
2926 if (error != 0)
2927 goto done;
2928
2929 assoc->mode = mode;
2930 assoc->chan = ic->ic_curchan->ic_ieee;
2931 /*
2932 * NB: do not arrange for shared key auth w/o privacy
2933 * (i.e. a wep key); it causes a firmware error.
2934 */
2935 if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
2936 ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2937 assoc->auth = IWI_AUTH_SHARED;
2938 /*
2939 * It's possible to have privacy marked but no default
2940 * key setup. This typically is due to a user app bug
2941 * but if we blindly grab the key the firmware will
2942 * barf so avoid it for now.
2943 */
2944 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
2945 assoc->auth |= vap->iv_def_txkey << 4;
2946
2947 error = iwi_setwepkeys(sc, vap);
2948 if (error != 0)
2949 goto done;
2950 }
2951 if (vap->iv_flags & IEEE80211_F_WPA)
2952 assoc->policy |= htole16(IWI_POLICY_WPA);
2953 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2954 assoc->type = IWI_HC_IBSS_START;
2955 else
2956 assoc->type = IWI_HC_ASSOC;
2957 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2958
2959 if (vap->iv_opmode == IEEE80211_M_IBSS)
2960 capinfo = IEEE80211_CAPINFO_IBSS;
2961 else
2962 capinfo = IEEE80211_CAPINFO_ESS;
2963 if (vap->iv_flags & IEEE80211_F_PRIVACY)
2964 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2965 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2966 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2967 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2968 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2969 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2970 assoc->capinfo = htole16(capinfo);
2971
2972 assoc->lintval = htole16(ic->ic_lintval);
2973 assoc->intval = htole16(ni->ni_intval);
2974 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
2975 if (vap->iv_opmode == IEEE80211_M_IBSS)
2976 IEEE80211_ADDR_COPY(assoc->dst, if_getbroadcastaddr(ifp));
2977 else
2978 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
2979
2980 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
2981 "auth %u capinfo 0x%x lintval %u bintval %u\n",
2982 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
2983 assoc->bssid, ":", assoc->dst, ":",
2984 assoc->chan, le16toh(assoc->policy), assoc->auth,
2985 le16toh(assoc->capinfo), le16toh(assoc->lintval),
2986 le16toh(assoc->intval)));
2987 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2988 done:
2989 ieee80211_free_node(ni);
2990 if (error)
2991 IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
2992
2993 return (error);
2994 }
2995
2996 static void
iwi_disassoc(void * arg,int pending)2997 iwi_disassoc(void *arg, int pending)
2998 {
2999 struct iwi_softc *sc = arg;
3000 IWI_LOCK_DECL;
3001
3002 IWI_LOCK(sc);
3003 iwi_disassociate(sc, 0);
3004 IWI_UNLOCK(sc);
3005 }
3006
3007 static int
iwi_disassociate(struct iwi_softc * sc,int quiet)3008 iwi_disassociate(struct iwi_softc *sc, int quiet)
3009 {
3010 struct iwi_associate *assoc = &sc->assoc;
3011
3012 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
3013 DPRINTF(("Not associated\n"));
3014 return (-1);
3015 }
3016
3017 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
3018
3019 if (quiet)
3020 assoc->type = IWI_HC_DISASSOC_QUIET;
3021 else
3022 assoc->type = IWI_HC_DISASSOC;
3023
3024 DPRINTF(("Trying to disassociate from %6D channel %u\n",
3025 assoc->bssid, ":", assoc->chan));
3026 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3027 }
3028
3029 /*
3030 * release dma resources for the firmware
3031 */
3032 static void
iwi_release_fw_dma(struct iwi_softc * sc)3033 iwi_release_fw_dma(struct iwi_softc *sc)
3034 {
3035 if (sc->fw_flags & IWI_FW_HAVE_PHY)
3036 bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
3037 if (sc->fw_flags & IWI_FW_HAVE_MAP)
3038 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
3039 if (sc->fw_flags & IWI_FW_HAVE_DMAT)
3040 bus_dma_tag_destroy(sc->fw_dmat);
3041
3042 sc->fw_flags = 0;
3043 sc->fw_dma_size = 0;
3044 sc->fw_dmat = NULL;
3045 sc->fw_map = NULL;
3046 sc->fw_physaddr = 0;
3047 sc->fw_virtaddr = NULL;
3048 }
3049
3050 /*
3051 * allocate the dma descriptor for the firmware.
3052 * Return 0 on success, 1 on error.
3053 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3054 */
3055 static int
iwi_init_fw_dma(struct iwi_softc * sc,int size)3056 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3057 {
3058 if (sc->fw_dma_size >= size)
3059 return 0;
3060 if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
3061 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
3062 size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) {
3063 device_printf(sc->sc_dev,
3064 "could not create firmware DMA tag\n");
3065 goto error;
3066 }
3067 sc->fw_flags |= IWI_FW_HAVE_DMAT;
3068 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3069 &sc->fw_map) != 0) {
3070 device_printf(sc->sc_dev,
3071 "could not allocate firmware DMA memory\n");
3072 goto error;
3073 }
3074 sc->fw_flags |= IWI_FW_HAVE_MAP;
3075 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3076 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3077 device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3078 goto error;
3079 }
3080 sc->fw_flags |= IWI_FW_HAVE_PHY;
3081 sc->fw_dma_size = size;
3082 return 0;
3083
3084 error:
3085 iwi_release_fw_dma(sc);
3086 return 1;
3087 }
3088
3089 static void
iwi_init_locked(struct iwi_softc * sc)3090 iwi_init_locked(struct iwi_softc *sc)
3091 {
3092 struct iwi_rx_data *data;
3093 int i;
3094
3095 IWI_LOCK_ASSERT(sc);
3096
3097 if (sc->fw_state == IWI_FW_LOADING) {
3098 device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3099 return; /* XXX: condvar? */
3100 }
3101
3102 iwi_stop_locked(sc);
3103
3104 IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
3105
3106 if (iwi_reset(sc) != 0) {
3107 device_printf(sc->sc_dev, "could not reset adapter\n");
3108 goto fail;
3109 }
3110 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3111 device_printf(sc->sc_dev,
3112 "could not load boot firmware %s\n", sc->fw_boot.name);
3113 goto fail;
3114 }
3115 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3116 device_printf(sc->sc_dev,
3117 "could not load microcode %s\n", sc->fw_uc.name);
3118 goto fail;
3119 }
3120
3121 iwi_stop_master(sc);
3122
3123 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3124 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3125 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3126
3127 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3128 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3129 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3130
3131 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3132 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3133 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3134
3135 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3136 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3137 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3138
3139 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3140 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3141 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3142
3143 for (i = 0; i < sc->rxq.count; i++) {
3144 data = &sc->rxq.data[i];
3145 CSR_WRITE_4(sc, data->reg, data->physaddr);
3146 }
3147
3148 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3149
3150 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3151 device_printf(sc->sc_dev,
3152 "could not load main firmware %s\n", sc->fw_fw.name);
3153 goto fail;
3154 }
3155 sc->flags |= IWI_FLAG_FW_INITED;
3156
3157 IWI_STATE_END(sc, IWI_FW_LOADING);
3158
3159 if (iwi_config(sc) != 0) {
3160 device_printf(sc->sc_dev, "unable to enable adapter\n");
3161 goto fail2;
3162 }
3163
3164 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
3165 sc->sc_running = 1;
3166 return;
3167 fail:
3168 IWI_STATE_END(sc, IWI_FW_LOADING);
3169 fail2:
3170 iwi_stop_locked(sc);
3171 }
3172
3173 static void
iwi_init(void * priv)3174 iwi_init(void *priv)
3175 {
3176 struct iwi_softc *sc = priv;
3177 struct ieee80211com *ic = &sc->sc_ic;
3178 IWI_LOCK_DECL;
3179
3180 IWI_LOCK(sc);
3181 iwi_init_locked(sc);
3182 IWI_UNLOCK(sc);
3183
3184 if (sc->sc_running)
3185 ieee80211_start_all(ic);
3186 }
3187
3188 static void
iwi_stop_locked(void * priv)3189 iwi_stop_locked(void *priv)
3190 {
3191 struct iwi_softc *sc = priv;
3192
3193 IWI_LOCK_ASSERT(sc);
3194
3195 sc->sc_running = 0;
3196
3197 if (sc->sc_softled) {
3198 callout_stop(&sc->sc_ledtimer);
3199 sc->sc_blinking = 0;
3200 }
3201 callout_stop(&sc->sc_wdtimer);
3202 callout_stop(&sc->sc_rftimer);
3203
3204 iwi_stop_master(sc);
3205
3206 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3207
3208 /* reset rings */
3209 iwi_reset_cmd_ring(sc, &sc->cmdq);
3210 iwi_reset_tx_ring(sc, &sc->txq[0]);
3211 iwi_reset_tx_ring(sc, &sc->txq[1]);
3212 iwi_reset_tx_ring(sc, &sc->txq[2]);
3213 iwi_reset_tx_ring(sc, &sc->txq[3]);
3214 iwi_reset_rx_ring(sc, &sc->rxq);
3215
3216 sc->sc_tx_timer = 0;
3217 sc->sc_state_timer = 0;
3218 sc->sc_busy_timer = 0;
3219 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
3220 sc->fw_state = IWI_FW_IDLE;
3221 wakeup(sc);
3222 }
3223
3224 static void
iwi_stop(struct iwi_softc * sc)3225 iwi_stop(struct iwi_softc *sc)
3226 {
3227 IWI_LOCK_DECL;
3228
3229 IWI_LOCK(sc);
3230 iwi_stop_locked(sc);
3231 IWI_UNLOCK(sc);
3232 }
3233
3234 static void
iwi_restart(void * arg,int npending)3235 iwi_restart(void *arg, int npending)
3236 {
3237 struct iwi_softc *sc = arg;
3238
3239 iwi_init(sc);
3240 }
3241
3242 /*
3243 * Return whether or not the radio is enabled in hardware
3244 * (i.e. the rfkill switch is "off").
3245 */
3246 static int
iwi_getrfkill(struct iwi_softc * sc)3247 iwi_getrfkill(struct iwi_softc *sc)
3248 {
3249 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3250 }
3251
3252 static void
iwi_radio_on(void * arg,int pending)3253 iwi_radio_on(void *arg, int pending)
3254 {
3255 struct iwi_softc *sc = arg;
3256 struct ieee80211com *ic = &sc->sc_ic;
3257
3258 device_printf(sc->sc_dev, "radio turned on\n");
3259
3260 iwi_init(sc);
3261 ieee80211_notify_radio(ic, 1);
3262 }
3263
3264 static void
iwi_rfkill_poll(void * arg)3265 iwi_rfkill_poll(void *arg)
3266 {
3267 struct iwi_softc *sc = arg;
3268
3269 IWI_LOCK_ASSERT(sc);
3270
3271 /*
3272 * Check for a change in rfkill state. We get an
3273 * interrupt when a radio is disabled but not when
3274 * it is enabled so we must poll for the latter.
3275 */
3276 if (!iwi_getrfkill(sc)) {
3277 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask);
3278 return;
3279 }
3280 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc);
3281 }
3282
3283 static void
iwi_radio_off(void * arg,int pending)3284 iwi_radio_off(void *arg, int pending)
3285 {
3286 struct iwi_softc *sc = arg;
3287 struct ieee80211com *ic = &sc->sc_ic;
3288 IWI_LOCK_DECL;
3289
3290 device_printf(sc->sc_dev, "radio turned off\n");
3291
3292 ieee80211_notify_radio(ic, 0);
3293
3294 IWI_LOCK(sc);
3295 iwi_stop_locked(sc);
3296 iwi_rfkill_poll(sc);
3297 IWI_UNLOCK(sc);
3298 }
3299
3300 static int
iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)3301 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3302 {
3303 struct iwi_softc *sc = arg1;
3304 uint32_t size, buf[128];
3305
3306 memset(buf, 0, sizeof buf);
3307
3308 if (!(sc->flags & IWI_FLAG_FW_INITED))
3309 return SYSCTL_OUT(req, buf, sizeof buf);
3310
3311 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3312 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3313
3314 return SYSCTL_OUT(req, buf, size);
3315 }
3316
3317 static int
iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)3318 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3319 {
3320 struct iwi_softc *sc = arg1;
3321 int val = !iwi_getrfkill(sc);
3322
3323 return SYSCTL_OUT(req, &val, sizeof val);
3324 }
3325
3326 /*
3327 * Add sysctl knobs.
3328 */
3329 static void
iwi_sysctlattach(struct iwi_softc * sc)3330 iwi_sysctlattach(struct iwi_softc *sc)
3331 {
3332 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3333 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3334
3335 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3336 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
3337 iwi_sysctl_radio, "I",
3338 "radio transmitter switch state (0=off, 1=on)");
3339
3340 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3341 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
3342 iwi_sysctl_stats, "S", "statistics");
3343
3344 sc->bluetooth = 0;
3345 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3346 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3347
3348 sc->antenna = IWI_ANTENNA_AUTO;
3349 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3350 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3351 }
3352
3353 /*
3354 * LED support.
3355 *
3356 * Different cards have different capabilities. Some have three
3357 * led's while others have only one. The linux ipw driver defines
3358 * led's for link state (associated or not), band (11a, 11g, 11b),
3359 * and for link activity. We use one led and vary the blink rate
3360 * according to the tx/rx traffic a la the ath driver.
3361 */
3362
3363 static __inline uint32_t
iwi_toggle_event(uint32_t r)3364 iwi_toggle_event(uint32_t r)
3365 {
3366 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3367 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3368 }
3369
3370 static uint32_t
iwi_read_event(struct iwi_softc * sc)3371 iwi_read_event(struct iwi_softc *sc)
3372 {
3373 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3374 }
3375
3376 static void
iwi_write_event(struct iwi_softc * sc,uint32_t v)3377 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3378 {
3379 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3380 }
3381
3382 static void
iwi_led_done(void * arg)3383 iwi_led_done(void *arg)
3384 {
3385 struct iwi_softc *sc = arg;
3386
3387 sc->sc_blinking = 0;
3388 }
3389
3390 /*
3391 * Turn the activity LED off: flip the pin and then set a timer so no
3392 * update will happen for the specified duration.
3393 */
3394 static void
iwi_led_off(void * arg)3395 iwi_led_off(void *arg)
3396 {
3397 struct iwi_softc *sc = arg;
3398 uint32_t v;
3399
3400 v = iwi_read_event(sc);
3401 v &= ~sc->sc_ledpin;
3402 iwi_write_event(sc, iwi_toggle_event(v));
3403 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
3404 }
3405
3406 /*
3407 * Blink the LED according to the specified on/off times.
3408 */
3409 static void
iwi_led_blink(struct iwi_softc * sc,int on,int off)3410 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3411 {
3412 uint32_t v;
3413
3414 v = iwi_read_event(sc);
3415 v |= sc->sc_ledpin;
3416 iwi_write_event(sc, iwi_toggle_event(v));
3417 sc->sc_blinking = 1;
3418 sc->sc_ledoff = off;
3419 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
3420 }
3421
3422 static void
iwi_led_event(struct iwi_softc * sc,int event)3423 iwi_led_event(struct iwi_softc *sc, int event)
3424 {
3425 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
3426 static const struct {
3427 u_int rate; /* tx/rx iwi rate */
3428 u_int16_t timeOn; /* LED on time (ms) */
3429 u_int16_t timeOff; /* LED off time (ms) */
3430 } blinkrates[] = {
3431 { IWI_RATE_OFDM54, 40, 10 },
3432 { IWI_RATE_OFDM48, 44, 11 },
3433 { IWI_RATE_OFDM36, 50, 13 },
3434 { IWI_RATE_OFDM24, 57, 14 },
3435 { IWI_RATE_OFDM18, 67, 16 },
3436 { IWI_RATE_OFDM12, 80, 20 },
3437 { IWI_RATE_DS11, 100, 25 },
3438 { IWI_RATE_OFDM9, 133, 34 },
3439 { IWI_RATE_OFDM6, 160, 40 },
3440 { IWI_RATE_DS5, 200, 50 },
3441 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */
3442 { IWI_RATE_DS2, 267, 66 },
3443 { IWI_RATE_DS1, 400, 100 },
3444 { 0, 500, 130 }, /* unknown rate/polling */
3445 };
3446 uint32_t txrate;
3447 int j = 0; /* XXX silence compiler */
3448
3449 sc->sc_ledevent = ticks; /* time of last event */
3450 if (sc->sc_blinking) /* don't interrupt active blink */
3451 return;
3452 switch (event) {
3453 case IWI_LED_POLL:
3454 j = nitems(blinkrates)-1;
3455 break;
3456 case IWI_LED_TX:
3457 /* read current transmission rate from adapter */
3458 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3459 if (blinkrates[sc->sc_txrix].rate != txrate) {
3460 for (j = 0; j < nitems(blinkrates)-1; j++)
3461 if (blinkrates[j].rate == txrate)
3462 break;
3463 sc->sc_txrix = j;
3464 } else
3465 j = sc->sc_txrix;
3466 break;
3467 case IWI_LED_RX:
3468 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3469 for (j = 0; j < nitems(blinkrates)-1; j++)
3470 if (blinkrates[j].rate == sc->sc_rxrate)
3471 break;
3472 sc->sc_rxrix = j;
3473 } else
3474 j = sc->sc_rxrix;
3475 break;
3476 }
3477 /* XXX beware of overflow */
3478 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3479 (blinkrates[j].timeOff * hz) / 1000);
3480 }
3481
3482 static int
iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)3483 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3484 {
3485 struct iwi_softc *sc = arg1;
3486 int softled = sc->sc_softled;
3487 int error;
3488
3489 error = sysctl_handle_int(oidp, &softled, 0, req);
3490 if (error || !req->newptr)
3491 return error;
3492 softled = (softled != 0);
3493 if (softled != sc->sc_softled) {
3494 if (softled) {
3495 uint32_t v = iwi_read_event(sc);
3496 v &= ~sc->sc_ledpin;
3497 iwi_write_event(sc, iwi_toggle_event(v));
3498 }
3499 sc->sc_softled = softled;
3500 }
3501 return 0;
3502 }
3503
3504 static void
iwi_ledattach(struct iwi_softc * sc)3505 iwi_ledattach(struct iwi_softc *sc)
3506 {
3507 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3508 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3509
3510 sc->sc_blinking = 0;
3511 sc->sc_ledstate = 1;
3512 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
3513 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
3514
3515 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3516 "softled", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
3517 iwi_sysctl_softled, "I", "enable/disable software LED support");
3518 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3519 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3520 "pin setting to turn activity LED on");
3521 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3522 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3523 "idle time for inactivity LED (ticks)");
3524 /* XXX for debugging */
3525 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3526 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3527 "NIC type from EEPROM");
3528
3529 sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3530 sc->sc_softled = 1;
3531
3532 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3533 if (sc->sc_nictype == 1) {
3534 /*
3535 * NB: led's are reversed.
3536 */
3537 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3538 }
3539 }
3540
3541 static void
iwi_scan_start(struct ieee80211com * ic)3542 iwi_scan_start(struct ieee80211com *ic)
3543 {
3544 /* ignore */
3545 }
3546
3547 static void
iwi_set_channel(struct ieee80211com * ic)3548 iwi_set_channel(struct ieee80211com *ic)
3549 {
3550 struct iwi_softc *sc = ic->ic_softc;
3551
3552 if (sc->fw_state == IWI_FW_IDLE)
3553 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
3554 }
3555
3556 static void
iwi_scan_curchan(struct ieee80211_scan_state * ss,unsigned long maxdwell)3557 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3558 {
3559 struct ieee80211vap *vap = ss->ss_vap;
3560 struct iwi_softc *sc = vap->iv_ic->ic_softc;
3561 IWI_LOCK_DECL;
3562
3563 IWI_LOCK(sc);
3564 if (iwi_scanchan(sc, maxdwell, 0))
3565 ieee80211_cancel_scan(vap);
3566 IWI_UNLOCK(sc);
3567 }
3568
3569 static void
iwi_scan_mindwell(struct ieee80211_scan_state * ss)3570 iwi_scan_mindwell(struct ieee80211_scan_state *ss)
3571 {
3572 /* NB: don't try to abort scan; wait for firmware to finish */
3573 }
3574
3575 static void
iwi_scan_end(struct ieee80211com * ic)3576 iwi_scan_end(struct ieee80211com *ic)
3577 {
3578 struct iwi_softc *sc = ic->ic_softc;
3579 IWI_LOCK_DECL;
3580
3581 IWI_LOCK(sc);
3582 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
3583 /* NB: make sure we're still scanning */
3584 if (sc->fw_state == IWI_FW_SCANNING)
3585 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
3586 IWI_UNLOCK(sc);
3587 }
3588
3589 static void
iwi_collect_bands(struct ieee80211com * ic,uint8_t bands[],size_t bands_sz)3590 iwi_collect_bands(struct ieee80211com *ic, uint8_t bands[], size_t bands_sz)
3591 {
3592 struct iwi_softc *sc = ic->ic_softc;
3593 device_t dev = sc->sc_dev;
3594
3595 memset(bands, 0, bands_sz);
3596 setbit(bands, IEEE80211_MODE_11B);
3597 setbit(bands, IEEE80211_MODE_11G);
3598 if (pci_get_device(dev) >= 0x4223)
3599 setbit(bands, IEEE80211_MODE_11A);
3600 }
3601
3602 static void
iwi_getradiocaps(struct ieee80211com * ic,int maxchans,int * nchans,struct ieee80211_channel chans[])3603 iwi_getradiocaps(struct ieee80211com *ic,
3604 int maxchans, int *nchans, struct ieee80211_channel chans[])
3605 {
3606 uint8_t bands[IEEE80211_MODE_BYTES];
3607
3608 iwi_collect_bands(ic, bands, sizeof(bands));
3609 *nchans = 0;
3610 if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G))
3611 ieee80211_add_channels_default_2ghz(chans, maxchans, nchans,
3612 bands, 0);
3613 if (isset(bands, IEEE80211_MODE_11A)) {
3614 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3615 def_chan_5ghz_band1, nitems(def_chan_5ghz_band1),
3616 bands, 0);
3617 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3618 def_chan_5ghz_band2, nitems(def_chan_5ghz_band2),
3619 bands, 0);
3620 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3621 def_chan_5ghz_band3, nitems(def_chan_5ghz_band3),
3622 bands, 0);
3623 }
3624 }
3625