1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Atsushi Onoe
5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 /*
31 * IEEE 802.11 generic handler
32 */
33 #include "opt_wlan.h"
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41
42 #include <machine/stdarg.h>
43
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_private.h>
49 #include <net/if_types.h>
50 #include <net/ethernet.h>
51 #include <net/vnet.h>
52
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_regdomain.h>
55 #ifdef IEEE80211_SUPPORT_SUPERG
56 #include <net80211/ieee80211_superg.h>
57 #endif
58 #include <net80211/ieee80211_ratectl.h>
59 #include <net80211/ieee80211_vht.h>
60
61 #include <net/bpf.h>
62
63 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
64 [IEEE80211_MODE_AUTO] = "auto",
65 [IEEE80211_MODE_11A] = "11a",
66 [IEEE80211_MODE_11B] = "11b",
67 [IEEE80211_MODE_11G] = "11g",
68 [IEEE80211_MODE_FH] = "FH",
69 [IEEE80211_MODE_TURBO_A] = "turboA",
70 [IEEE80211_MODE_TURBO_G] = "turboG",
71 [IEEE80211_MODE_STURBO_A] = "sturboA",
72 [IEEE80211_MODE_HALF] = "half",
73 [IEEE80211_MODE_QUARTER] = "quarter",
74 [IEEE80211_MODE_11NA] = "11na",
75 [IEEE80211_MODE_11NG] = "11ng",
76 [IEEE80211_MODE_VHT_2GHZ] = "11acg",
77 [IEEE80211_MODE_VHT_5GHZ] = "11ac",
78 };
79 /* map ieee80211_opmode to the corresponding capability bit */
80 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
81 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS,
82 [IEEE80211_M_WDS] = IEEE80211_C_WDS,
83 [IEEE80211_M_STA] = IEEE80211_C_STA,
84 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO,
85 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP,
86 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR,
87 #ifdef IEEE80211_SUPPORT_MESH
88 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS,
89 #endif
90 };
91
92 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
93 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
94
95 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
96 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
97 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
98 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
99 static int ieee80211_media_setup(struct ieee80211com *ic,
100 struct ifmedia *media, int caps, int addsta,
101 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
102 static int media_status(enum ieee80211_opmode,
103 const struct ieee80211_channel *);
104 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
105
106 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
107
108 /*
109 * Default supported rates for 802.11 operation (in IEEE .5Mb units).
110 */
111 #define B(r) ((r) | IEEE80211_RATE_BASIC)
112 static const struct ieee80211_rateset ieee80211_rateset_11a =
113 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
114 static const struct ieee80211_rateset ieee80211_rateset_half =
115 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
116 static const struct ieee80211_rateset ieee80211_rateset_quarter =
117 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
118 static const struct ieee80211_rateset ieee80211_rateset_11b =
119 { 4, { B(2), B(4), B(11), B(22) } };
120 /* NB: OFDM rates are handled specially based on mode */
121 static const struct ieee80211_rateset ieee80211_rateset_11g =
122 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
123 #undef B
124
125 static int set_vht_extchan(struct ieee80211_channel *c);
126
127 /*
128 * Fill in 802.11 available channel set, mark
129 * all available channels as active, and pick
130 * a default channel if not already specified.
131 */
132 void
ieee80211_chan_init(struct ieee80211com * ic)133 ieee80211_chan_init(struct ieee80211com *ic)
134 {
135 #define DEFAULTRATES(m, def) do { \
136 if (ic->ic_sup_rates[m].rs_nrates == 0) \
137 ic->ic_sup_rates[m] = def; \
138 } while (0)
139 struct ieee80211_channel *c;
140 int i;
141
142 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
143 ("invalid number of channels specified: %u", ic->ic_nchans));
144 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
145 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
146 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
147 for (i = 0; i < ic->ic_nchans; i++) {
148 c = &ic->ic_channels[i];
149 KASSERT(c->ic_flags != 0, ("channel with no flags"));
150 /*
151 * Help drivers that work only with frequencies by filling
152 * in IEEE channel #'s if not already calculated. Note this
153 * mimics similar work done in ieee80211_setregdomain when
154 * changing regulatory state.
155 */
156 if (c->ic_ieee == 0)
157 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
158
159 /*
160 * Setup the HT40/VHT40 upper/lower bits.
161 * The VHT80/... math is done elsewhere.
162 */
163 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
164 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
165 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
166 c->ic_flags);
167
168 /* Update VHT math */
169 /*
170 * XXX VHT again, note that this assumes VHT80/... channels
171 * are legit already.
172 */
173 set_vht_extchan(c);
174
175 /* default max tx power to max regulatory */
176 if (c->ic_maxpower == 0)
177 c->ic_maxpower = 2*c->ic_maxregpower;
178 setbit(ic->ic_chan_avail, c->ic_ieee);
179 /*
180 * Identify mode capabilities.
181 */
182 if (IEEE80211_IS_CHAN_A(c))
183 setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
184 if (IEEE80211_IS_CHAN_B(c))
185 setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
186 if (IEEE80211_IS_CHAN_ANYG(c))
187 setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
188 if (IEEE80211_IS_CHAN_FHSS(c))
189 setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
190 if (IEEE80211_IS_CHAN_108A(c))
191 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
192 if (IEEE80211_IS_CHAN_108G(c))
193 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
194 if (IEEE80211_IS_CHAN_ST(c))
195 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
196 if (IEEE80211_IS_CHAN_HALF(c))
197 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
198 if (IEEE80211_IS_CHAN_QUARTER(c))
199 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
200 if (IEEE80211_IS_CHAN_HTA(c))
201 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
202 if (IEEE80211_IS_CHAN_HTG(c))
203 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
204 if (IEEE80211_IS_CHAN_VHTA(c))
205 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
206 if (IEEE80211_IS_CHAN_VHTG(c))
207 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
208 }
209 /* initialize candidate channels to all available */
210 memcpy(ic->ic_chan_active, ic->ic_chan_avail,
211 sizeof(ic->ic_chan_avail));
212
213 /* sort channel table to allow lookup optimizations */
214 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
215
216 /* invalidate any previous state */
217 ic->ic_bsschan = IEEE80211_CHAN_ANYC;
218 ic->ic_prevchan = NULL;
219 ic->ic_csa_newchan = NULL;
220 /* arbitrarily pick the first channel */
221 ic->ic_curchan = &ic->ic_channels[0];
222 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
223
224 /* fillin well-known rate sets if driver has not specified */
225 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b);
226 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g);
227 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a);
228 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a);
229 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g);
230 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a);
231 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half);
232 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter);
233 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a);
234 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g);
235 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g);
236 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a);
237
238 /*
239 * Setup required information to fill the mcsset field, if driver did
240 * not. Assume a 2T2R setup for historic reasons.
241 */
242 if (ic->ic_rxstream == 0)
243 ic->ic_rxstream = 2;
244 if (ic->ic_txstream == 0)
245 ic->ic_txstream = 2;
246
247 ieee80211_init_suphtrates(ic);
248
249 /*
250 * Set auto mode to reset active channel state and any desired channel.
251 */
252 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
253 #undef DEFAULTRATES
254 }
255
256 static void
null_update_mcast(struct ieee80211com * ic)257 null_update_mcast(struct ieee80211com *ic)
258 {
259
260 ic_printf(ic, "need multicast update callback\n");
261 }
262
263 static void
null_update_promisc(struct ieee80211com * ic)264 null_update_promisc(struct ieee80211com *ic)
265 {
266
267 ic_printf(ic, "need promiscuous mode update callback\n");
268 }
269
270 static void
null_update_chw(struct ieee80211com * ic)271 null_update_chw(struct ieee80211com *ic)
272 {
273
274 ic_printf(ic, "%s: need callback\n", __func__);
275 }
276
277 int
ic_printf(struct ieee80211com * ic,const char * fmt,...)278 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
279 {
280 va_list ap;
281 int retval;
282
283 retval = printf("%s: ", ic->ic_name);
284 va_start(ap, fmt);
285 retval += vprintf(fmt, ap);
286 va_end(ap);
287 return (retval);
288 }
289
290 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
291 static struct mtx ic_list_mtx;
292 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
293
294 static int
sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)295 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
296 {
297 struct ieee80211com *ic;
298 struct sbuf sb;
299 char *sp;
300 int error;
301
302 error = sysctl_wire_old_buffer(req, 0);
303 if (error)
304 return (error);
305 #ifndef __HAIKU__
306 // sysctl not used in Haiku, no need to fill the reply
307 sbuf_new_for_sysctl(&sb, NULL, 8, req);
308 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
309 sp = "";
310 mtx_lock(&ic_list_mtx);
311 LIST_FOREACH(ic, &ic_head, ic_next) {
312 sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
313 sp = " ";
314 }
315 mtx_unlock(&ic_list_mtx);
316 error = sbuf_finish(&sb);
317 sbuf_delete(&sb);
318 #endif
319 return (error);
320 }
321
322 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
323 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
324 sysctl_ieee80211coms, "A", "names of available 802.11 devices");
325
326 /*
327 * Attach/setup the common net80211 state. Called by
328 * the driver on attach to prior to creating any vap's.
329 */
330 void
ieee80211_ifattach(struct ieee80211com * ic)331 ieee80211_ifattach(struct ieee80211com *ic)
332 {
333
334 IEEE80211_LOCK_INIT(ic, ic->ic_name);
335 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
336 TAILQ_INIT(&ic->ic_vaps);
337
338 /* Create a taskqueue for all state changes */
339 ic->ic_tq = taskqueue_create("ic_taskq",
340 IEEE80211_M_WAITOK | IEEE80211_M_ZERO,
341 taskqueue_thread_enqueue, &ic->ic_tq);
342 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
343 ic->ic_name);
344 ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK);
345 ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK);
346 /*
347 * Fill in 802.11 available channel set, mark all
348 * available channels as active, and pick a default
349 * channel if not already specified.
350 */
351 ieee80211_chan_init(ic);
352
353 ic->ic_update_mcast = null_update_mcast;
354 ic->ic_update_promisc = null_update_promisc;
355 ic->ic_update_chw = null_update_chw;
356
357 ic->ic_hash_key = arc4random();
358 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
359 ic->ic_lintval = ic->ic_bintval;
360 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
361
362 ieee80211_crypto_attach(ic);
363 ieee80211_node_attach(ic);
364 ieee80211_power_attach(ic);
365 ieee80211_proto_attach(ic);
366 #ifdef IEEE80211_SUPPORT_SUPERG
367 ieee80211_superg_attach(ic);
368 #endif
369 ieee80211_ht_attach(ic);
370 ieee80211_vht_attach(ic);
371 ieee80211_scan_attach(ic);
372 ieee80211_regdomain_attach(ic);
373 ieee80211_dfs_attach(ic);
374
375 ieee80211_sysctl_attach(ic);
376
377 mtx_lock(&ic_list_mtx);
378 LIST_INSERT_HEAD(&ic_head, ic, ic_next);
379 mtx_unlock(&ic_list_mtx);
380 }
381
382 /*
383 * Detach net80211 state on device detach. Tear down
384 * all vap's and reclaim all common state prior to the
385 * device state going away. Note we may call back into
386 * driver; it must be prepared for this.
387 */
388 void
ieee80211_ifdetach(struct ieee80211com * ic)389 ieee80211_ifdetach(struct ieee80211com *ic)
390 {
391 struct ieee80211vap *vap;
392
393 /*
394 * We use this as an indicator that ifattach never had a chance to be
395 * called, e.g. early driver attach failed and ifdetach was called
396 * during subsequent detach. Never fear, for we have nothing to do
397 * here.
398 */
399 if (ic->ic_tq == NULL)
400 return;
401
402 mtx_lock(&ic_list_mtx);
403 LIST_REMOVE(ic, ic_next);
404 mtx_unlock(&ic_list_mtx);
405
406 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
407
408 /*
409 * The VAP is responsible for setting and clearing
410 * the VIMAGE context.
411 */
412 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
413 ieee80211_com_vdetach(vap);
414 ieee80211_vap_destroy(vap);
415 }
416 ieee80211_waitfor_parent(ic);
417
418 ieee80211_sysctl_detach(ic);
419 ieee80211_dfs_detach(ic);
420 ieee80211_regdomain_detach(ic);
421 ieee80211_scan_detach(ic);
422 #ifdef IEEE80211_SUPPORT_SUPERG
423 ieee80211_superg_detach(ic);
424 #endif
425 ieee80211_vht_detach(ic);
426 ieee80211_ht_detach(ic);
427 /* NB: must be called before ieee80211_node_detach */
428 ieee80211_proto_detach(ic);
429 ieee80211_crypto_detach(ic);
430 ieee80211_power_detach(ic);
431 ieee80211_node_detach(ic);
432
433 counter_u64_free(ic->ic_ierrors);
434 counter_u64_free(ic->ic_oerrors);
435
436 taskqueue_free(ic->ic_tq);
437 IEEE80211_TX_LOCK_DESTROY(ic);
438 IEEE80211_LOCK_DESTROY(ic);
439 }
440
441 /*
442 * Called by drivers during attach to set the supported
443 * cipher set for software encryption.
444 */
445 void
ieee80211_set_software_ciphers(struct ieee80211com * ic,uint32_t cipher_suite)446 ieee80211_set_software_ciphers(struct ieee80211com *ic,
447 uint32_t cipher_suite)
448 {
449 ieee80211_crypto_set_supported_software_ciphers(ic, cipher_suite);
450 }
451
452 /*
453 * Called by drivers during attach to set the supported
454 * cipher set for hardware encryption.
455 */
456 void
ieee80211_set_hardware_ciphers(struct ieee80211com * ic,uint32_t cipher_suite)457 ieee80211_set_hardware_ciphers(struct ieee80211com *ic,
458 uint32_t cipher_suite)
459 {
460 ieee80211_crypto_set_supported_hardware_ciphers(ic, cipher_suite);
461 }
462
463 /*
464 * Called by drivers during attach to set the supported
465 * key management suites by the driver/hardware.
466 */
467 void
ieee80211_set_driver_keymgmt_suites(struct ieee80211com * ic,uint32_t keymgmt_set)468 ieee80211_set_driver_keymgmt_suites(struct ieee80211com *ic,
469 uint32_t keymgmt_set)
470 {
471 ieee80211_crypto_set_supported_driver_keymgmt(ic,
472 keymgmt_set);
473 }
474
475 struct ieee80211com *
ieee80211_find_com(const char * name)476 ieee80211_find_com(const char *name)
477 {
478 struct ieee80211com *ic;
479
480 mtx_lock(&ic_list_mtx);
481 LIST_FOREACH(ic, &ic_head, ic_next)
482 if (strcmp(ic->ic_name, name) == 0)
483 break;
484 mtx_unlock(&ic_list_mtx);
485
486 return (ic);
487 }
488
489 void
ieee80211_iterate_coms(ieee80211_com_iter_func * f,void * arg)490 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
491 {
492 struct ieee80211com *ic;
493
494 mtx_lock(&ic_list_mtx);
495 LIST_FOREACH(ic, &ic_head, ic_next)
496 (*f)(arg, ic);
497 mtx_unlock(&ic_list_mtx);
498 }
499
500 /*
501 * Default reset method for use with the ioctl support. This
502 * method is invoked after any state change in the 802.11
503 * layer that should be propagated to the hardware but not
504 * require re-initialization of the 802.11 state machine (e.g
505 * rescanning for an ap). We always return ENETRESET which
506 * should cause the driver to re-initialize the device. Drivers
507 * can override this method to implement more optimized support.
508 */
509 static int
default_reset(struct ieee80211vap * vap,u_long cmd)510 default_reset(struct ieee80211vap *vap, u_long cmd)
511 {
512 return ENETRESET;
513 }
514
515 /*
516 * Default for updating the VAP default TX key index.
517 *
518 * Drivers that support TX offload as well as hardware encryption offload
519 * may need to be informed of key index changes separate from the key
520 * update.
521 */
522 static void
default_update_deftxkey(struct ieee80211vap * vap,ieee80211_keyix kid)523 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
524 {
525
526 /* XXX assert validity */
527 /* XXX assert we're in a key update block */
528 vap->iv_def_txkey = kid;
529 }
530
531 /*
532 * Add underlying device errors to vap errors.
533 */
534 static uint64_t
ieee80211_get_counter(struct ifnet * ifp,ift_counter cnt)535 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
536 {
537 struct ieee80211vap *vap = ifp->if_softc;
538 struct ieee80211com *ic = vap->iv_ic;
539 uint64_t rv;
540
541 rv = if_get_counter_default(ifp, cnt);
542 switch (cnt) {
543 case IFCOUNTER_OERRORS:
544 rv += counter_u64_fetch(ic->ic_oerrors);
545 break;
546 case IFCOUNTER_IERRORS:
547 rv += counter_u64_fetch(ic->ic_ierrors);
548 break;
549 default:
550 break;
551 }
552
553 return (rv);
554 }
555
556 /*
557 * Prepare a vap for use. Drivers use this call to
558 * setup net80211 state in new vap's prior attaching
559 * them with ieee80211_vap_attach (below).
560 */
561 int
ieee80211_vap_setup(struct ieee80211com * ic,struct ieee80211vap * vap,const char name[IFNAMSIZ],int unit,enum ieee80211_opmode opmode,int flags,const uint8_t bssid[IEEE80211_ADDR_LEN])562 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
563 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
564 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
565 {
566 struct ifnet *ifp;
567
568 ifp = if_alloc(IFT_ETHER);
569 if (ifp == NULL) {
570 ic_printf(ic, "%s: unable to allocate ifnet\n", __func__);
571 return ENOMEM;
572 }
573 if_initname(ifp, name, unit);
574 ifp->if_softc = vap; /* back pointer */
575 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
576 ifp->if_transmit = ieee80211_vap_transmit;
577 ifp->if_qflush = ieee80211_vap_qflush;
578 ifp->if_ioctl = ieee80211_ioctl;
579 ifp->if_init = ieee80211_init;
580 ifp->if_get_counter = ieee80211_get_counter;
581
582 vap->iv_ifp = ifp;
583 vap->iv_ic = ic;
584 vap->iv_flags = ic->ic_flags; /* propagate common flags */
585 vap->iv_flags_ext = ic->ic_flags_ext;
586 vap->iv_flags_ven = ic->ic_flags_ven;
587 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
588
589 /* 11n capabilities - XXX methodize */
590 vap->iv_htcaps = ic->ic_htcaps;
591 vap->iv_htextcaps = ic->ic_htextcaps;
592
593 /* 11ac capabilities - XXX methodize */
594 vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info;
595 vap->iv_vhtextcaps = ic->ic_vhtextcaps;
596
597 vap->iv_opmode = opmode;
598 vap->iv_caps |= ieee80211_opcap[opmode];
599 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
600 switch (opmode) {
601 case IEEE80211_M_WDS:
602 /*
603 * WDS links must specify the bssid of the far end.
604 * For legacy operation this is a static relationship.
605 * For non-legacy operation the station must associate
606 * and be authorized to pass traffic. Plumbing the
607 * vap to the proper node happens when the vap
608 * transitions to RUN state.
609 */
610 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
611 vap->iv_flags |= IEEE80211_F_DESBSSID;
612 if (flags & IEEE80211_CLONE_WDSLEGACY)
613 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
614 break;
615 #ifdef IEEE80211_SUPPORT_TDMA
616 case IEEE80211_M_AHDEMO:
617 if (flags & IEEE80211_CLONE_TDMA) {
618 /* NB: checked before clone operation allowed */
619 KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
620 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
621 /*
622 * Propagate TDMA capability to mark vap; this
623 * cannot be removed and is used to distinguish
624 * regular ahdemo operation from ahdemo+tdma.
625 */
626 vap->iv_caps |= IEEE80211_C_TDMA;
627 }
628 break;
629 #endif
630 default:
631 break;
632 }
633 /* auto-enable s/w beacon miss support */
634 if (flags & IEEE80211_CLONE_NOBEACONS)
635 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
636 /* auto-generated or user supplied MAC address */
637 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
638 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
639 /*
640 * Enable various functionality by default if we're
641 * capable; the driver can override us if it knows better.
642 */
643 if (vap->iv_caps & IEEE80211_C_WME)
644 vap->iv_flags |= IEEE80211_F_WME;
645 if (vap->iv_caps & IEEE80211_C_BURST)
646 vap->iv_flags |= IEEE80211_F_BURST;
647 /* NB: bg scanning only makes sense for station mode right now */
648 if (vap->iv_opmode == IEEE80211_M_STA &&
649 (vap->iv_caps & IEEE80211_C_BGSCAN))
650 vap->iv_flags |= IEEE80211_F_BGSCAN;
651 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */
652 /* NB: DFS support only makes sense for ap mode right now */
653 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
654 (vap->iv_caps & IEEE80211_C_DFS))
655 vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
656 /* NB: only flip on U-APSD for hostap/sta for now */
657 if ((vap->iv_opmode == IEEE80211_M_STA)
658 || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
659 if (vap->iv_caps & IEEE80211_C_UAPSD)
660 vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
661 }
662
663 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */
664 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
665 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
666 /*
667 * Install a default reset method for the ioctl support;
668 * the driver can override this.
669 */
670 vap->iv_reset = default_reset;
671
672 /*
673 * Install a default crypto key update method, the driver
674 * can override this.
675 */
676 vap->iv_update_deftxkey = default_update_deftxkey;
677
678 ieee80211_sysctl_vattach(vap);
679 ieee80211_crypto_vattach(vap);
680 ieee80211_node_vattach(vap);
681 ieee80211_power_vattach(vap);
682 ieee80211_proto_vattach(vap);
683 #ifdef IEEE80211_SUPPORT_SUPERG
684 ieee80211_superg_vattach(vap);
685 #endif
686 ieee80211_ht_vattach(vap);
687 ieee80211_vht_vattach(vap);
688 ieee80211_scan_vattach(vap);
689 ieee80211_regdomain_vattach(vap);
690 ieee80211_radiotap_vattach(vap);
691 ieee80211_vap_reset_erp(vap);
692 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
693
694 return 0;
695 }
696
697 /*
698 * Activate a vap. State should have been prepared with a
699 * call to ieee80211_vap_setup and by the driver. On return
700 * from this call the vap is ready for use.
701 */
702 int
ieee80211_vap_attach(struct ieee80211vap * vap,ifm_change_cb_t media_change,ifm_stat_cb_t media_stat,const uint8_t macaddr[IEEE80211_ADDR_LEN])703 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
704 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
705 {
706 struct ifnet *ifp = vap->iv_ifp;
707 struct ieee80211com *ic = vap->iv_ic;
708 struct ifmediareq imr;
709 int maxrate;
710
711 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
712 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
713 __func__, ieee80211_opmode_name[vap->iv_opmode],
714 ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
715
716 /*
717 * Do late attach work that cannot happen until after
718 * the driver has had a chance to override defaults.
719 */
720 ieee80211_node_latevattach(vap);
721 ieee80211_power_latevattach(vap);
722
723 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
724 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
725 ieee80211_media_status(ifp, &imr);
726 /* NB: strip explicit mode; we're actually in autoselect */
727 ifmedia_set(&vap->iv_media,
728 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
729 if (maxrate)
730 ifp->if_baudrate = IF_Mbps(maxrate);
731
732 ether_ifattach(ifp, macaddr);
733 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
734 /* hook output method setup by ether_ifattach */
735 vap->iv_output = ifp->if_output;
736 ifp->if_output = ieee80211_output;
737 /* NB: if_mtu set by ether_ifattach to ETHERMTU */
738
739 IEEE80211_LOCK(ic);
740 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
741 ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
742 #ifdef IEEE80211_SUPPORT_SUPERG
743 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
744 #endif
745 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
746 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
747 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
748 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
749
750 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
751 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
752 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
753 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
754 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
755 IEEE80211_UNLOCK(ic);
756
757 return 1;
758 }
759
760 /*
761 * Tear down vap state and reclaim the ifnet.
762 * The driver is assumed to have prepared for
763 * this; e.g. by turning off interrupts for the
764 * underlying device.
765 */
766 void
ieee80211_vap_detach(struct ieee80211vap * vap)767 ieee80211_vap_detach(struct ieee80211vap *vap)
768 {
769 struct ieee80211com *ic = vap->iv_ic;
770 struct ifnet *ifp = vap->iv_ifp;
771 int i;
772
773 CURVNET_SET(ifp->if_vnet);
774
775 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
776 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
777
778 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */
779 ether_ifdetach(ifp);
780
781 ieee80211_stop(vap);
782
783 /*
784 * Flush any deferred vap tasks.
785 */
786 for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
787 ieee80211_draintask(ic, &vap->iv_nstate_task[i]);
788 ieee80211_draintask(ic, &vap->iv_swbmiss_task);
789 ieee80211_draintask(ic, &vap->iv_wme_task);
790 ieee80211_draintask(ic, &ic->ic_parent_task);
791
792 /* XXX band-aid until ifnet handles this for us */
793 taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
794
795 IEEE80211_LOCK(ic);
796 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
797 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
798 ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
799 #ifdef IEEE80211_SUPPORT_SUPERG
800 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
801 #endif
802 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
803 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
804 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
805 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
806
807 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
808 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
809 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
810 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
811 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
812
813 /* NB: this handles the bpfdetach done below */
814 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
815 if (vap->iv_ifflags & IFF_PROMISC)
816 ieee80211_promisc(vap, false);
817 if (vap->iv_ifflags & IFF_ALLMULTI)
818 ieee80211_allmulti(vap, false);
819 IEEE80211_UNLOCK(ic);
820
821 ifmedia_removeall(&vap->iv_media);
822
823 ieee80211_radiotap_vdetach(vap);
824 ieee80211_regdomain_vdetach(vap);
825 ieee80211_scan_vdetach(vap);
826 #ifdef IEEE80211_SUPPORT_SUPERG
827 ieee80211_superg_vdetach(vap);
828 #endif
829 ieee80211_vht_vdetach(vap);
830 ieee80211_ht_vdetach(vap);
831 /* NB: must be before ieee80211_node_vdetach */
832 ieee80211_proto_vdetach(vap);
833 ieee80211_crypto_vdetach(vap);
834 ieee80211_power_vdetach(vap);
835 ieee80211_node_vdetach(vap);
836 ieee80211_sysctl_vdetach(vap);
837
838 if_free(ifp);
839
840 CURVNET_RESTORE();
841 }
842
843 /*
844 * Count number of vaps in promisc, and issue promisc on
845 * parent respectively.
846 */
847 void
ieee80211_promisc(struct ieee80211vap * vap,bool on)848 ieee80211_promisc(struct ieee80211vap *vap, bool on)
849 {
850 struct ieee80211com *ic = vap->iv_ic;
851
852 IEEE80211_LOCK_ASSERT(ic);
853
854 if (on) {
855 if (++ic->ic_promisc == 1)
856 ieee80211_runtask(ic, &ic->ic_promisc_task);
857 } else {
858 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
859 __func__, ic));
860 if (--ic->ic_promisc == 0)
861 ieee80211_runtask(ic, &ic->ic_promisc_task);
862 }
863 }
864
865 /*
866 * Count number of vaps in allmulti, and issue allmulti on
867 * parent respectively.
868 */
869 void
ieee80211_allmulti(struct ieee80211vap * vap,bool on)870 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
871 {
872 struct ieee80211com *ic = vap->iv_ic;
873
874 IEEE80211_LOCK_ASSERT(ic);
875
876 if (on) {
877 if (++ic->ic_allmulti == 1)
878 ieee80211_runtask(ic, &ic->ic_mcast_task);
879 } else {
880 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
881 __func__, ic));
882 if (--ic->ic_allmulti == 0)
883 ieee80211_runtask(ic, &ic->ic_mcast_task);
884 }
885 }
886
887 /*
888 * Synchronize flag bit state in the com structure
889 * according to the state of all vap's. This is used,
890 * for example, to handle state changes via ioctls.
891 */
892 static void
ieee80211_syncflag_locked(struct ieee80211com * ic,int flag)893 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
894 {
895 struct ieee80211vap *vap;
896 int bit;
897
898 IEEE80211_LOCK_ASSERT(ic);
899
900 bit = 0;
901 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
902 if (vap->iv_flags & flag) {
903 bit = 1;
904 break;
905 }
906 if (bit)
907 ic->ic_flags |= flag;
908 else
909 ic->ic_flags &= ~flag;
910 }
911
912 void
ieee80211_syncflag(struct ieee80211vap * vap,int flag)913 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
914 {
915 struct ieee80211com *ic = vap->iv_ic;
916
917 IEEE80211_LOCK(ic);
918 if (flag < 0) {
919 flag = -flag;
920 vap->iv_flags &= ~flag;
921 } else
922 vap->iv_flags |= flag;
923 ieee80211_syncflag_locked(ic, flag);
924 IEEE80211_UNLOCK(ic);
925 }
926
927 /*
928 * Synchronize flags_ht bit state in the com structure
929 * according to the state of all vap's. This is used,
930 * for example, to handle state changes via ioctls.
931 */
932 static void
ieee80211_syncflag_ht_locked(struct ieee80211com * ic,int flag)933 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
934 {
935 struct ieee80211vap *vap;
936 int bit;
937
938 IEEE80211_LOCK_ASSERT(ic);
939
940 bit = 0;
941 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
942 if (vap->iv_flags_ht & flag) {
943 bit = 1;
944 break;
945 }
946 if (bit)
947 ic->ic_flags_ht |= flag;
948 else
949 ic->ic_flags_ht &= ~flag;
950 }
951
952 void
ieee80211_syncflag_ht(struct ieee80211vap * vap,int flag)953 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
954 {
955 struct ieee80211com *ic = vap->iv_ic;
956
957 IEEE80211_LOCK(ic);
958 if (flag < 0) {
959 flag = -flag;
960 vap->iv_flags_ht &= ~flag;
961 } else
962 vap->iv_flags_ht |= flag;
963 ieee80211_syncflag_ht_locked(ic, flag);
964 IEEE80211_UNLOCK(ic);
965 }
966
967 /*
968 * Synchronize flags_vht bit state in the com structure
969 * according to the state of all vap's. This is used,
970 * for example, to handle state changes via ioctls.
971 */
972 static void
ieee80211_syncflag_vht_locked(struct ieee80211com * ic,int flag)973 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
974 {
975 struct ieee80211vap *vap;
976 int bit;
977
978 IEEE80211_LOCK_ASSERT(ic);
979
980 bit = 0;
981 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
982 if (vap->iv_vht_flags & flag) {
983 bit = 1;
984 break;
985 }
986 if (bit)
987 ic->ic_vht_flags |= flag;
988 else
989 ic->ic_vht_flags &= ~flag;
990 }
991
992 void
ieee80211_syncflag_vht(struct ieee80211vap * vap,int flag)993 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
994 {
995 struct ieee80211com *ic = vap->iv_ic;
996
997 IEEE80211_LOCK(ic);
998 if (flag < 0) {
999 flag = -flag;
1000 vap->iv_vht_flags &= ~flag;
1001 } else
1002 vap->iv_vht_flags |= flag;
1003 ieee80211_syncflag_vht_locked(ic, flag);
1004 IEEE80211_UNLOCK(ic);
1005 }
1006
1007 /*
1008 * Synchronize flags_ext bit state in the com structure
1009 * according to the state of all vap's. This is used,
1010 * for example, to handle state changes via ioctls.
1011 */
1012 static void
ieee80211_syncflag_ext_locked(struct ieee80211com * ic,int flag)1013 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
1014 {
1015 struct ieee80211vap *vap;
1016 int bit;
1017
1018 IEEE80211_LOCK_ASSERT(ic);
1019
1020 bit = 0;
1021 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1022 if (vap->iv_flags_ext & flag) {
1023 bit = 1;
1024 break;
1025 }
1026 if (bit)
1027 ic->ic_flags_ext |= flag;
1028 else
1029 ic->ic_flags_ext &= ~flag;
1030 }
1031
1032 void
ieee80211_syncflag_ext(struct ieee80211vap * vap,int flag)1033 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
1034 {
1035 struct ieee80211com *ic = vap->iv_ic;
1036
1037 IEEE80211_LOCK(ic);
1038 if (flag < 0) {
1039 flag = -flag;
1040 vap->iv_flags_ext &= ~flag;
1041 } else
1042 vap->iv_flags_ext |= flag;
1043 ieee80211_syncflag_ext_locked(ic, flag);
1044 IEEE80211_UNLOCK(ic);
1045 }
1046
1047 static __inline int
mapgsm(u_int freq,u_int flags)1048 mapgsm(u_int freq, u_int flags)
1049 {
1050 freq *= 10;
1051 if (flags & IEEE80211_CHAN_QUARTER)
1052 freq += 5;
1053 else if (flags & IEEE80211_CHAN_HALF)
1054 freq += 10;
1055 else
1056 freq += 20;
1057 /* NB: there is no 907/20 wide but leave room */
1058 return (freq - 906*10) / 5;
1059 }
1060
1061 static __inline int
mappsb(u_int freq,u_int flags)1062 mappsb(u_int freq, u_int flags)
1063 {
1064 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1065 }
1066
1067 /*
1068 * Convert MHz frequency to IEEE channel number.
1069 */
1070 int
ieee80211_mhz2ieee(u_int freq,u_int flags)1071 ieee80211_mhz2ieee(u_int freq, u_int flags)
1072 {
1073 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1074 if (flags & IEEE80211_CHAN_GSM)
1075 return mapgsm(freq, flags);
1076 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */
1077 if (freq == 2484)
1078 return 14;
1079 if (freq < 2484)
1080 return ((int) freq - 2407) / 5;
1081 else
1082 return 15 + ((freq - 2512) / 20);
1083 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */
1084 if (freq <= 5000) {
1085 /* XXX check regdomain? */
1086 if (IS_FREQ_IN_PSB(freq))
1087 return mappsb(freq, flags);
1088 return (freq - 4000) / 5;
1089 } else
1090 return (freq - 5000) / 5;
1091 } else { /* either, guess */
1092 if (freq == 2484)
1093 return 14;
1094 if (freq < 2484) {
1095 if (907 <= freq && freq <= 922)
1096 return mapgsm(freq, flags);
1097 return ((int) freq - 2407) / 5;
1098 }
1099 if (freq < 5000) {
1100 if (IS_FREQ_IN_PSB(freq))
1101 return mappsb(freq, flags);
1102 else if (freq > 4900)
1103 return (freq - 4000) / 5;
1104 else
1105 return 15 + ((freq - 2512) / 20);
1106 }
1107 return (freq - 5000) / 5;
1108 }
1109 #undef IS_FREQ_IN_PSB
1110 }
1111
1112 /*
1113 * Convert channel to IEEE channel number.
1114 */
1115 int
ieee80211_chan2ieee(struct ieee80211com * ic,const struct ieee80211_channel * c)1116 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1117 {
1118 if (c == NULL) {
1119 ic_printf(ic, "invalid channel (NULL)\n");
1120 return 0; /* XXX */
1121 }
1122 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee);
1123 }
1124
1125 /*
1126 * Convert IEEE channel number to MHz frequency.
1127 */
1128 u_int
ieee80211_ieee2mhz(u_int chan,u_int flags)1129 ieee80211_ieee2mhz(u_int chan, u_int flags)
1130 {
1131 if (flags & IEEE80211_CHAN_GSM)
1132 return 907 + 5 * (chan / 10);
1133 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */
1134 if (chan == 14)
1135 return 2484;
1136 if (chan < 14)
1137 return 2407 + chan*5;
1138 else
1139 return 2512 + ((chan-15)*20);
1140 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1141 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1142 chan -= 37;
1143 return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1144 }
1145 return 5000 + (chan*5);
1146 } else { /* either, guess */
1147 /* XXX can't distinguish PSB+GSM channels */
1148 if (chan == 14)
1149 return 2484;
1150 if (chan < 14) /* 0-13 */
1151 return 2407 + chan*5;
1152 if (chan < 27) /* 15-26 */
1153 return 2512 + ((chan-15)*20);
1154 return 5000 + (chan*5);
1155 }
1156 }
1157
1158 static __inline void
set_extchan(struct ieee80211_channel * c)1159 set_extchan(struct ieee80211_channel *c)
1160 {
1161
1162 /*
1163 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1164 * "the secondary channel number shall be 'N + [1,-1] * 4'
1165 */
1166 if (c->ic_flags & IEEE80211_CHAN_HT40U)
1167 c->ic_extieee = c->ic_ieee + 4;
1168 else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1169 c->ic_extieee = c->ic_ieee - 4;
1170 else
1171 c->ic_extieee = 0;
1172 }
1173
1174 /*
1175 * Populate the freq1/freq2 fields as appropriate for VHT channels.
1176 *
1177 * This for now uses a hard-coded list of 80MHz wide channels.
1178 *
1179 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1180 * wide channel we've already decided upon.
1181 *
1182 * For VHT80 and VHT160, there are only a small number of fixed
1183 * 80/160MHz wide channels, so we just use those.
1184 *
1185 * This is all likely very very wrong - both the regulatory code
1186 * and this code needs to ensure that all four channels are
1187 * available and valid before the VHT80 (and eight for VHT160) channel
1188 * is created.
1189 */
1190
1191 struct vht_chan_range {
1192 uint16_t freq_start;
1193 uint16_t freq_end;
1194 };
1195
1196 struct vht_chan_range vht80_chan_ranges[] = {
1197 { 5170, 5250 },
1198 { 5250, 5330 },
1199 { 5490, 5570 },
1200 { 5570, 5650 },
1201 { 5650, 5730 },
1202 { 5735, 5815 },
1203 { 0, 0 }
1204 };
1205
1206 struct vht_chan_range vht160_chan_ranges[] = {
1207 { 5170, 5330 },
1208 { 5490, 5650 },
1209 { 0, 0 }
1210 };
1211
1212 static int
set_vht_extchan(struct ieee80211_channel * c)1213 set_vht_extchan(struct ieee80211_channel *c)
1214 {
1215 int i;
1216
1217 if (! IEEE80211_IS_CHAN_VHT(c))
1218 return (0);
1219
1220 if (IEEE80211_IS_CHAN_VHT80P80(c)) {
1221 printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
1222 __func__, c->ic_ieee, c->ic_flags);
1223 }
1224
1225 if (IEEE80211_IS_CHAN_VHT160(c)) {
1226 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1227 if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
1228 c->ic_freq < vht160_chan_ranges[i].freq_end) {
1229 int midpoint;
1230
1231 midpoint = vht160_chan_ranges[i].freq_start + 80;
1232 c->ic_vht_ch_freq1 =
1233 ieee80211_mhz2ieee(midpoint, c->ic_flags);
1234 c->ic_vht_ch_freq2 = 0;
1235 #if 0
1236 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1237 __func__, c->ic_ieee, c->ic_freq, midpoint,
1238 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1239 #endif
1240 return (1);
1241 }
1242 }
1243 return (0);
1244 }
1245
1246 if (IEEE80211_IS_CHAN_VHT80(c)) {
1247 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1248 if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1249 c->ic_freq < vht80_chan_ranges[i].freq_end) {
1250 int midpoint;
1251
1252 midpoint = vht80_chan_ranges[i].freq_start + 40;
1253 c->ic_vht_ch_freq1 =
1254 ieee80211_mhz2ieee(midpoint, c->ic_flags);
1255 c->ic_vht_ch_freq2 = 0;
1256 #if 0
1257 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1258 __func__, c->ic_ieee, c->ic_freq, midpoint,
1259 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1260 #endif
1261 return (1);
1262 }
1263 }
1264 return (0);
1265 }
1266
1267 if (IEEE80211_IS_CHAN_VHT40(c)) {
1268 if (IEEE80211_IS_CHAN_HT40U(c))
1269 c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1270 else if (IEEE80211_IS_CHAN_HT40D(c))
1271 c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1272 else
1273 return (0);
1274 return (1);
1275 }
1276
1277 if (IEEE80211_IS_CHAN_VHT20(c)) {
1278 c->ic_vht_ch_freq1 = c->ic_ieee;
1279 return (1);
1280 }
1281
1282 printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1283 __func__, c->ic_ieee, c->ic_flags);
1284
1285 return (0);
1286 }
1287
1288 /*
1289 * Return whether the current channel could possibly be a part of
1290 * a VHT80/VHT160 channel.
1291 *
1292 * This doesn't check that the whole range is in the allowed list
1293 * according to regulatory.
1294 */
1295 static bool
is_vht160_valid_freq(uint16_t freq)1296 is_vht160_valid_freq(uint16_t freq)
1297 {
1298 int i;
1299
1300 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1301 if (freq >= vht160_chan_ranges[i].freq_start &&
1302 freq < vht160_chan_ranges[i].freq_end)
1303 return (true);
1304 }
1305 return (false);
1306 }
1307
1308 static int
is_vht80_valid_freq(uint16_t freq)1309 is_vht80_valid_freq(uint16_t freq)
1310 {
1311 int i;
1312 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1313 if (freq >= vht80_chan_ranges[i].freq_start &&
1314 freq < vht80_chan_ranges[i].freq_end)
1315 return (1);
1316 }
1317 return (0);
1318 }
1319
1320 static int
addchan(struct ieee80211_channel chans[],int maxchans,int * nchans,uint8_t ieee,uint16_t freq,int8_t maxregpower,uint32_t flags)1321 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1322 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1323 {
1324 struct ieee80211_channel *c;
1325
1326 if (*nchans >= maxchans)
1327 return (ENOBUFS);
1328
1329 #if 0
1330 printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n",
1331 __func__, *nchans, maxchans, ieee, freq, flags);
1332 #endif
1333
1334 c = &chans[(*nchans)++];
1335 c->ic_ieee = ieee;
1336 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1337 c->ic_maxregpower = maxregpower;
1338 c->ic_maxpower = 2 * maxregpower;
1339 c->ic_flags = flags;
1340 c->ic_vht_ch_freq1 = 0;
1341 c->ic_vht_ch_freq2 = 0;
1342 set_extchan(c);
1343 set_vht_extchan(c);
1344
1345 return (0);
1346 }
1347
1348 static int
copychan_prev(struct ieee80211_channel chans[],int maxchans,int * nchans,uint32_t flags)1349 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1350 uint32_t flags)
1351 {
1352 struct ieee80211_channel *c;
1353
1354 KASSERT(*nchans > 0, ("channel list is empty\n"));
1355
1356 if (*nchans >= maxchans)
1357 return (ENOBUFS);
1358
1359 #if 0
1360 printf("%s: %d of %d: flags=0x%08x\n",
1361 __func__, *nchans, maxchans, flags);
1362 #endif
1363
1364 c = &chans[(*nchans)++];
1365 c[0] = c[-1];
1366 c->ic_flags = flags;
1367 c->ic_vht_ch_freq1 = 0;
1368 c->ic_vht_ch_freq2 = 0;
1369 set_extchan(c);
1370 set_vht_extchan(c);
1371
1372 return (0);
1373 }
1374
1375 /*
1376 * XXX VHT-2GHz
1377 */
1378 static void
getflags_2ghz(const uint8_t bands[],uint32_t flags[],int cbw_flags)1379 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1380 {
1381 int nmodes;
1382
1383 nmodes = 0;
1384 if (isset(bands, IEEE80211_MODE_11B))
1385 flags[nmodes++] = IEEE80211_CHAN_B;
1386 if (isset(bands, IEEE80211_MODE_11G))
1387 flags[nmodes++] = IEEE80211_CHAN_G;
1388 if (isset(bands, IEEE80211_MODE_11NG))
1389 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1390 if (cbw_flags & NET80211_CBW_FLAG_HT40) {
1391 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1392 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1393 }
1394 flags[nmodes] = 0;
1395 }
1396
1397 static void
getflags_5ghz(const uint8_t bands[],uint32_t flags[],int cbw_flags)1398 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1399 {
1400 int nmodes;
1401
1402 /*
1403 * The addchan_list() function seems to expect the flags array to
1404 * be in channel width order, so the VHT bits are interspersed
1405 * as appropriate to maintain said order.
1406 *
1407 * It also assumes HT40U is before HT40D.
1408 */
1409 nmodes = 0;
1410
1411 /* 20MHz */
1412 if (isset(bands, IEEE80211_MODE_11A))
1413 flags[nmodes++] = IEEE80211_CHAN_A;
1414 if (isset(bands, IEEE80211_MODE_11NA))
1415 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1416 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1417 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1418 IEEE80211_CHAN_VHT20;
1419 }
1420
1421 /* 40MHz */
1422 if (cbw_flags & NET80211_CBW_FLAG_HT40)
1423 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1424 if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1425 isset(bands, IEEE80211_MODE_VHT_5GHZ))
1426 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1427 IEEE80211_CHAN_VHT40U;
1428 if (cbw_flags & NET80211_CBW_FLAG_HT40)
1429 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1430 if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1431 isset(bands, IEEE80211_MODE_VHT_5GHZ))
1432 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1433 IEEE80211_CHAN_VHT40D;
1434
1435 /* 80MHz */
1436 if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
1437 isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1438 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1439 IEEE80211_CHAN_VHT80;
1440 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1441 IEEE80211_CHAN_VHT80;
1442 }
1443
1444 /* VHT160 */
1445 if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
1446 isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1447 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1448 IEEE80211_CHAN_VHT160;
1449 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1450 IEEE80211_CHAN_VHT160;
1451 }
1452
1453 /* VHT80+80 */
1454 if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
1455 isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1456 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1457 IEEE80211_CHAN_VHT80P80;
1458 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1459 IEEE80211_CHAN_VHT80P80;
1460 }
1461
1462 flags[nmodes] = 0;
1463 }
1464
1465 static void
getflags(const uint8_t bands[],uint32_t flags[],int cbw_flags)1466 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1467 {
1468
1469 flags[0] = 0;
1470 if (isset(bands, IEEE80211_MODE_11A) ||
1471 isset(bands, IEEE80211_MODE_11NA) ||
1472 isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1473 if (isset(bands, IEEE80211_MODE_11B) ||
1474 isset(bands, IEEE80211_MODE_11G) ||
1475 isset(bands, IEEE80211_MODE_11NG) ||
1476 isset(bands, IEEE80211_MODE_VHT_2GHZ))
1477 return;
1478
1479 getflags_5ghz(bands, flags, cbw_flags);
1480 } else
1481 getflags_2ghz(bands, flags, cbw_flags);
1482 }
1483
1484 /*
1485 * Add one 20 MHz channel into specified channel list.
1486 * You MUST NOT mix bands when calling this. It will not add 5ghz
1487 * channels if you have any B/G/N band bit set.
1488 * The _cbw() variant does also support HT40/VHT80/160/80+80.
1489 */
1490 int
ieee80211_add_channel_cbw(struct ieee80211_channel chans[],int maxchans,int * nchans,uint8_t ieee,uint16_t freq,int8_t maxregpower,uint32_t chan_flags,const uint8_t bands[],int cbw_flags)1491 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
1492 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1493 uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
1494 {
1495 uint32_t flags[IEEE80211_MODE_MAX];
1496 int i, error;
1497
1498 getflags(bands, flags, cbw_flags);
1499 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1500
1501 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1502 flags[0] | chan_flags);
1503 for (i = 1; flags[i] != 0 && error == 0; i++) {
1504 error = copychan_prev(chans, maxchans, nchans,
1505 flags[i] | chan_flags);
1506 }
1507
1508 return (error);
1509 }
1510
1511 int
ieee80211_add_channel(struct ieee80211_channel chans[],int maxchans,int * nchans,uint8_t ieee,uint16_t freq,int8_t maxregpower,uint32_t chan_flags,const uint8_t bands[])1512 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1513 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1514 uint32_t chan_flags, const uint8_t bands[])
1515 {
1516
1517 return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
1518 maxregpower, chan_flags, bands, 0));
1519 }
1520
1521 static struct ieee80211_channel *
findchannel(struct ieee80211_channel chans[],int nchans,uint16_t freq,uint32_t flags)1522 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1523 uint32_t flags)
1524 {
1525 struct ieee80211_channel *c;
1526 int i;
1527
1528 flags &= IEEE80211_CHAN_ALLTURBO;
1529 /* brute force search */
1530 for (i = 0; i < nchans; i++) {
1531 c = &chans[i];
1532 if (c->ic_freq == freq &&
1533 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1534 return c;
1535 }
1536 return NULL;
1537 }
1538
1539 /*
1540 * Add 40 MHz channel pair into specified channel list.
1541 */
1542 /* XXX VHT */
1543 int
ieee80211_add_channel_ht40(struct ieee80211_channel chans[],int maxchans,int * nchans,uint8_t ieee,int8_t maxregpower,uint32_t flags)1544 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1545 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1546 {
1547 struct ieee80211_channel *cent, *extc;
1548 uint16_t freq;
1549 int error;
1550
1551 freq = ieee80211_ieee2mhz(ieee, flags);
1552
1553 /*
1554 * Each entry defines an HT40 channel pair; find the
1555 * center channel, then the extension channel above.
1556 */
1557 flags |= IEEE80211_CHAN_HT20;
1558 cent = findchannel(chans, *nchans, freq, flags);
1559 if (cent == NULL)
1560 return (EINVAL);
1561
1562 extc = findchannel(chans, *nchans, freq + 20, flags);
1563 if (extc == NULL)
1564 return (ENOENT);
1565
1566 flags &= ~IEEE80211_CHAN_HT;
1567 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1568 maxregpower, flags | IEEE80211_CHAN_HT40U);
1569 if (error != 0)
1570 return (error);
1571
1572 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1573 maxregpower, flags | IEEE80211_CHAN_HT40D);
1574
1575 return (error);
1576 }
1577
1578 /*
1579 * Fetch the center frequency for the primary channel.
1580 */
1581 uint32_t
ieee80211_get_channel_center_freq(const struct ieee80211_channel * c)1582 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1583 {
1584
1585 return (c->ic_freq);
1586 }
1587
1588 /*
1589 * Fetch the center frequency for the primary BAND channel.
1590 *
1591 * For 5, 10, 20MHz channels it'll be the normally configured channel
1592 * frequency.
1593 *
1594 * For 40MHz, 80MHz, 160MHz channels it will be the centre of the
1595 * wide channel, not the centre of the primary channel (that's ic_freq).
1596 *
1597 * For 80+80MHz channels this will be the centre of the primary
1598 * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1599 */
1600 uint32_t
ieee80211_get_channel_center_freq1(const struct ieee80211_channel * c)1601 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1602 {
1603
1604 /*
1605 * VHT - use the pre-calculated centre frequency
1606 * of the given channel.
1607 */
1608 if (IEEE80211_IS_CHAN_VHT(c))
1609 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1610
1611 if (IEEE80211_IS_CHAN_HT40U(c)) {
1612 return (c->ic_freq + 10);
1613 }
1614 if (IEEE80211_IS_CHAN_HT40D(c)) {
1615 return (c->ic_freq - 10);
1616 }
1617
1618 return (c->ic_freq);
1619 }
1620
1621 /*
1622 * For now, no 80+80 support; it will likely always return 0.
1623 */
1624 uint32_t
ieee80211_get_channel_center_freq2(const struct ieee80211_channel * c)1625 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1626 {
1627
1628 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1629 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1630
1631 return (0);
1632 }
1633
1634 /*
1635 * Adds channels into specified channel list (ieee[] array must be sorted).
1636 * Channels are already sorted.
1637 */
1638 static int
add_chanlist(struct ieee80211_channel chans[],int maxchans,int * nchans,const uint8_t ieee[],int nieee,uint32_t flags[])1639 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1640 const uint8_t ieee[], int nieee, uint32_t flags[])
1641 {
1642 uint16_t freq;
1643 int i, j, error;
1644 int is_vht;
1645
1646 for (i = 0; i < nieee; i++) {
1647 freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1648 for (j = 0; flags[j] != 0; j++) {
1649 /*
1650 * Notes:
1651 * + HT40 and VHT40 channels occur together, so
1652 * we need to be careful that we actually allow that.
1653 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1654 * make sure it's not skipped because of the overlap
1655 * check used for (V)HT40.
1656 */
1657 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1658
1659 /* XXX TODO FIXME VHT80P80. */
1660
1661 /* Test for VHT160 analogue to the VHT80 below. */
1662 if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
1663 if (! is_vht160_valid_freq(freq))
1664 continue;
1665
1666 /*
1667 * Test for VHT80.
1668 * XXX This is all very broken right now.
1669 * What we /should/ do is:
1670 *
1671 * + check that the frequency is in the list of
1672 * allowed VHT80 ranges; and
1673 * + the other 3 channels in the list are actually
1674 * also available.
1675 */
1676 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1677 if (! is_vht80_valid_freq(freq))
1678 continue;
1679
1680 /*
1681 * Test for (V)HT40.
1682 *
1683 * This is also a fall through from VHT80; as we only
1684 * allow a VHT80 channel if the VHT40 combination is
1685 * also valid. If the VHT40 form is not valid then
1686 * we certainly can't do VHT80..
1687 */
1688 if (flags[j] & IEEE80211_CHAN_HT40D)
1689 /*
1690 * Can't have a "lower" channel if we are the
1691 * first channel.
1692 *
1693 * Can't have a "lower" channel if it's below/
1694 * within 20MHz of the first channel.
1695 *
1696 * Can't have a "lower" channel if the channel
1697 * below it is not 20MHz away.
1698 */
1699 if (i == 0 || ieee[i] < ieee[0] + 4 ||
1700 freq - 20 !=
1701 ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1702 continue;
1703 if (flags[j] & IEEE80211_CHAN_HT40U)
1704 /*
1705 * Can't have an "upper" channel if we are
1706 * the last channel.
1707 *
1708 * Can't have an "upper" channel be above the
1709 * last channel in the list.
1710 *
1711 * Can't have an "upper" channel if the next
1712 * channel according to the math isn't 20MHz
1713 * away. (Likely for channel 13/14.)
1714 */
1715 if (i == nieee - 1 ||
1716 ieee[i] + 4 > ieee[nieee - 1] ||
1717 freq + 20 !=
1718 ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1719 continue;
1720
1721 if (j == 0) {
1722 error = addchan(chans, maxchans, nchans,
1723 ieee[i], freq, 0, flags[j]);
1724 } else {
1725 error = copychan_prev(chans, maxchans, nchans,
1726 flags[j]);
1727 }
1728 if (error != 0)
1729 return (error);
1730 }
1731 }
1732
1733 return (0);
1734 }
1735
1736 int
ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[],int maxchans,int * nchans,const uint8_t ieee[],int nieee,const uint8_t bands[],int cbw_flags)1737 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1738 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1739 int cbw_flags)
1740 {
1741 uint32_t flags[IEEE80211_MODE_MAX];
1742
1743 /* XXX no VHT for now */
1744 getflags_2ghz(bands, flags, cbw_flags);
1745 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1746
1747 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1748 }
1749
1750 int
ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],int maxchans,int * nchans,const uint8_t bands[],int cbw_flags)1751 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1752 int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
1753 {
1754 const uint8_t default_chan_list[] =
1755 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1756
1757 return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1758 default_chan_list, nitems(default_chan_list), bands, cbw_flags));
1759 }
1760
1761 int
ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[],int maxchans,int * nchans,const uint8_t ieee[],int nieee,const uint8_t bands[],int cbw_flags)1762 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1763 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1764 int cbw_flags)
1765 {
1766 /*
1767 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore. Review all
1768 * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
1769 */
1770 uint32_t flags[2 * IEEE80211_MODE_MAX];
1771
1772 getflags_5ghz(bands, flags, cbw_flags);
1773 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1774
1775 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1776 }
1777
1778 /*
1779 * Locate a channel given a frequency+flags. We cache
1780 * the previous lookup to optimize switching between two
1781 * channels--as happens with dynamic turbo.
1782 */
1783 struct ieee80211_channel *
ieee80211_find_channel(struct ieee80211com * ic,int freq,int flags)1784 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1785 {
1786 struct ieee80211_channel *c;
1787
1788 flags &= IEEE80211_CHAN_ALLTURBO;
1789 c = ic->ic_prevchan;
1790 if (c != NULL && c->ic_freq == freq &&
1791 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1792 return c;
1793 /* brute force search */
1794 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1795 }
1796
1797 /*
1798 * Locate a channel given a channel number+flags. We cache
1799 * the previous lookup to optimize switching between two
1800 * channels--as happens with dynamic turbo.
1801 */
1802 struct ieee80211_channel *
ieee80211_find_channel_byieee(struct ieee80211com * ic,int ieee,int flags)1803 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1804 {
1805 struct ieee80211_channel *c;
1806 int i;
1807
1808 flags &= IEEE80211_CHAN_ALLTURBO;
1809 c = ic->ic_prevchan;
1810 if (c != NULL && c->ic_ieee == ieee &&
1811 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1812 return c;
1813 /* brute force search */
1814 for (i = 0; i < ic->ic_nchans; i++) {
1815 c = &ic->ic_channels[i];
1816 if (c->ic_ieee == ieee &&
1817 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1818 return c;
1819 }
1820 return NULL;
1821 }
1822
1823 /*
1824 * Lookup a channel suitable for the given rx status.
1825 *
1826 * This is used to find a channel for a frame (eg beacon, probe
1827 * response) based purely on the received PHY information.
1828 *
1829 * For now it tries to do it based on R_FREQ / R_IEEE.
1830 * This is enough for 11bg and 11a (and thus 11ng/11na)
1831 * but it will not be enough for GSM, PSB channels and the
1832 * like. It also doesn't know about legacy-turbog and
1833 * legacy-turbo modes, which some offload NICs actually
1834 * support in weird ways.
1835 *
1836 * Takes the ic and rxstatus; returns the channel or NULL
1837 * if not found.
1838 *
1839 * XXX TODO: Add support for that when the need arises.
1840 */
1841 struct ieee80211_channel *
ieee80211_lookup_channel_rxstatus(struct ieee80211vap * vap,const struct ieee80211_rx_stats * rxs)1842 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1843 const struct ieee80211_rx_stats *rxs)
1844 {
1845 struct ieee80211com *ic = vap->iv_ic;
1846 uint32_t flags;
1847 struct ieee80211_channel *c;
1848
1849 if (rxs == NULL)
1850 return (NULL);
1851
1852 /*
1853 * Strictly speaking we only use freq for now,
1854 * however later on we may wish to just store
1855 * the ieee for verification.
1856 */
1857 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1858 return (NULL);
1859 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1860 return (NULL);
1861 if ((rxs->r_flags & IEEE80211_R_BAND) == 0)
1862 return (NULL);
1863
1864 /*
1865 * If the rx status contains a valid ieee/freq, then
1866 * ensure we populate the correct channel information
1867 * in rxchan before passing it up to the scan infrastructure.
1868 * Offload NICs will pass up beacons from all channels
1869 * during background scans.
1870 */
1871
1872 /* Determine a band */
1873 switch (rxs->c_band) {
1874 case IEEE80211_CHAN_2GHZ:
1875 flags = IEEE80211_CHAN_G;
1876 break;
1877 case IEEE80211_CHAN_5GHZ:
1878 flags = IEEE80211_CHAN_A;
1879 break;
1880 default:
1881 if (rxs->c_freq < 3000) {
1882 flags = IEEE80211_CHAN_G;
1883 } else {
1884 flags = IEEE80211_CHAN_A;
1885 }
1886 break;
1887 }
1888
1889 /* Channel lookup */
1890 c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1891
1892 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1893 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1894 __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1895
1896 return (c);
1897 }
1898
1899 static void
addmedia(struct ifmedia * media,int caps,int addsta,int mode,int mword)1900 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1901 {
1902 #define ADD(_ic, _s, _o) \
1903 ifmedia_add(media, \
1904 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1905 static const u_int mopts[IEEE80211_MODE_MAX] = {
1906 [IEEE80211_MODE_AUTO] = IFM_AUTO,
1907 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A,
1908 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B,
1909 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G,
1910 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH,
1911 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1912 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1913 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1914 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */
1915 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */
1916 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA,
1917 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG,
1918 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G,
1919 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G,
1920 };
1921 u_int mopt;
1922
1923 mopt = mopts[mode];
1924 if (addsta)
1925 ADD(ic, mword, mopt); /* STA mode has no cap */
1926 if (caps & IEEE80211_C_IBSS)
1927 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1928 if (caps & IEEE80211_C_HOSTAP)
1929 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1930 if (caps & IEEE80211_C_AHDEMO)
1931 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1932 if (caps & IEEE80211_C_MONITOR)
1933 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1934 if (caps & IEEE80211_C_WDS)
1935 ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1936 if (caps & IEEE80211_C_MBSS)
1937 ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1938 #undef ADD
1939 }
1940
1941 /*
1942 * Setup the media data structures according to the channel and
1943 * rate tables.
1944 */
1945 static int
ieee80211_media_setup(struct ieee80211com * ic,struct ifmedia * media,int caps,int addsta,ifm_change_cb_t media_change,ifm_stat_cb_t media_stat)1946 ieee80211_media_setup(struct ieee80211com *ic,
1947 struct ifmedia *media, int caps, int addsta,
1948 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1949 {
1950 int i, j, rate, maxrate, mword, r;
1951 enum ieee80211_phymode mode;
1952 const struct ieee80211_rateset *rs;
1953 struct ieee80211_rateset allrates;
1954
1955 /*
1956 * Fill in media characteristics.
1957 */
1958 ifmedia_init(media, 0, media_change, media_stat);
1959 maxrate = 0;
1960 /*
1961 * Add media for legacy operating modes.
1962 */
1963 memset(&allrates, 0, sizeof(allrates));
1964 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1965 if (isclr(ic->ic_modecaps, mode))
1966 continue;
1967 addmedia(media, caps, addsta, mode, IFM_AUTO);
1968 if (mode == IEEE80211_MODE_AUTO)
1969 continue;
1970 rs = &ic->ic_sup_rates[mode];
1971 for (i = 0; i < rs->rs_nrates; i++) {
1972 rate = rs->rs_rates[i];
1973 mword = ieee80211_rate2media(ic, rate, mode);
1974 if (mword == 0)
1975 continue;
1976 addmedia(media, caps, addsta, mode, mword);
1977 /*
1978 * Add legacy rate to the collection of all rates.
1979 */
1980 r = rate & IEEE80211_RATE_VAL;
1981 for (j = 0; j < allrates.rs_nrates; j++)
1982 if (allrates.rs_rates[j] == r)
1983 break;
1984 if (j == allrates.rs_nrates) {
1985 /* unique, add to the set */
1986 allrates.rs_rates[j] = r;
1987 allrates.rs_nrates++;
1988 }
1989 rate = (rate & IEEE80211_RATE_VAL) / 2;
1990 if (rate > maxrate)
1991 maxrate = rate;
1992 }
1993 }
1994 for (i = 0; i < allrates.rs_nrates; i++) {
1995 mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1996 IEEE80211_MODE_AUTO);
1997 if (mword == 0)
1998 continue;
1999 /* NB: remove media options from mword */
2000 addmedia(media, caps, addsta,
2001 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
2002 }
2003 /*
2004 * Add HT/11n media. Note that we do not have enough
2005 * bits in the media subtype to express the MCS so we
2006 * use a "placeholder" media subtype and any fixed MCS
2007 * must be specified with a different mechanism.
2008 */
2009 for (; mode <= IEEE80211_MODE_11NG; mode++) {
2010 if (isclr(ic->ic_modecaps, mode))
2011 continue;
2012 addmedia(media, caps, addsta, mode, IFM_AUTO);
2013 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
2014 }
2015 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
2016 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
2017 addmedia(media, caps, addsta,
2018 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
2019 i = ic->ic_txstream * 8 - 1;
2020 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2021 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
2022 rate = ieee80211_htrates[i].ht40_rate_400ns;
2023 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
2024 rate = ieee80211_htrates[i].ht40_rate_800ns;
2025 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
2026 rate = ieee80211_htrates[i].ht20_rate_400ns;
2027 else
2028 rate = ieee80211_htrates[i].ht20_rate_800ns;
2029 if (rate > maxrate)
2030 maxrate = rate;
2031 }
2032
2033 /*
2034 * Add VHT media.
2035 * XXX-BZ skip "VHT_2GHZ" for now.
2036 */
2037 for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
2038 mode++) {
2039 if (isclr(ic->ic_modecaps, mode))
2040 continue;
2041 addmedia(media, caps, addsta, mode, IFM_AUTO);
2042 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
2043 }
2044 if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
2045 addmedia(media, caps, addsta,
2046 IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
2047
2048 /* XXX TODO: VHT maxrate */
2049 }
2050
2051 return maxrate;
2052 }
2053
2054 /* XXX inline or eliminate? */
2055 const struct ieee80211_rateset *
ieee80211_get_suprates(struct ieee80211com * ic,const struct ieee80211_channel * c)2056 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
2057 {
2058 /* XXX does this work for 11ng basic rates? */
2059 return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
2060 }
2061
2062 /* XXX inline or eliminate? */
2063 const struct ieee80211_htrateset *
ieee80211_get_suphtrates(struct ieee80211com * ic,const struct ieee80211_channel * c)2064 ieee80211_get_suphtrates(struct ieee80211com *ic,
2065 const struct ieee80211_channel *c)
2066 {
2067 return &ic->ic_sup_htrates;
2068 }
2069
2070 void
ieee80211_announce(struct ieee80211com * ic)2071 ieee80211_announce(struct ieee80211com *ic)
2072 {
2073 int i, rate, mword;
2074 enum ieee80211_phymode mode;
2075 const struct ieee80211_rateset *rs;
2076
2077 /* NB: skip AUTO since it has no rates */
2078 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
2079 if (isclr(ic->ic_modecaps, mode))
2080 continue;
2081 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
2082 rs = &ic->ic_sup_rates[mode];
2083 for (i = 0; i < rs->rs_nrates; i++) {
2084 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
2085 if (mword == 0)
2086 continue;
2087 rate = ieee80211_media2rate(mword);
2088 printf("%s%d%sMbps", (i != 0 ? " " : ""),
2089 rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
2090 }
2091 printf("\n");
2092 }
2093 ieee80211_ht_announce(ic);
2094 ieee80211_vht_announce(ic);
2095 }
2096
2097 void
ieee80211_announce_channels(struct ieee80211com * ic)2098 ieee80211_announce_channels(struct ieee80211com *ic)
2099 {
2100 const struct ieee80211_channel *c;
2101 char type;
2102 int i, cw;
2103
2104 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n");
2105 for (i = 0; i < ic->ic_nchans; i++) {
2106 c = &ic->ic_channels[i];
2107 if (IEEE80211_IS_CHAN_ST(c))
2108 type = 'S';
2109 else if (IEEE80211_IS_CHAN_108A(c))
2110 type = 'T';
2111 else if (IEEE80211_IS_CHAN_108G(c))
2112 type = 'G';
2113 else if (IEEE80211_IS_CHAN_HT(c))
2114 type = 'n';
2115 else if (IEEE80211_IS_CHAN_A(c))
2116 type = 'a';
2117 else if (IEEE80211_IS_CHAN_ANYG(c))
2118 type = 'g';
2119 else if (IEEE80211_IS_CHAN_B(c))
2120 type = 'b';
2121 else
2122 type = 'f';
2123 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2124 cw = 40;
2125 else if (IEEE80211_IS_CHAN_HALF(c))
2126 cw = 10;
2127 else if (IEEE80211_IS_CHAN_QUARTER(c))
2128 cw = 5;
2129 else
2130 cw = 20;
2131 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n"
2132 , c->ic_ieee, c->ic_freq, type
2133 , cw
2134 , IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2135 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2136 , c->ic_maxregpower
2137 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2138 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2139 );
2140 }
2141 }
2142
2143 static int
media2mode(const struct ifmedia_entry * ime,uint32_t flags,uint16_t * mode)2144 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2145 {
2146 switch (IFM_MODE(ime->ifm_media)) {
2147 case IFM_IEEE80211_11A:
2148 *mode = IEEE80211_MODE_11A;
2149 break;
2150 case IFM_IEEE80211_11B:
2151 *mode = IEEE80211_MODE_11B;
2152 break;
2153 case IFM_IEEE80211_11G:
2154 *mode = IEEE80211_MODE_11G;
2155 break;
2156 case IFM_IEEE80211_FH:
2157 *mode = IEEE80211_MODE_FH;
2158 break;
2159 case IFM_IEEE80211_11NA:
2160 *mode = IEEE80211_MODE_11NA;
2161 break;
2162 case IFM_IEEE80211_11NG:
2163 *mode = IEEE80211_MODE_11NG;
2164 break;
2165 case IFM_IEEE80211_VHT2G:
2166 *mode = IEEE80211_MODE_VHT_2GHZ;
2167 break;
2168 case IFM_IEEE80211_VHT5G:
2169 *mode = IEEE80211_MODE_VHT_5GHZ;
2170 break;
2171 case IFM_AUTO:
2172 *mode = IEEE80211_MODE_AUTO;
2173 break;
2174 default:
2175 return 0;
2176 }
2177 /*
2178 * Turbo mode is an ``option''.
2179 * XXX does not apply to AUTO
2180 */
2181 if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2182 if (*mode == IEEE80211_MODE_11A) {
2183 if (flags & IEEE80211_F_TURBOP)
2184 *mode = IEEE80211_MODE_TURBO_A;
2185 else
2186 *mode = IEEE80211_MODE_STURBO_A;
2187 } else if (*mode == IEEE80211_MODE_11G)
2188 *mode = IEEE80211_MODE_TURBO_G;
2189 else
2190 return 0;
2191 }
2192 /* XXX HT40 +/- */
2193 return 1;
2194 }
2195
2196 /*
2197 * Handle a media change request on the vap interface.
2198 */
2199 int
ieee80211_media_change(struct ifnet * ifp)2200 ieee80211_media_change(struct ifnet *ifp)
2201 {
2202 struct ieee80211vap *vap = ifp->if_softc;
2203 struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2204 uint16_t newmode;
2205
2206 if (!media2mode(ime, vap->iv_flags, &newmode))
2207 return EINVAL;
2208 if (vap->iv_des_mode != newmode) {
2209 vap->iv_des_mode = newmode;
2210 /* XXX kick state machine if up+running */
2211 }
2212 return 0;
2213 }
2214
2215 /*
2216 * Common code to calculate the media status word
2217 * from the operating mode and channel state.
2218 */
2219 static int
media_status(enum ieee80211_opmode opmode,const struct ieee80211_channel * chan)2220 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2221 {
2222 int status;
2223
2224 status = IFM_IEEE80211;
2225 switch (opmode) {
2226 case IEEE80211_M_STA:
2227 break;
2228 case IEEE80211_M_IBSS:
2229 status |= IFM_IEEE80211_ADHOC;
2230 break;
2231 case IEEE80211_M_HOSTAP:
2232 status |= IFM_IEEE80211_HOSTAP;
2233 break;
2234 case IEEE80211_M_MONITOR:
2235 status |= IFM_IEEE80211_MONITOR;
2236 break;
2237 case IEEE80211_M_AHDEMO:
2238 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2239 break;
2240 case IEEE80211_M_WDS:
2241 status |= IFM_IEEE80211_WDS;
2242 break;
2243 case IEEE80211_M_MBSS:
2244 status |= IFM_IEEE80211_MBSS;
2245 break;
2246 }
2247 if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) {
2248 status |= IFM_IEEE80211_VHT5G;
2249 } else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) {
2250 status |= IFM_IEEE80211_VHT2G;
2251 } else if (IEEE80211_IS_CHAN_HTA(chan)) {
2252 status |= IFM_IEEE80211_11NA;
2253 } else if (IEEE80211_IS_CHAN_HTG(chan)) {
2254 status |= IFM_IEEE80211_11NG;
2255 } else if (IEEE80211_IS_CHAN_A(chan)) {
2256 status |= IFM_IEEE80211_11A;
2257 } else if (IEEE80211_IS_CHAN_B(chan)) {
2258 status |= IFM_IEEE80211_11B;
2259 } else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2260 status |= IFM_IEEE80211_11G;
2261 } else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2262 status |= IFM_IEEE80211_FH;
2263 }
2264 /* XXX else complain? */
2265
2266 if (IEEE80211_IS_CHAN_TURBO(chan))
2267 status |= IFM_IEEE80211_TURBO;
2268 #if 0
2269 if (IEEE80211_IS_CHAN_HT20(chan))
2270 status |= IFM_IEEE80211_HT20;
2271 if (IEEE80211_IS_CHAN_HT40(chan))
2272 status |= IFM_IEEE80211_HT40;
2273 #endif
2274 return status;
2275 }
2276
2277 void
ieee80211_media_status(struct ifnet * ifp,struct ifmediareq * imr)2278 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2279 {
2280 struct ieee80211vap *vap = ifp->if_softc;
2281 struct ieee80211com *ic = vap->iv_ic;
2282 enum ieee80211_phymode mode;
2283
2284 imr->ifm_status = IFM_AVALID;
2285 /*
2286 * NB: use the current channel's mode to lock down a xmit
2287 * rate only when running; otherwise we may have a mismatch
2288 * in which case the rate will not be convertible.
2289 */
2290 if (vap->iv_state == IEEE80211_S_RUN ||
2291 vap->iv_state == IEEE80211_S_SLEEP) {
2292 imr->ifm_status |= IFM_ACTIVE;
2293 mode = ieee80211_chan2mode(ic->ic_curchan);
2294 } else
2295 mode = IEEE80211_MODE_AUTO;
2296 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2297 /*
2298 * Calculate a current rate if possible.
2299 */
2300 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2301 /*
2302 * A fixed rate is set, report that.
2303 */
2304 imr->ifm_active |= ieee80211_rate2media(ic,
2305 vap->iv_txparms[mode].ucastrate, mode);
2306 } else if (vap->iv_opmode == IEEE80211_M_STA) {
2307 /*
2308 * In station mode report the current transmit rate.
2309 */
2310 imr->ifm_active |= ieee80211_rate2media(ic,
2311 vap->iv_bss->ni_txrate, mode);
2312 } else
2313 imr->ifm_active |= IFM_AUTO;
2314 if (imr->ifm_status & IFM_ACTIVE)
2315 imr->ifm_current = imr->ifm_active;
2316 }
2317
2318 /*
2319 * Set the current phy mode and recalculate the active channel
2320 * set based on the available channels for this mode. Also
2321 * select a new default/current channel if the current one is
2322 * inappropriate for this mode.
2323 */
2324 int
ieee80211_setmode(struct ieee80211com * ic,enum ieee80211_phymode mode)2325 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2326 {
2327 /*
2328 * Adjust basic rates in 11b/11g supported rate set.
2329 * Note that if operating on a hal/quarter rate channel
2330 * this is a noop as those rates sets are different
2331 * and used instead.
2332 */
2333 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2334 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2335
2336 ic->ic_curmode = mode;
2337 ieee80211_reset_erp(ic); /* reset global ERP state */
2338
2339 return 0;
2340 }
2341
2342 /*
2343 * Return the phy mode for with the specified channel.
2344 */
2345 enum ieee80211_phymode
ieee80211_chan2mode(const struct ieee80211_channel * chan)2346 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2347 {
2348
2349 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2350 return IEEE80211_MODE_VHT_2GHZ;
2351 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2352 return IEEE80211_MODE_VHT_5GHZ;
2353 else if (IEEE80211_IS_CHAN_HTA(chan))
2354 return IEEE80211_MODE_11NA;
2355 else if (IEEE80211_IS_CHAN_HTG(chan))
2356 return IEEE80211_MODE_11NG;
2357 else if (IEEE80211_IS_CHAN_108G(chan))
2358 return IEEE80211_MODE_TURBO_G;
2359 else if (IEEE80211_IS_CHAN_ST(chan))
2360 return IEEE80211_MODE_STURBO_A;
2361 else if (IEEE80211_IS_CHAN_TURBO(chan))
2362 return IEEE80211_MODE_TURBO_A;
2363 else if (IEEE80211_IS_CHAN_HALF(chan))
2364 return IEEE80211_MODE_HALF;
2365 else if (IEEE80211_IS_CHAN_QUARTER(chan))
2366 return IEEE80211_MODE_QUARTER;
2367 else if (IEEE80211_IS_CHAN_A(chan))
2368 return IEEE80211_MODE_11A;
2369 else if (IEEE80211_IS_CHAN_ANYG(chan))
2370 return IEEE80211_MODE_11G;
2371 else if (IEEE80211_IS_CHAN_B(chan))
2372 return IEEE80211_MODE_11B;
2373 else if (IEEE80211_IS_CHAN_FHSS(chan))
2374 return IEEE80211_MODE_FH;
2375
2376 /* NB: should not get here */
2377 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2378 __func__, chan->ic_freq, chan->ic_flags);
2379 return IEEE80211_MODE_11B;
2380 }
2381
2382 struct ratemedia {
2383 u_int match; /* rate + mode */
2384 u_int media; /* if_media rate */
2385 };
2386
2387 static int
findmedia(const struct ratemedia rates[],int n,u_int match)2388 findmedia(const struct ratemedia rates[], int n, u_int match)
2389 {
2390 int i;
2391
2392 for (i = 0; i < n; i++)
2393 if (rates[i].match == match)
2394 return rates[i].media;
2395 return IFM_AUTO;
2396 }
2397
2398 /*
2399 * Convert IEEE80211 rate value to ifmedia subtype.
2400 * Rate is either a legacy rate in units of 0.5Mbps
2401 * or an MCS index.
2402 */
2403 int
ieee80211_rate2media(struct ieee80211com * ic,int rate,enum ieee80211_phymode mode)2404 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2405 {
2406 static const struct ratemedia rates[] = {
2407 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2408 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2409 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2410 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2411 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2412 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2413 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2414 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2415 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2416 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2417 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2418 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2419 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2420 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2421 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2422 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2423 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2424 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2425 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2426 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2427 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2428 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2429 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2430 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2431 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2432 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2433 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2434 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2435 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2436 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2437 /* NB: OFDM72 doesn't really exist so we don't handle it */
2438 };
2439 static const struct ratemedia htrates[] = {
2440 { 0, IFM_IEEE80211_MCS },
2441 { 1, IFM_IEEE80211_MCS },
2442 { 2, IFM_IEEE80211_MCS },
2443 { 3, IFM_IEEE80211_MCS },
2444 { 4, IFM_IEEE80211_MCS },
2445 { 5, IFM_IEEE80211_MCS },
2446 { 6, IFM_IEEE80211_MCS },
2447 { 7, IFM_IEEE80211_MCS },
2448 { 8, IFM_IEEE80211_MCS },
2449 { 9, IFM_IEEE80211_MCS },
2450 { 10, IFM_IEEE80211_MCS },
2451 { 11, IFM_IEEE80211_MCS },
2452 { 12, IFM_IEEE80211_MCS },
2453 { 13, IFM_IEEE80211_MCS },
2454 { 14, IFM_IEEE80211_MCS },
2455 { 15, IFM_IEEE80211_MCS },
2456 { 16, IFM_IEEE80211_MCS },
2457 { 17, IFM_IEEE80211_MCS },
2458 { 18, IFM_IEEE80211_MCS },
2459 { 19, IFM_IEEE80211_MCS },
2460 { 20, IFM_IEEE80211_MCS },
2461 { 21, IFM_IEEE80211_MCS },
2462 { 22, IFM_IEEE80211_MCS },
2463 { 23, IFM_IEEE80211_MCS },
2464 { 24, IFM_IEEE80211_MCS },
2465 { 25, IFM_IEEE80211_MCS },
2466 { 26, IFM_IEEE80211_MCS },
2467 { 27, IFM_IEEE80211_MCS },
2468 { 28, IFM_IEEE80211_MCS },
2469 { 29, IFM_IEEE80211_MCS },
2470 { 30, IFM_IEEE80211_MCS },
2471 { 31, IFM_IEEE80211_MCS },
2472 { 32, IFM_IEEE80211_MCS },
2473 { 33, IFM_IEEE80211_MCS },
2474 { 34, IFM_IEEE80211_MCS },
2475 { 35, IFM_IEEE80211_MCS },
2476 { 36, IFM_IEEE80211_MCS },
2477 { 37, IFM_IEEE80211_MCS },
2478 { 38, IFM_IEEE80211_MCS },
2479 { 39, IFM_IEEE80211_MCS },
2480 { 40, IFM_IEEE80211_MCS },
2481 { 41, IFM_IEEE80211_MCS },
2482 { 42, IFM_IEEE80211_MCS },
2483 { 43, IFM_IEEE80211_MCS },
2484 { 44, IFM_IEEE80211_MCS },
2485 { 45, IFM_IEEE80211_MCS },
2486 { 46, IFM_IEEE80211_MCS },
2487 { 47, IFM_IEEE80211_MCS },
2488 { 48, IFM_IEEE80211_MCS },
2489 { 49, IFM_IEEE80211_MCS },
2490 { 50, IFM_IEEE80211_MCS },
2491 { 51, IFM_IEEE80211_MCS },
2492 { 52, IFM_IEEE80211_MCS },
2493 { 53, IFM_IEEE80211_MCS },
2494 { 54, IFM_IEEE80211_MCS },
2495 { 55, IFM_IEEE80211_MCS },
2496 { 56, IFM_IEEE80211_MCS },
2497 { 57, IFM_IEEE80211_MCS },
2498 { 58, IFM_IEEE80211_MCS },
2499 { 59, IFM_IEEE80211_MCS },
2500 { 60, IFM_IEEE80211_MCS },
2501 { 61, IFM_IEEE80211_MCS },
2502 { 62, IFM_IEEE80211_MCS },
2503 { 63, IFM_IEEE80211_MCS },
2504 { 64, IFM_IEEE80211_MCS },
2505 { 65, IFM_IEEE80211_MCS },
2506 { 66, IFM_IEEE80211_MCS },
2507 { 67, IFM_IEEE80211_MCS },
2508 { 68, IFM_IEEE80211_MCS },
2509 { 69, IFM_IEEE80211_MCS },
2510 { 70, IFM_IEEE80211_MCS },
2511 { 71, IFM_IEEE80211_MCS },
2512 { 72, IFM_IEEE80211_MCS },
2513 { 73, IFM_IEEE80211_MCS },
2514 { 74, IFM_IEEE80211_MCS },
2515 { 75, IFM_IEEE80211_MCS },
2516 { 76, IFM_IEEE80211_MCS },
2517 };
2518 static const struct ratemedia vhtrates[] = {
2519 { 0, IFM_IEEE80211_VHT },
2520 { 1, IFM_IEEE80211_VHT },
2521 { 2, IFM_IEEE80211_VHT },
2522 { 3, IFM_IEEE80211_VHT },
2523 { 4, IFM_IEEE80211_VHT },
2524 { 5, IFM_IEEE80211_VHT },
2525 { 6, IFM_IEEE80211_VHT },
2526 { 7, IFM_IEEE80211_VHT },
2527 { 8, IFM_IEEE80211_VHT }, /* Optional. */
2528 { 9, IFM_IEEE80211_VHT }, /* Optional. */
2529 #if 0
2530 /* Some QCA and BRCM seem to support this; offspec. */
2531 { 10, IFM_IEEE80211_VHT },
2532 { 11, IFM_IEEE80211_VHT },
2533 #endif
2534 };
2535 int m;
2536
2537 /*
2538 * Check 11ac/11n rates first for match as an MCS.
2539 */
2540 if (mode == IEEE80211_MODE_VHT_5GHZ) {
2541 if (rate & IFM_IEEE80211_VHT) {
2542 rate &= ~IFM_IEEE80211_VHT;
2543 m = findmedia(vhtrates, nitems(vhtrates), rate);
2544 if (m != IFM_AUTO)
2545 return (m | IFM_IEEE80211_VHT);
2546 }
2547 } else if (mode == IEEE80211_MODE_11NA) {
2548 if (rate & IEEE80211_RATE_MCS) {
2549 rate &= ~IEEE80211_RATE_MCS;
2550 m = findmedia(htrates, nitems(htrates), rate);
2551 if (m != IFM_AUTO)
2552 return m | IFM_IEEE80211_11NA;
2553 }
2554 } else if (mode == IEEE80211_MODE_11NG) {
2555 /* NB: 12 is ambiguous, it will be treated as an MCS */
2556 if (rate & IEEE80211_RATE_MCS) {
2557 rate &= ~IEEE80211_RATE_MCS;
2558 m = findmedia(htrates, nitems(htrates), rate);
2559 if (m != IFM_AUTO)
2560 return m | IFM_IEEE80211_11NG;
2561 }
2562 }
2563 rate &= IEEE80211_RATE_VAL;
2564 switch (mode) {
2565 case IEEE80211_MODE_11A:
2566 case IEEE80211_MODE_HALF: /* XXX good 'nuf */
2567 case IEEE80211_MODE_QUARTER:
2568 case IEEE80211_MODE_11NA:
2569 case IEEE80211_MODE_TURBO_A:
2570 case IEEE80211_MODE_STURBO_A:
2571 return findmedia(rates, nitems(rates),
2572 rate | IFM_IEEE80211_11A);
2573 case IEEE80211_MODE_11B:
2574 return findmedia(rates, nitems(rates),
2575 rate | IFM_IEEE80211_11B);
2576 case IEEE80211_MODE_FH:
2577 return findmedia(rates, nitems(rates),
2578 rate | IFM_IEEE80211_FH);
2579 case IEEE80211_MODE_AUTO:
2580 /* NB: ic may be NULL for some drivers */
2581 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2582 return findmedia(rates, nitems(rates),
2583 rate | IFM_IEEE80211_FH);
2584 /* NB: hack, 11g matches both 11b+11a rates */
2585 /* fall thru... */
2586 case IEEE80211_MODE_11G:
2587 case IEEE80211_MODE_11NG:
2588 case IEEE80211_MODE_TURBO_G:
2589 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2590 case IEEE80211_MODE_VHT_2GHZ:
2591 case IEEE80211_MODE_VHT_5GHZ:
2592 /* XXX TODO: need to figure out mapping for VHT rates */
2593 return IFM_AUTO;
2594 }
2595 return IFM_AUTO;
2596 }
2597
2598 int
ieee80211_media2rate(int mword)2599 ieee80211_media2rate(int mword)
2600 {
2601 static const int ieeerates[] = {
2602 -1, /* IFM_AUTO */
2603 0, /* IFM_MANUAL */
2604 0, /* IFM_NONE */
2605 2, /* IFM_IEEE80211_FH1 */
2606 4, /* IFM_IEEE80211_FH2 */
2607 2, /* IFM_IEEE80211_DS1 */
2608 4, /* IFM_IEEE80211_DS2 */
2609 11, /* IFM_IEEE80211_DS5 */
2610 22, /* IFM_IEEE80211_DS11 */
2611 44, /* IFM_IEEE80211_DS22 */
2612 12, /* IFM_IEEE80211_OFDM6 */
2613 18, /* IFM_IEEE80211_OFDM9 */
2614 24, /* IFM_IEEE80211_OFDM12 */
2615 36, /* IFM_IEEE80211_OFDM18 */
2616 48, /* IFM_IEEE80211_OFDM24 */
2617 72, /* IFM_IEEE80211_OFDM36 */
2618 96, /* IFM_IEEE80211_OFDM48 */
2619 108, /* IFM_IEEE80211_OFDM54 */
2620 144, /* IFM_IEEE80211_OFDM72 */
2621 0, /* IFM_IEEE80211_DS354k */
2622 0, /* IFM_IEEE80211_DS512k */
2623 6, /* IFM_IEEE80211_OFDM3 */
2624 9, /* IFM_IEEE80211_OFDM4 */
2625 54, /* IFM_IEEE80211_OFDM27 */
2626 -1, /* IFM_IEEE80211_MCS */
2627 -1, /* IFM_IEEE80211_VHT */
2628 };
2629 return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2630 ieeerates[IFM_SUBTYPE(mword)] : 0;
2631 }
2632
2633 /*
2634 * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2635 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2636 */
2637 #define mix(a, b, c) \
2638 do { \
2639 a -= b; a -= c; a ^= (c >> 13); \
2640 b -= c; b -= a; b ^= (a << 8); \
2641 c -= a; c -= b; c ^= (b >> 13); \
2642 a -= b; a -= c; a ^= (c >> 12); \
2643 b -= c; b -= a; b ^= (a << 16); \
2644 c -= a; c -= b; c ^= (b >> 5); \
2645 a -= b; a -= c; a ^= (c >> 3); \
2646 b -= c; b -= a; b ^= (a << 10); \
2647 c -= a; c -= b; c ^= (b >> 15); \
2648 } while (/*CONSTCOND*/0)
2649
2650 uint32_t
ieee80211_mac_hash(const struct ieee80211com * ic,const uint8_t addr[IEEE80211_ADDR_LEN])2651 ieee80211_mac_hash(const struct ieee80211com *ic,
2652 const uint8_t addr[IEEE80211_ADDR_LEN])
2653 {
2654 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2655
2656 b += addr[5] << 8;
2657 b += addr[4];
2658 a += addr[3] << 24;
2659 a += addr[2] << 16;
2660 a += addr[1] << 8;
2661 a += addr[0];
2662
2663 mix(a, b, c);
2664
2665 return c;
2666 }
2667 #undef mix
2668
2669 char
ieee80211_channel_type_char(const struct ieee80211_channel * c)2670 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2671 {
2672 if (IEEE80211_IS_CHAN_ST(c))
2673 return 'S';
2674 if (IEEE80211_IS_CHAN_108A(c))
2675 return 'T';
2676 if (IEEE80211_IS_CHAN_108G(c))
2677 return 'G';
2678 if (IEEE80211_IS_CHAN_VHT(c))
2679 return 'v';
2680 if (IEEE80211_IS_CHAN_HT(c))
2681 return 'n';
2682 if (IEEE80211_IS_CHAN_A(c))
2683 return 'a';
2684 if (IEEE80211_IS_CHAN_ANYG(c))
2685 return 'g';
2686 if (IEEE80211_IS_CHAN_B(c))
2687 return 'b';
2688 return 'f';
2689 }
2690
2691 /*
2692 * Determine whether the given key in the given VAP is a global key.
2693 * (key index 0..3, shared between all stations on a VAP.)
2694 *
2695 * This is either a WEP key or a GROUP key.
2696 *
2697 * Note this will NOT return true if it is a IGTK key.
2698 */
2699 bool
ieee80211_is_key_global(const struct ieee80211vap * vap,const struct ieee80211_key * key)2700 ieee80211_is_key_global(const struct ieee80211vap *vap,
2701 const struct ieee80211_key *key)
2702 {
2703 return (&vap->iv_nw_keys[0] <= key &&
2704 key < &vap->iv_nw_keys[IEEE80211_WEP_NKID]);
2705 }
2706
2707 /*
2708 * Determine whether the given key in the given VAP is a unicast key.
2709 */
2710 bool
ieee80211_is_key_unicast(const struct ieee80211vap * vap,const struct ieee80211_key * key)2711 ieee80211_is_key_unicast(const struct ieee80211vap *vap,
2712 const struct ieee80211_key *key)
2713 {
2714 /*
2715 * This is a short-cut for now; eventually we will need
2716 * to support multiple unicast keys, IGTK, etc) so we
2717 * will absolutely need to fix the key flags.
2718 */
2719 return (!ieee80211_is_key_global(vap, key));
2720 }
2721