1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Atsushi Onoe
5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
6 * Copyright (c) 2012 IEEE
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 /*
32 * IEEE 802.11 protocol support.
33 */
34
35 #include "opt_inet.h"
36 #include "opt_wlan.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_media.h>
49 #include <net/if_private.h>
50 #include <net/ethernet.h> /* XXX for ether_sprintf */
51
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_adhoc.h>
54 #include <net80211/ieee80211_sta.h>
55 #include <net80211/ieee80211_hostap.h>
56 #include <net80211/ieee80211_wds.h>
57 #ifdef IEEE80211_SUPPORT_MESH
58 #include <net80211/ieee80211_mesh.h>
59 #endif
60 #include <net80211/ieee80211_monitor.h>
61 #include <net80211/ieee80211_input.h>
62
63 /* XXX tunables */
64 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */
65 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */
66
67 const char *mgt_subtype_name[] = {
68 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp",
69 "probe_req", "probe_resp", "timing_adv", "reserved#7",
70 "beacon", "atim", "disassoc", "auth",
71 "deauth", "action", "action_noack", "reserved#15"
72 };
73 const char *ctl_subtype_name[] = {
74 "reserved#0", "reserved#1", "reserved#2", "reserved#3",
75 "reserved#4", "reserved#5", "reserved#6", "control_wrap",
76 "bar", "ba", "ps_poll", "rts",
77 "cts", "ack", "cf_end", "cf_end_ack"
78 };
79 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
80 "IBSS", /* IEEE80211_M_IBSS */
81 "STA", /* IEEE80211_M_STA */
82 "WDS", /* IEEE80211_M_WDS */
83 "AHDEMO", /* IEEE80211_M_AHDEMO */
84 "HOSTAP", /* IEEE80211_M_HOSTAP */
85 "MONITOR", /* IEEE80211_M_MONITOR */
86 "MBSS" /* IEEE80211_M_MBSS */
87 };
88 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
89 "INIT", /* IEEE80211_S_INIT */
90 "SCAN", /* IEEE80211_S_SCAN */
91 "AUTH", /* IEEE80211_S_AUTH */
92 "ASSOC", /* IEEE80211_S_ASSOC */
93 "CAC", /* IEEE80211_S_CAC */
94 "RUN", /* IEEE80211_S_RUN */
95 "CSA", /* IEEE80211_S_CSA */
96 "SLEEP", /* IEEE80211_S_SLEEP */
97 };
98 const char *ieee80211_wme_acnames[] = {
99 "WME_AC_BE",
100 "WME_AC_BK",
101 "WME_AC_VI",
102 "WME_AC_VO",
103 "WME_UPSD",
104 };
105
106 /*
107 * Reason code descriptions were (mostly) obtained from
108 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
109 */
110 const char *
ieee80211_reason_to_string(uint16_t reason)111 ieee80211_reason_to_string(uint16_t reason)
112 {
113 switch (reason) {
114 case IEEE80211_REASON_UNSPECIFIED:
115 return ("unspecified");
116 case IEEE80211_REASON_AUTH_EXPIRE:
117 return ("previous authentication is expired");
118 case IEEE80211_REASON_AUTH_LEAVE:
119 return ("sending STA is leaving/has left IBSS or ESS");
120 case IEEE80211_REASON_ASSOC_EXPIRE:
121 return ("disassociated due to inactivity");
122 case IEEE80211_REASON_ASSOC_TOOMANY:
123 return ("too many associated STAs");
124 case IEEE80211_REASON_NOT_AUTHED:
125 return ("class 2 frame received from nonauthenticated STA");
126 case IEEE80211_REASON_NOT_ASSOCED:
127 return ("class 3 frame received from nonassociated STA");
128 case IEEE80211_REASON_ASSOC_LEAVE:
129 return ("sending STA is leaving/has left BSS");
130 case IEEE80211_REASON_ASSOC_NOT_AUTHED:
131 return ("STA requesting (re)association is not authenticated");
132 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
133 return ("information in the Power Capability element is "
134 "unacceptable");
135 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
136 return ("information in the Supported Channels element is "
137 "unacceptable");
138 case IEEE80211_REASON_IE_INVALID:
139 return ("invalid element");
140 case IEEE80211_REASON_MIC_FAILURE:
141 return ("MIC failure");
142 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
143 return ("4-Way handshake timeout");
144 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
145 return ("group key update timeout");
146 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
147 return ("element in 4-Way handshake different from "
148 "(re)association request/probe response/beacon frame");
149 case IEEE80211_REASON_GROUP_CIPHER_INVALID:
150 return ("invalid group cipher");
151 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
152 return ("invalid pairwise cipher");
153 case IEEE80211_REASON_AKMP_INVALID:
154 return ("invalid AKMP");
155 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
156 return ("unsupported version in RSN IE");
157 case IEEE80211_REASON_INVALID_RSN_IE_CAP:
158 return ("invalid capabilities in RSN IE");
159 case IEEE80211_REASON_802_1X_AUTH_FAILED:
160 return ("IEEE 802.1X authentication failed");
161 case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
162 return ("cipher suite rejected because of the security "
163 "policy");
164 case IEEE80211_REASON_UNSPECIFIED_QOS:
165 return ("unspecified (QoS-related)");
166 case IEEE80211_REASON_INSUFFICIENT_BW:
167 return ("QoS AP lacks sufficient bandwidth for this QoS STA");
168 case IEEE80211_REASON_TOOMANY_FRAMES:
169 return ("too many frames need to be acknowledged");
170 case IEEE80211_REASON_OUTSIDE_TXOP:
171 return ("STA is transmitting outside the limits of its TXOPs");
172 case IEEE80211_REASON_LEAVING_QBSS:
173 return ("requested from peer STA (the STA is "
174 "resetting/leaving the BSS)");
175 case IEEE80211_REASON_BAD_MECHANISM:
176 return ("requested from peer STA (it does not want to use "
177 "the mechanism)");
178 case IEEE80211_REASON_SETUP_NEEDED:
179 return ("requested from peer STA (setup is required for the "
180 "used mechanism)");
181 case IEEE80211_REASON_TIMEOUT:
182 return ("requested from peer STA (timeout)");
183 case IEEE80211_REASON_PEER_LINK_CANCELED:
184 return ("SME cancels the mesh peering instance (not related "
185 "to the maximum number of peer mesh STAs)");
186 case IEEE80211_REASON_MESH_MAX_PEERS:
187 return ("maximum number of peer mesh STAs was reached");
188 case IEEE80211_REASON_MESH_CPVIOLATION:
189 return ("the received information violates the Mesh "
190 "Configuration policy configured in the mesh STA "
191 "profile");
192 case IEEE80211_REASON_MESH_CLOSE_RCVD:
193 return ("the mesh STA has received a Mesh Peering Close "
194 "message requesting to close the mesh peering");
195 case IEEE80211_REASON_MESH_MAX_RETRIES:
196 return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
197 "Peering Open messages, without receiving a Mesh "
198 "Peering Confirm message");
199 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
200 return ("the confirmTimer for the mesh peering instance times "
201 "out");
202 case IEEE80211_REASON_MESH_INVALID_GTK:
203 return ("the mesh STA fails to unwrap the GTK or the values "
204 "in the wrapped contents do not match");
205 case IEEE80211_REASON_MESH_INCONS_PARAMS:
206 return ("the mesh STA receives inconsistent information about "
207 "the mesh parameters between Mesh Peering Management "
208 "frames");
209 case IEEE80211_REASON_MESH_INVALID_SECURITY:
210 return ("the mesh STA fails the authenticated mesh peering "
211 "exchange because due to failure in selecting "
212 "pairwise/group ciphersuite");
213 case IEEE80211_REASON_MESH_PERR_NO_PROXY:
214 return ("the mesh STA does not have proxy information for "
215 "this external destination");
216 case IEEE80211_REASON_MESH_PERR_NO_FI:
217 return ("the mesh STA does not have forwarding information "
218 "for this destination");
219 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
220 return ("the mesh STA determines that the link to the next "
221 "hop of an active path in its forwarding information "
222 "is no longer usable");
223 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
224 return ("the MAC address of the STA already exists in the "
225 "mesh BSS");
226 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
227 return ("the mesh STA performs channel switch to meet "
228 "regulatory requirements");
229 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
230 return ("the mesh STA performs channel switch with "
231 "unspecified reason");
232 default:
233 return ("reserved/unknown");
234 }
235 }
236
237 static void beacon_miss(void *, int);
238 static void beacon_swmiss(void *, int);
239 static void parent_updown(void *, int);
240 static void update_mcast(void *, int);
241 static void update_promisc(void *, int);
242 static void update_channel(void *, int);
243 static void update_chw(void *, int);
244 static void vap_update_wme(void *, int);
245 static void vap_update_slot(void *, int);
246 static void restart_vaps(void *, int);
247 static void vap_update_erp_protmode(void *, int);
248 static void vap_update_preamble(void *, int);
249 static void vap_update_ht_protmode(void *, int);
250 static void ieee80211_newstate_cb(void *, int);
251 static struct ieee80211_node *vap_update_bss(struct ieee80211vap *,
252 struct ieee80211_node *);
253
254 static int
null_raw_xmit(struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_bpf_params * params)255 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
256 const struct ieee80211_bpf_params *params)
257 {
258
259 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
260 m_freem(m);
261 return ENETDOWN;
262 }
263
264 void
ieee80211_proto_attach(struct ieee80211com * ic)265 ieee80211_proto_attach(struct ieee80211com *ic)
266 {
267 uint8_t hdrlen;
268
269 /* override the 802.3 setting */
270 hdrlen = ic->ic_headroom
271 + sizeof(struct ieee80211_qosframe_addr4)
272 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
273 + IEEE80211_WEP_EXTIVLEN;
274 /* XXX no way to recalculate on ifdetach */
275 #ifdef __HAIKU__
276 if (ALIGN(hdrlen) > max_linkhdr) {
277 /* XXX sanity check... */
278 max_linkhdr = ALIGN(hdrlen);
279 max_hdr = max_linkhdr + max_protohdr;
280 max_datalen = MHLEN - max_hdr;
281 }
282 #else
283 max_linkhdr_grow(ALIGN(hdrlen));
284 #endif
285 //ic->ic_protmode = IEEE80211_PROT_CTSONLY;
286
287 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
288 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
289 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
290 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
291 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
292 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
293 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
294
295 ic->ic_wme.wme_hipri_switch_hysteresis =
296 AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
297
298 /* initialize management frame handlers */
299 ic->ic_send_mgmt = ieee80211_send_mgmt;
300 ic->ic_raw_xmit = null_raw_xmit;
301
302 ieee80211_adhoc_attach(ic);
303 ieee80211_sta_attach(ic);
304 ieee80211_wds_attach(ic);
305 ieee80211_hostap_attach(ic);
306 #ifdef IEEE80211_SUPPORT_MESH
307 ieee80211_mesh_attach(ic);
308 #endif
309 ieee80211_monitor_attach(ic);
310 }
311
312 void
ieee80211_proto_detach(struct ieee80211com * ic)313 ieee80211_proto_detach(struct ieee80211com *ic)
314 {
315 ieee80211_monitor_detach(ic);
316 #ifdef IEEE80211_SUPPORT_MESH
317 ieee80211_mesh_detach(ic);
318 #endif
319 ieee80211_hostap_detach(ic);
320 ieee80211_wds_detach(ic);
321 ieee80211_adhoc_detach(ic);
322 ieee80211_sta_detach(ic);
323 }
324
325 static void
null_update_beacon(struct ieee80211vap * vap,int item)326 null_update_beacon(struct ieee80211vap *vap, int item)
327 {
328 }
329
330 void
ieee80211_proto_vattach(struct ieee80211vap * vap)331 ieee80211_proto_vattach(struct ieee80211vap *vap)
332 {
333 struct ieee80211com *ic = vap->iv_ic;
334 struct ifnet *ifp = vap->iv_ifp;
335 int i;
336
337 /* override the 802.3 setting */
338 ifp->if_hdrlen = ic->ic_headroom
339 + sizeof(struct ieee80211_qosframe_addr4)
340 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
341 + IEEE80211_WEP_EXTIVLEN;
342
343 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
344 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
345 vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
346 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
347 callout_init(&vap->iv_mgtsend, 1);
348 for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
349 TASK_INIT(&vap->iv_nstate_task[i], 0, ieee80211_newstate_cb, vap);
350 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
351 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
352 TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap);
353 TASK_INIT(&vap->iv_erp_protmode_task, 0, vap_update_erp_protmode, vap);
354 TASK_INIT(&vap->iv_ht_protmode_task, 0, vap_update_ht_protmode, vap);
355 TASK_INIT(&vap->iv_preamble_task, 0, vap_update_preamble, vap);
356 /*
357 * Install default tx rate handling: no fixed rate, lowest
358 * supported rate for mgmt and multicast frames. Default
359 * max retry count. These settings can be changed by the
360 * driver and/or user applications.
361 */
362 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
363 if (isclr(ic->ic_modecaps, i))
364 continue;
365
366 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
367
368 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
369
370 /*
371 * Setting the management rate to MCS 0 assumes that the
372 * BSS Basic rate set is empty and the BSS Basic MCS set
373 * is not.
374 *
375 * Since we're not checking this, default to the lowest
376 * defined rate for this mode.
377 *
378 * At least one 11n AP (DLINK DIR-825) is reported to drop
379 * some MCS management traffic (eg BA response frames.)
380 *
381 * See also: 9.6.0 of the 802.11n-2009 specification.
382 */
383 #ifdef NOTYET
384 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
385 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
386 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
387 } else {
388 vap->iv_txparms[i].mgmtrate =
389 rs->rs_rates[0] & IEEE80211_RATE_VAL;
390 vap->iv_txparms[i].mcastrate =
391 rs->rs_rates[0] & IEEE80211_RATE_VAL;
392 }
393 #endif
394 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
395 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
396 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
397 }
398 vap->iv_roaming = IEEE80211_ROAMING_AUTO;
399
400 vap->iv_update_beacon = null_update_beacon;
401 vap->iv_deliver_data = ieee80211_deliver_data;
402 vap->iv_protmode = IEEE80211_PROT_CTSONLY;
403 vap->iv_update_bss = vap_update_bss;
404
405 /* attach support for operating mode */
406 ic->ic_vattach[vap->iv_opmode](vap);
407 }
408
409 void
ieee80211_proto_vdetach(struct ieee80211vap * vap)410 ieee80211_proto_vdetach(struct ieee80211vap *vap)
411 {
412 #define FREEAPPIE(ie) do { \
413 if (ie != NULL) \
414 IEEE80211_FREE(ie, M_80211_NODE_IE); \
415 } while (0)
416 /*
417 * Detach operating mode module.
418 */
419 if (vap->iv_opdetach != NULL)
420 vap->iv_opdetach(vap);
421 /*
422 * This should not be needed as we detach when reseting
423 * the state but be conservative here since the
424 * authenticator may do things like spawn kernel threads.
425 */
426 if (vap->iv_auth->ia_detach != NULL)
427 vap->iv_auth->ia_detach(vap);
428 /*
429 * Detach any ACL'ator.
430 */
431 if (vap->iv_acl != NULL)
432 vap->iv_acl->iac_detach(vap);
433
434 FREEAPPIE(vap->iv_appie_beacon);
435 FREEAPPIE(vap->iv_appie_probereq);
436 FREEAPPIE(vap->iv_appie_proberesp);
437 FREEAPPIE(vap->iv_appie_assocreq);
438 FREEAPPIE(vap->iv_appie_assocresp);
439 FREEAPPIE(vap->iv_appie_wpa);
440 #undef FREEAPPIE
441 }
442
443 /*
444 * Simple-minded authenticator module support.
445 */
446
447 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1)
448 /* XXX well-known names */
449 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
450 "wlan_internal", /* IEEE80211_AUTH_NONE */
451 "wlan_internal", /* IEEE80211_AUTH_OPEN */
452 "wlan_internal", /* IEEE80211_AUTH_SHARED */
453 "wlan_xauth", /* IEEE80211_AUTH_8021X */
454 "wlan_internal", /* IEEE80211_AUTH_AUTO */
455 "wlan_xauth", /* IEEE80211_AUTH_WPA */
456 };
457 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
458
459 static const struct ieee80211_authenticator auth_internal = {
460 .ia_name = "wlan_internal",
461 .ia_attach = NULL,
462 .ia_detach = NULL,
463 .ia_node_join = NULL,
464 .ia_node_leave = NULL,
465 };
466
467 /*
468 * Setup internal authenticators once; they are never unregistered.
469 */
470 static void
ieee80211_auth_setup(void)471 ieee80211_auth_setup(void)
472 {
473 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
474 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
475 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
476 }
477 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
478
479 const struct ieee80211_authenticator *
ieee80211_authenticator_get(int auth)480 ieee80211_authenticator_get(int auth)
481 {
482 if (auth >= IEEE80211_AUTH_MAX)
483 return NULL;
484 if (authenticators[auth] == NULL)
485 ieee80211_load_module(auth_modnames[auth]);
486 return authenticators[auth];
487 }
488
489 void
ieee80211_authenticator_register(int type,const struct ieee80211_authenticator * auth)490 ieee80211_authenticator_register(int type,
491 const struct ieee80211_authenticator *auth)
492 {
493 if (type >= IEEE80211_AUTH_MAX)
494 return;
495 authenticators[type] = auth;
496 }
497
498 void
ieee80211_authenticator_unregister(int type)499 ieee80211_authenticator_unregister(int type)
500 {
501
502 if (type >= IEEE80211_AUTH_MAX)
503 return;
504 authenticators[type] = NULL;
505 }
506
507 /*
508 * Very simple-minded ACL module support.
509 */
510 /* XXX just one for now */
511 static const struct ieee80211_aclator *acl = NULL;
512
513 void
ieee80211_aclator_register(const struct ieee80211_aclator * iac)514 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
515 {
516 printf("wlan: %s acl policy registered\n", iac->iac_name);
517 acl = iac;
518 }
519
520 void
ieee80211_aclator_unregister(const struct ieee80211_aclator * iac)521 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
522 {
523 if (acl == iac)
524 acl = NULL;
525 printf("wlan: %s acl policy unregistered\n", iac->iac_name);
526 }
527
528 const struct ieee80211_aclator *
ieee80211_aclator_get(const char * name)529 ieee80211_aclator_get(const char *name)
530 {
531 if (acl == NULL)
532 ieee80211_load_module("wlan_acl");
533 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
534 }
535
536 void
ieee80211_print_essid(const uint8_t * essid,int len)537 ieee80211_print_essid(const uint8_t *essid, int len)
538 {
539 const uint8_t *p;
540 int i;
541
542 if (len > IEEE80211_NWID_LEN)
543 len = IEEE80211_NWID_LEN;
544 /* determine printable or not */
545 for (i = 0, p = essid; i < len; i++, p++) {
546 if (*p < ' ' || *p > 0x7e)
547 break;
548 }
549 if (i == len) {
550 printf("\"");
551 for (i = 0, p = essid; i < len; i++, p++)
552 printf("%c", *p);
553 printf("\"");
554 } else {
555 printf("0x");
556 for (i = 0, p = essid; i < len; i++, p++)
557 printf("%02x", *p);
558 }
559 }
560
561 void
ieee80211_dump_pkt(struct ieee80211com * ic,const uint8_t * buf,int len,int rate,int rssi)562 ieee80211_dump_pkt(struct ieee80211com *ic,
563 const uint8_t *buf, int len, int rate, int rssi)
564 {
565 const struct ieee80211_frame *wh;
566 int i;
567
568 wh = (const struct ieee80211_frame *)buf;
569 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
570 case IEEE80211_FC1_DIR_NODS:
571 printf("NODS %s", ether_sprintf(wh->i_addr2));
572 printf("->%s", ether_sprintf(wh->i_addr1));
573 printf("(%s)", ether_sprintf(wh->i_addr3));
574 break;
575 case IEEE80211_FC1_DIR_TODS:
576 printf("TODS %s", ether_sprintf(wh->i_addr2));
577 printf("->%s", ether_sprintf(wh->i_addr3));
578 printf("(%s)", ether_sprintf(wh->i_addr1));
579 break;
580 case IEEE80211_FC1_DIR_FROMDS:
581 printf("FRDS %s", ether_sprintf(wh->i_addr3));
582 printf("->%s", ether_sprintf(wh->i_addr1));
583 printf("(%s)", ether_sprintf(wh->i_addr2));
584 break;
585 case IEEE80211_FC1_DIR_DSTODS:
586 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
587 printf("->%s", ether_sprintf(wh->i_addr3));
588 printf("(%s", ether_sprintf(wh->i_addr2));
589 printf("->%s)", ether_sprintf(wh->i_addr1));
590 break;
591 }
592 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
593 case IEEE80211_FC0_TYPE_DATA:
594 printf(" data");
595 break;
596 case IEEE80211_FC0_TYPE_MGT:
597 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
598 break;
599 default:
600 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
601 break;
602 }
603 if (IEEE80211_QOS_HAS_SEQ(wh)) {
604 const struct ieee80211_qosframe *qwh =
605 (const struct ieee80211_qosframe *)buf;
606 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
607 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
608 }
609 if (IEEE80211_IS_PROTECTED(wh)) {
610 int off;
611
612 off = ieee80211_anyhdrspace(ic, wh);
613 printf(" WEP [IV %.02x %.02x %.02x",
614 buf[off+0], buf[off+1], buf[off+2]);
615 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
616 printf(" %.02x %.02x %.02x",
617 buf[off+4], buf[off+5], buf[off+6]);
618 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
619 }
620 if (rate >= 0)
621 printf(" %dM", rate / 2);
622 if (rssi >= 0)
623 printf(" +%d", rssi);
624 printf("\n");
625 if (len > 0) {
626 for (i = 0; i < len; i++) {
627 if ((i & 1) == 0)
628 printf(" ");
629 printf("%02x", buf[i]);
630 }
631 printf("\n");
632 }
633 }
634
635 static __inline int
findrix(const struct ieee80211_rateset * rs,int r)636 findrix(const struct ieee80211_rateset *rs, int r)
637 {
638 int i;
639
640 for (i = 0; i < rs->rs_nrates; i++)
641 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
642 return i;
643 return -1;
644 }
645
646 int
ieee80211_fix_rate(struct ieee80211_node * ni,struct ieee80211_rateset * nrs,int flags)647 ieee80211_fix_rate(struct ieee80211_node *ni,
648 struct ieee80211_rateset *nrs, int flags)
649 {
650 struct ieee80211vap *vap = ni->ni_vap;
651 struct ieee80211com *ic = ni->ni_ic;
652 int i, j, rix, error;
653 int okrate, badrate, fixedrate, ucastrate;
654 const struct ieee80211_rateset *srs;
655 uint8_t r;
656
657 error = 0;
658 okrate = badrate = 0;
659 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
660 if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
661 /*
662 * Workaround awkwardness with fixed rate. We are called
663 * to check both the legacy rate set and the HT rate set
664 * but we must apply any legacy fixed rate check only to the
665 * legacy rate set and vice versa. We cannot tell what type
666 * of rate set we've been given (legacy or HT) but we can
667 * distinguish the fixed rate type (MCS have 0x80 set).
668 * So to deal with this the caller communicates whether to
669 * check MCS or legacy rate using the flags and we use the
670 * type of any fixed rate to avoid applying an MCS to a
671 * legacy rate and vice versa.
672 */
673 if (ucastrate & 0x80) {
674 if (flags & IEEE80211_F_DOFRATE)
675 flags &= ~IEEE80211_F_DOFRATE;
676 } else if ((ucastrate & 0x80) == 0) {
677 if (flags & IEEE80211_F_DOFMCS)
678 flags &= ~IEEE80211_F_DOFMCS;
679 }
680 /* NB: required to make MCS match below work */
681 ucastrate &= IEEE80211_RATE_VAL;
682 }
683 fixedrate = IEEE80211_FIXED_RATE_NONE;
684 /*
685 * XXX we are called to process both MCS and legacy rates;
686 * we must use the appropriate basic rate set or chaos will
687 * ensue; for now callers that want MCS must supply
688 * IEEE80211_F_DOBRS; at some point we'll need to split this
689 * function so there are two variants, one for MCS and one
690 * for legacy rates.
691 */
692 if (flags & IEEE80211_F_DOBRS)
693 srs = (const struct ieee80211_rateset *)
694 ieee80211_get_suphtrates(ic, ni->ni_chan);
695 else
696 srs = ieee80211_get_suprates(ic, ni->ni_chan);
697 for (i = 0; i < nrs->rs_nrates; ) {
698 if (flags & IEEE80211_F_DOSORT) {
699 /*
700 * Sort rates.
701 */
702 for (j = i + 1; j < nrs->rs_nrates; j++) {
703 if (IEEE80211_RV(nrs->rs_rates[i]) >
704 IEEE80211_RV(nrs->rs_rates[j])) {
705 r = nrs->rs_rates[i];
706 nrs->rs_rates[i] = nrs->rs_rates[j];
707 nrs->rs_rates[j] = r;
708 }
709 }
710 }
711 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
712 badrate = r;
713 /*
714 * Check for fixed rate.
715 */
716 if (r == ucastrate)
717 fixedrate = r;
718 /*
719 * Check against supported rates.
720 */
721 rix = findrix(srs, r);
722 if (flags & IEEE80211_F_DONEGO) {
723 if (rix < 0) {
724 /*
725 * A rate in the node's rate set is not
726 * supported. If this is a basic rate and we
727 * are operating as a STA then this is an error.
728 * Otherwise we just discard/ignore the rate.
729 */
730 if ((flags & IEEE80211_F_JOIN) &&
731 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
732 error++;
733 } else if ((flags & IEEE80211_F_JOIN) == 0) {
734 /*
735 * Overwrite with the supported rate
736 * value so any basic rate bit is set.
737 */
738 nrs->rs_rates[i] = srs->rs_rates[rix];
739 }
740 }
741 if ((flags & IEEE80211_F_DODEL) && rix < 0) {
742 /*
743 * Delete unacceptable rates.
744 */
745 nrs->rs_nrates--;
746 for (j = i; j < nrs->rs_nrates; j++)
747 nrs->rs_rates[j] = nrs->rs_rates[j + 1];
748 nrs->rs_rates[j] = 0;
749 continue;
750 }
751 if (rix >= 0)
752 okrate = nrs->rs_rates[i];
753 i++;
754 }
755 if (okrate == 0 || error != 0 ||
756 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
757 fixedrate != ucastrate)) {
758 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
759 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
760 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
761 return badrate | IEEE80211_RATE_BASIC;
762 } else
763 return IEEE80211_RV(okrate);
764 }
765
766 /*
767 * Reset 11g-related state.
768 *
769 * This is for per-VAP ERP/11g state.
770 *
771 * Eventually everything in ieee80211_reset_erp() will be
772 * per-VAP and in here.
773 */
774 void
ieee80211_vap_reset_erp(struct ieee80211vap * vap)775 ieee80211_vap_reset_erp(struct ieee80211vap *vap)
776 {
777 struct ieee80211com *ic = vap->iv_ic;
778
779 vap->iv_nonerpsta = 0;
780 vap->iv_longslotsta = 0;
781
782 vap->iv_flags &= ~IEEE80211_F_USEPROT;
783 /*
784 * Set short preamble and ERP barker-preamble flags.
785 */
786 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
787 (vap->iv_caps & IEEE80211_C_SHPREAMBLE)) {
788 vap->iv_flags |= IEEE80211_F_SHPREAMBLE;
789 vap->iv_flags &= ~IEEE80211_F_USEBARKER;
790 } else {
791 vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE;
792 vap->iv_flags |= IEEE80211_F_USEBARKER;
793 }
794
795 /*
796 * Short slot time is enabled only when operating in 11g
797 * and not in an IBSS. We must also honor whether or not
798 * the driver is capable of doing it.
799 */
800 ieee80211_vap_set_shortslottime(vap,
801 IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
802 IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
803 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
804 vap->iv_opmode == IEEE80211_M_HOSTAP &&
805 (ic->ic_caps & IEEE80211_C_SHSLOT)));
806 }
807
808 /*
809 * Reset 11g-related state.
810 *
811 * Note this resets the global state and a caller should schedule
812 * a re-check of all the VAPs after setup to update said state.
813 */
814 void
ieee80211_reset_erp(struct ieee80211com * ic)815 ieee80211_reset_erp(struct ieee80211com *ic)
816 {
817 #if 0
818 ic->ic_flags &= ~IEEE80211_F_USEPROT;
819 /*
820 * Set short preamble and ERP barker-preamble flags.
821 */
822 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
823 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
824 ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
825 ic->ic_flags &= ~IEEE80211_F_USEBARKER;
826 } else {
827 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
828 ic->ic_flags |= IEEE80211_F_USEBARKER;
829 }
830 #endif
831 /* XXX TODO: schedule a new per-VAP ERP calculation */
832 }
833
834 static struct ieee80211_node *
vap_update_bss(struct ieee80211vap * vap,struct ieee80211_node * ni)835 vap_update_bss(struct ieee80211vap *vap, struct ieee80211_node *ni)
836 {
837 struct ieee80211_node *obss;
838
839 IEEE80211_LOCK_ASSERT(vap->iv_ic);
840
841 obss = vap->iv_bss;
842 vap->iv_bss = ni;
843
844 return (obss);
845 }
846
847 /*
848 * Deferred slot time update.
849 *
850 * For per-VAP slot time configuration, call the VAP
851 * method if the VAP requires it. Otherwise, just call the
852 * older global method.
853 *
854 * If the per-VAP method is called then it's expected that
855 * the driver/firmware will take care of turning the per-VAP
856 * flags into slot time configuration.
857 *
858 * If the per-VAP method is not called then the global flags will be
859 * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will
860 * be set only if all of the vaps will have it set.
861 *
862 * Look at the comments for vap_update_erp_protmode() for more
863 * background; this assumes all VAPs are on the same channel.
864 */
865 static void
vap_update_slot(void * arg,int npending)866 vap_update_slot(void *arg, int npending)
867 {
868 struct ieee80211vap *vap = arg;
869 struct ieee80211com *ic = vap->iv_ic;
870 struct ieee80211vap *iv;
871 int num_shslot = 0, num_lgslot = 0;
872
873 /*
874 * Per-VAP path - we've already had the flags updated;
875 * so just notify the driver and move on.
876 */
877 if (vap->iv_updateslot != NULL) {
878 vap->iv_updateslot(vap);
879 return;
880 }
881
882 /*
883 * Iterate over all of the VAP flags to update the
884 * global flag.
885 *
886 * If all vaps have short slot enabled then flip on
887 * short slot. If any vap has it disabled then
888 * we leave it globally disabled. This should provide
889 * correct behaviour in a multi-BSS scenario where
890 * at least one VAP has short slot disabled for some
891 * reason.
892 */
893 IEEE80211_LOCK(ic);
894 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
895 if (iv->iv_flags & IEEE80211_F_SHSLOT)
896 num_shslot++;
897 else
898 num_lgslot++;
899 }
900
901 /*
902 * It looks backwards but - if the number of short slot VAPs
903 * is zero then we're not short slot. Else, we have one
904 * or more short slot VAPs and we're checking to see if ANY
905 * of them have short slot disabled.
906 */
907 if (num_shslot == 0)
908 ic->ic_flags &= ~IEEE80211_F_SHSLOT;
909 else if (num_lgslot == 0)
910 ic->ic_flags |= IEEE80211_F_SHSLOT;
911 IEEE80211_UNLOCK(ic);
912
913 /*
914 * Call the driver with our new global slot time flags.
915 */
916 if (ic->ic_updateslot != NULL)
917 ic->ic_updateslot(ic);
918 }
919
920 /*
921 * Deferred ERP protmode update.
922 *
923 * This currently calculates the global ERP protection mode flag
924 * based on each of the VAPs. Any VAP with it enabled is enough
925 * for the global flag to be enabled. All VAPs with it disabled
926 * is enough for it to be disabled.
927 *
928 * This may make sense right now for the supported hardware where
929 * net80211 is controlling the single channel configuration, but
930 * offload firmware that's doing channel changes (eg off-channel
931 * TDLS, off-channel STA, off-channel P2P STA/AP) may get some
932 * silly looking flag updates.
933 *
934 * Ideally the protection mode calculation is done based on the
935 * channel, and all VAPs using that channel will inherit it.
936 * But until that's what net80211 does, this wil have to do.
937 */
938 static void
vap_update_erp_protmode(void * arg,int npending)939 vap_update_erp_protmode(void *arg, int npending)
940 {
941 struct ieee80211vap *vap = arg;
942 struct ieee80211com *ic = vap->iv_ic;
943 struct ieee80211vap *iv;
944 int enable_protmode = 0;
945 int non_erp_present = 0;
946
947 /*
948 * Iterate over all of the VAPs to calculate the overlapping
949 * ERP protection mode configuration and ERP present math.
950 *
951 * For now we assume that if a driver can handle this per-VAP
952 * then it'll ignore the ic->ic_protmode variant and instead
953 * will look at the vap related flags.
954 */
955 IEEE80211_LOCK(ic);
956 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
957 if (iv->iv_flags & IEEE80211_F_USEPROT)
958 enable_protmode = 1;
959 if (iv->iv_flags_ext & IEEE80211_FEXT_NONERP_PR)
960 non_erp_present = 1;
961 }
962
963 if (enable_protmode)
964 ic->ic_flags |= IEEE80211_F_USEPROT;
965 else
966 ic->ic_flags &= ~IEEE80211_F_USEPROT;
967
968 if (non_erp_present)
969 ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR;
970 else
971 ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR;
972
973 /* Beacon update on all VAPs */
974 ieee80211_notify_erp_locked(ic);
975
976 IEEE80211_UNLOCK(ic);
977
978 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
979 "%s: called; enable_protmode=%d, non_erp_present=%d\n",
980 __func__, enable_protmode, non_erp_present);
981
982 /*
983 * Now that the global configuration flags are calculated,
984 * notify the VAP about its configuration.
985 *
986 * The global flags will be used when assembling ERP IEs
987 * for multi-VAP operation, even if it's on a different
988 * channel. Yes, that's going to need fixing in the
989 * future.
990 */
991 if (vap->iv_erp_protmode_update != NULL)
992 vap->iv_erp_protmode_update(vap);
993 }
994
995 /*
996 * Deferred ERP short preamble/barker update.
997 *
998 * All VAPs need to use short preamble for it to be globally
999 * enabled or not.
1000 *
1001 * Look at the comments for vap_update_erp_protmode() for more
1002 * background; this assumes all VAPs are on the same channel.
1003 */
1004 static void
vap_update_preamble(void * arg,int npending)1005 vap_update_preamble(void *arg, int npending)
1006 {
1007 struct ieee80211vap *vap = arg;
1008 struct ieee80211com *ic = vap->iv_ic;
1009 struct ieee80211vap *iv;
1010 int barker_count = 0, short_preamble_count = 0, count = 0;
1011
1012 /*
1013 * Iterate over all of the VAPs to calculate the overlapping
1014 * short or long preamble configuration.
1015 *
1016 * For now we assume that if a driver can handle this per-VAP
1017 * then it'll ignore the ic->ic_flags variant and instead
1018 * will look at the vap related flags.
1019 */
1020 IEEE80211_LOCK(ic);
1021 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
1022 if (iv->iv_flags & IEEE80211_F_USEBARKER)
1023 barker_count++;
1024 if (iv->iv_flags & IEEE80211_F_SHPREAMBLE)
1025 short_preamble_count++;
1026 count++;
1027 }
1028
1029 /*
1030 * As with vap_update_erp_protmode(), the global flags are
1031 * currently used for beacon IEs.
1032 */
1033 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1034 "%s: called; barker_count=%d, short_preamble_count=%d\n",
1035 __func__, barker_count, short_preamble_count);
1036
1037 /*
1038 * Only flip on short preamble if all of the VAPs support
1039 * it.
1040 */
1041 if (barker_count == 0 && short_preamble_count == count) {
1042 ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
1043 ic->ic_flags &= ~IEEE80211_F_USEBARKER;
1044 } else {
1045 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
1046 ic->ic_flags |= IEEE80211_F_USEBARKER;
1047 }
1048 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1049 "%s: global barker=%d preamble=%d\n",
1050 __func__,
1051 !! (ic->ic_flags & IEEE80211_F_USEBARKER),
1052 !! (ic->ic_flags & IEEE80211_F_SHPREAMBLE));
1053
1054 /* Beacon update on all VAPs */
1055 ieee80211_notify_erp_locked(ic);
1056
1057 IEEE80211_UNLOCK(ic);
1058
1059 /* Driver notification */
1060 if (vap->iv_preamble_update != NULL)
1061 vap->iv_preamble_update(vap);
1062 }
1063
1064 /*
1065 * Deferred HT protmode update and beacon update.
1066 *
1067 * Look at the comments for vap_update_erp_protmode() for more
1068 * background; this assumes all VAPs are on the same channel.
1069 */
1070 static void
vap_update_ht_protmode(void * arg,int npending)1071 vap_update_ht_protmode(void *arg, int npending)
1072 {
1073 struct ieee80211vap *vap = arg;
1074 struct ieee80211vap *iv;
1075 struct ieee80211com *ic = vap->iv_ic;
1076 int num_vaps = 0, num_pure = 0;
1077 int num_optional = 0, num_ht2040 = 0, num_nonht = 0;
1078 int num_ht_sta = 0, num_ht40_sta = 0, num_sta = 0;
1079 int num_nonhtpr = 0;
1080
1081 /*
1082 * Iterate over all of the VAPs to calculate everything.
1083 *
1084 * There are a few different flags to calculate:
1085 *
1086 * + whether there's HT only or HT+legacy stations;
1087 * + whether there's HT20, HT40, or HT20+HT40 stations;
1088 * + whether the desired protection mode is mixed, pure or
1089 * one of the two above.
1090 *
1091 * For now we assume that if a driver can handle this per-VAP
1092 * then it'll ignore the ic->ic_htprotmode / ic->ic_curhtprotmode
1093 * variant and instead will look at the vap related variables.
1094 *
1095 * XXX TODO: non-greenfield STAs present (IEEE80211_HTINFO_NONGF_PRESENT) !
1096 */
1097
1098 IEEE80211_LOCK(ic);
1099 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
1100 num_vaps++;
1101 /* overlapping BSSes advertising non-HT status present */
1102 if (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR)
1103 num_nonht++;
1104 /* Operating mode flags */
1105 if (iv->iv_curhtprotmode & IEEE80211_HTINFO_NONHT_PRESENT)
1106 num_nonhtpr++;
1107 switch (iv->iv_curhtprotmode & IEEE80211_HTINFO_OPMODE) {
1108 case IEEE80211_HTINFO_OPMODE_PURE:
1109 num_pure++;
1110 break;
1111 case IEEE80211_HTINFO_OPMODE_PROTOPT:
1112 num_optional++;
1113 break;
1114 case IEEE80211_HTINFO_OPMODE_HT20PR:
1115 num_ht2040++;
1116 break;
1117 }
1118
1119 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
1120 "%s: vap %s: nonht_pr=%d, curhtprotmode=0x%02x\n",
1121 __func__,
1122 ieee80211_get_vap_ifname(iv),
1123 !! (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR),
1124 iv->iv_curhtprotmode);
1125
1126 num_ht_sta += iv->iv_ht_sta_assoc;
1127 num_ht40_sta += iv->iv_ht40_sta_assoc;
1128 num_sta += iv->iv_sta_assoc;
1129 }
1130
1131 /*
1132 * Step 1 - if any VAPs indicate NONHT_PR set (overlapping BSS
1133 * non-HT present), set it here. This shouldn't be used by
1134 * anything but the old overlapping BSS logic so if any drivers
1135 * consume it, it's up to date.
1136 */
1137 if (num_nonht > 0)
1138 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
1139 else
1140 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1141
1142 /*
1143 * Step 2 - default HT protection mode to MIXED (802.11-2016 10.26.3.1.)
1144 *
1145 * + If all VAPs are PURE, we can stay PURE.
1146 * + If all VAPs are PROTOPT, we can go to PROTOPT.
1147 * + If any VAP has HT20PR then it sees at least a HT40+HT20 station.
1148 * Note that we may have a VAP with one HT20 and a VAP with one HT40;
1149 * So we look at the sum ht and sum ht40 sta counts; if we have a
1150 * HT station and the HT20 != HT40 count, we have to do HT20PR here.
1151 * Note all stations need to be HT for this to be an option.
1152 * + The fall-through is MIXED, because it means we have some odd
1153 * non HT40-involved combination of opmode and this is the most
1154 * sensible default.
1155 */
1156 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED;
1157
1158 if (num_pure == num_vaps)
1159 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
1160
1161 if (num_optional == num_vaps)
1162 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PROTOPT;
1163
1164 /*
1165 * Note: we need /a/ HT40 station somewhere for this to
1166 * be a possibility.
1167 */
1168 if ((num_ht2040 > 0) ||
1169 ((num_ht_sta > 0) && (num_ht40_sta > 0) &&
1170 (num_ht_sta != num_ht40_sta)))
1171 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1172
1173 /*
1174 * Step 3 - if any of the stations across the VAPs are
1175 * non-HT then this needs to be flipped back to MIXED.
1176 */
1177 if (num_ht_sta != num_sta)
1178 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED;
1179
1180 /*
1181 * Step 4 - If we see any overlapping BSS non-HT stations
1182 * via beacons then flip on NONHT_PRESENT.
1183 */
1184 if (num_nonhtpr > 0)
1185 ic->ic_curhtprotmode |= IEEE80211_HTINFO_NONHT_PRESENT;
1186
1187 /* Notify all VAPs to potentially update their beacons */
1188 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next)
1189 ieee80211_htinfo_notify(iv);
1190
1191 IEEE80211_UNLOCK(ic);
1192
1193 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
1194 "%s: global: nonht_pr=%d ht_opmode=0x%02x\n",
1195 __func__,
1196 !! (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR),
1197 ic->ic_curhtprotmode);
1198
1199 /* Driver update */
1200 if (vap->iv_ht_protmode_update != NULL)
1201 vap->iv_ht_protmode_update(vap);
1202 }
1203
1204 /*
1205 * Set the short slot time state and notify the driver.
1206 *
1207 * This is the per-VAP slot time state.
1208 */
1209 void
ieee80211_vap_set_shortslottime(struct ieee80211vap * vap,int onoff)1210 ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff)
1211 {
1212 struct ieee80211com *ic = vap->iv_ic;
1213
1214 /* XXX lock? */
1215
1216 /*
1217 * Only modify the per-VAP slot time.
1218 */
1219 if (onoff)
1220 vap->iv_flags |= IEEE80211_F_SHSLOT;
1221 else
1222 vap->iv_flags &= ~IEEE80211_F_SHSLOT;
1223
1224 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1225 "%s: called; onoff=%d\n", __func__, onoff);
1226 /* schedule the deferred slot flag update and update */
1227 ieee80211_runtask(ic, &vap->iv_slot_task);
1228 }
1229
1230 /*
1231 * Update the VAP short /long / barker preamble state and
1232 * update beacon state if needed.
1233 *
1234 * For now it simply copies the global flags into the per-vap
1235 * flags and schedules the callback. Later this will support
1236 * both global and per-VAP flags, especially useful for
1237 * and STA+STA multi-channel operation (eg p2p).
1238 */
1239 void
ieee80211_vap_update_preamble(struct ieee80211vap * vap)1240 ieee80211_vap_update_preamble(struct ieee80211vap *vap)
1241 {
1242 struct ieee80211com *ic = vap->iv_ic;
1243
1244 /* XXX lock? */
1245
1246 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1247 "%s: called\n", __func__);
1248 /* schedule the deferred slot flag update and update */
1249 ieee80211_runtask(ic, &vap->iv_preamble_task);
1250 }
1251
1252 /*
1253 * Update the VAP 11g protection mode and update beacon state
1254 * if needed.
1255 */
1256 void
ieee80211_vap_update_erp_protmode(struct ieee80211vap * vap)1257 ieee80211_vap_update_erp_protmode(struct ieee80211vap *vap)
1258 {
1259 struct ieee80211com *ic = vap->iv_ic;
1260
1261 /* XXX lock? */
1262
1263 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1264 "%s: called\n", __func__);
1265 /* schedule the deferred slot flag update and update */
1266 ieee80211_runtask(ic, &vap->iv_erp_protmode_task);
1267 }
1268
1269 /*
1270 * Update the VAP 11n protection mode and update beacon state
1271 * if needed.
1272 */
1273 void
ieee80211_vap_update_ht_protmode(struct ieee80211vap * vap)1274 ieee80211_vap_update_ht_protmode(struct ieee80211vap *vap)
1275 {
1276 struct ieee80211com *ic = vap->iv_ic;
1277
1278 /* XXX lock? */
1279
1280 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1281 "%s: called\n", __func__);
1282 /* schedule the deferred protmode update */
1283 ieee80211_runtask(ic, &vap->iv_ht_protmode_task);
1284 }
1285
1286 /*
1287 * Check if the specified rate set supports ERP.
1288 * NB: the rate set is assumed to be sorted.
1289 */
1290 int
ieee80211_iserp_rateset(const struct ieee80211_rateset * rs)1291 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
1292 {
1293 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
1294 int i, j;
1295
1296 if (rs->rs_nrates < nitems(rates))
1297 return 0;
1298 for (i = 0; i < nitems(rates); i++) {
1299 for (j = 0; j < rs->rs_nrates; j++) {
1300 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
1301 if (rates[i] == r)
1302 goto next;
1303 if (r > rates[i])
1304 return 0;
1305 }
1306 return 0;
1307 next:
1308 ;
1309 }
1310 return 1;
1311 }
1312
1313 /*
1314 * Mark the basic rates for the rate table based on the
1315 * operating mode. For real 11g we mark all the 11b rates
1316 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only
1317 * 11b rates. There's also a pseudo 11a-mode used to mark only
1318 * the basic OFDM rates.
1319 */
1320 static void
setbasicrates(struct ieee80211_rateset * rs,enum ieee80211_phymode mode,int add)1321 setbasicrates(struct ieee80211_rateset *rs,
1322 enum ieee80211_phymode mode, int add)
1323 {
1324 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
1325 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } },
1326 [IEEE80211_MODE_11B] = { 2, { 2, 4 } },
1327 /* NB: mixed b/g */
1328 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } },
1329 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } },
1330 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } },
1331 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } },
1332 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } },
1333 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } },
1334 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } },
1335 /* NB: mixed b/g */
1336 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } },
1337 /* NB: mixed b/g */
1338 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } },
1339 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } },
1340 };
1341 int i, j;
1342
1343 for (i = 0; i < rs->rs_nrates; i++) {
1344 if (!add)
1345 rs->rs_rates[i] &= IEEE80211_RATE_VAL;
1346 for (j = 0; j < basic[mode].rs_nrates; j++)
1347 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
1348 rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
1349 break;
1350 }
1351 }
1352 }
1353
1354 /*
1355 * Set the basic rates in a rate set.
1356 */
1357 void
ieee80211_setbasicrates(struct ieee80211_rateset * rs,enum ieee80211_phymode mode)1358 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
1359 enum ieee80211_phymode mode)
1360 {
1361 setbasicrates(rs, mode, 0);
1362 }
1363
1364 /*
1365 * Add basic rates to a rate set.
1366 */
1367 void
ieee80211_addbasicrates(struct ieee80211_rateset * rs,enum ieee80211_phymode mode)1368 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
1369 enum ieee80211_phymode mode)
1370 {
1371 setbasicrates(rs, mode, 1);
1372 }
1373
1374 /*
1375 * WME protocol support.
1376 *
1377 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
1378 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
1379 * Draft 2.0 Test Plan (Appendix D).
1380 *
1381 * Static/Dynamic Turbo mode settings come from Atheros.
1382 */
1383 typedef struct phyParamType {
1384 uint8_t aifsn;
1385 uint8_t logcwmin;
1386 uint8_t logcwmax;
1387 uint16_t txopLimit;
1388 uint8_t acm;
1389 } paramType;
1390
1391 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
1392 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 },
1393 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 },
1394 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 },
1395 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 },
1396 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 },
1397 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 },
1398 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 },
1399 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 },
1400 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 },
1401 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 },
1402 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 },
1403 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 },
1404 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 },
1405 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 },
1406 };
1407 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
1408 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 },
1409 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 },
1410 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 },
1411 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 },
1412 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 },
1413 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 },
1414 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 },
1415 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 },
1416 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 },
1417 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 },
1418 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 },
1419 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 },
1420 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 },
1421 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 },
1422 };
1423 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
1424 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 },
1425 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 },
1426 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 },
1427 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 },
1428 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 },
1429 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 },
1430 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 },
1431 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 },
1432 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 },
1433 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 },
1434 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 },
1435 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 },
1436 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 },
1437 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 },
1438 };
1439 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
1440 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 },
1441 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 },
1442 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 },
1443 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 },
1444 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 },
1445 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
1446 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
1447 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
1448 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 },
1449 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 },
1450 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 },
1451 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 },
1452 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 },
1453 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 },
1454 };
1455
1456 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
1457 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 },
1458 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 },
1459 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 },
1460 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 },
1461 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 },
1462 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 },
1463 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 },
1464 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 },
1465 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 },
1466 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 },
1467 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 },
1468 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 },
1469 };
1470 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
1471 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 },
1472 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 },
1473 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 },
1474 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 },
1475 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 },
1476 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 },
1477 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 },
1478 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 },
1479 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 },
1480 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 },
1481 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 },
1482 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 },
1483 };
1484 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
1485 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 },
1486 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 },
1487 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 },
1488 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 },
1489 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 },
1490 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
1491 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
1492 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
1493 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 },
1494 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 },
1495 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 },
1496 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 },
1497 };
1498
1499 static void
_setifsparams(struct wmeParams * wmep,const paramType * phy)1500 _setifsparams(struct wmeParams *wmep, const paramType *phy)
1501 {
1502 wmep->wmep_aifsn = phy->aifsn;
1503 wmep->wmep_logcwmin = phy->logcwmin;
1504 wmep->wmep_logcwmax = phy->logcwmax;
1505 wmep->wmep_txopLimit = phy->txopLimit;
1506 }
1507
1508 static void
setwmeparams(struct ieee80211vap * vap,const char * type,int ac,struct wmeParams * wmep,const paramType * phy)1509 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
1510 struct wmeParams *wmep, const paramType *phy)
1511 {
1512 wmep->wmep_acm = phy->acm;
1513 _setifsparams(wmep, phy);
1514
1515 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1516 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
1517 ieee80211_wme_acnames[ac], type,
1518 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
1519 wmep->wmep_logcwmax, wmep->wmep_txopLimit);
1520 }
1521
1522 static void
ieee80211_wme_initparams_locked(struct ieee80211vap * vap)1523 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
1524 {
1525 struct ieee80211com *ic = vap->iv_ic;
1526 struct ieee80211_wme_state *wme = &ic->ic_wme;
1527 const paramType *pPhyParam, *pBssPhyParam;
1528 struct wmeParams *wmep;
1529 enum ieee80211_phymode mode;
1530 int i;
1531
1532 IEEE80211_LOCK_ASSERT(ic);
1533
1534 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
1535 return;
1536
1537 /*
1538 * Clear the wme cap_info field so a qoscount from a previous
1539 * vap doesn't confuse later code which only parses the beacon
1540 * field and updates hardware when said field changes.
1541 * Otherwise the hardware is programmed with defaults, not what
1542 * the beacon actually announces.
1543 *
1544 * Note that we can't ever have 0xff as an actual value;
1545 * the only valid values are 0..15.
1546 */
1547 wme->wme_wmeChanParams.cap_info = 0xfe;
1548
1549 /*
1550 * Select mode; we can be called early in which case we
1551 * always use auto mode. We know we'll be called when
1552 * entering the RUN state with bsschan setup properly
1553 * so state will eventually get set correctly
1554 */
1555 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1556 mode = ieee80211_chan2mode(ic->ic_bsschan);
1557 else
1558 mode = IEEE80211_MODE_AUTO;
1559 for (i = 0; i < WME_NUM_AC; i++) {
1560 switch (i) {
1561 case WME_AC_BK:
1562 pPhyParam = &phyParamForAC_BK[mode];
1563 pBssPhyParam = &phyParamForAC_BK[mode];
1564 break;
1565 case WME_AC_VI:
1566 pPhyParam = &phyParamForAC_VI[mode];
1567 pBssPhyParam = &bssPhyParamForAC_VI[mode];
1568 break;
1569 case WME_AC_VO:
1570 pPhyParam = &phyParamForAC_VO[mode];
1571 pBssPhyParam = &bssPhyParamForAC_VO[mode];
1572 break;
1573 case WME_AC_BE:
1574 default:
1575 pPhyParam = &phyParamForAC_BE[mode];
1576 pBssPhyParam = &bssPhyParamForAC_BE[mode];
1577 break;
1578 }
1579 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1580 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1581 setwmeparams(vap, "chan", i, wmep, pPhyParam);
1582 } else {
1583 setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
1584 }
1585 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1586 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
1587 }
1588 /* NB: check ic_bss to avoid NULL deref on initial attach */
1589 if (vap->iv_bss != NULL) {
1590 /*
1591 * Calculate aggressive mode switching threshold based
1592 * on beacon interval. This doesn't need locking since
1593 * we're only called before entering the RUN state at
1594 * which point we start sending beacon frames.
1595 */
1596 wme->wme_hipri_switch_thresh =
1597 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
1598 wme->wme_flags &= ~WME_F_AGGRMODE;
1599 ieee80211_wme_updateparams(vap);
1600 }
1601 }
1602
1603 void
ieee80211_wme_initparams(struct ieee80211vap * vap)1604 ieee80211_wme_initparams(struct ieee80211vap *vap)
1605 {
1606 struct ieee80211com *ic = vap->iv_ic;
1607
1608 IEEE80211_LOCK(ic);
1609 ieee80211_wme_initparams_locked(vap);
1610 IEEE80211_UNLOCK(ic);
1611 }
1612
1613 /*
1614 * Update WME parameters for ourself and the BSS.
1615 */
1616 void
ieee80211_wme_updateparams_locked(struct ieee80211vap * vap)1617 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
1618 {
1619 static const paramType aggrParam[IEEE80211_MODE_MAX] = {
1620 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 },
1621 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 },
1622 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 },
1623 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 },
1624 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 },
1625 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 },
1626 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 },
1627 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 },
1628 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 },
1629 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 },
1630 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1631 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1632 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1633 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1634 };
1635 struct ieee80211com *ic = vap->iv_ic;
1636 struct ieee80211_wme_state *wme = &ic->ic_wme;
1637 const struct wmeParams *wmep;
1638 struct wmeParams *chanp, *bssp;
1639 enum ieee80211_phymode mode;
1640 int i;
1641 int do_aggrmode = 0;
1642
1643 /*
1644 * Set up the channel access parameters for the physical
1645 * device. First populate the configured settings.
1646 */
1647 for (i = 0; i < WME_NUM_AC; i++) {
1648 chanp = &wme->wme_chanParams.cap_wmeParams[i];
1649 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1650 chanp->wmep_aifsn = wmep->wmep_aifsn;
1651 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1652 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1653 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1654
1655 chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1656 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1657 chanp->wmep_aifsn = wmep->wmep_aifsn;
1658 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1659 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1660 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1661 }
1662
1663 /*
1664 * Select mode; we can be called early in which case we
1665 * always use auto mode. We know we'll be called when
1666 * entering the RUN state with bsschan setup properly
1667 * so state will eventually get set correctly
1668 */
1669 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1670 mode = ieee80211_chan2mode(ic->ic_bsschan);
1671 else
1672 mode = IEEE80211_MODE_AUTO;
1673
1674 /*
1675 * This implements aggressive mode as found in certain
1676 * vendors' AP's. When there is significant high
1677 * priority (VI/VO) traffic in the BSS throttle back BE
1678 * traffic by using conservative parameters. Otherwise
1679 * BE uses aggressive params to optimize performance of
1680 * legacy/non-QoS traffic.
1681 */
1682
1683 /* Hostap? Only if aggressive mode is enabled */
1684 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1685 (wme->wme_flags & WME_F_AGGRMODE) != 0)
1686 do_aggrmode = 1;
1687
1688 /*
1689 * Station? Only if we're in a non-QoS BSS.
1690 */
1691 else if ((vap->iv_opmode == IEEE80211_M_STA &&
1692 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1693 do_aggrmode = 1;
1694
1695 /*
1696 * IBSS? Only if we have WME enabled.
1697 */
1698 else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1699 (vap->iv_flags & IEEE80211_F_WME))
1700 do_aggrmode = 1;
1701
1702 /*
1703 * If WME is disabled on this VAP, default to aggressive mode
1704 * regardless of the configuration.
1705 */
1706 if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1707 do_aggrmode = 1;
1708
1709 /* XXX WDS? */
1710
1711 /* XXX MBSS? */
1712
1713 if (do_aggrmode) {
1714 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1715 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1716
1717 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1718 chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1719 aggrParam[mode].logcwmin;
1720 chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1721 aggrParam[mode].logcwmax;
1722 chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1723 (vap->iv_flags & IEEE80211_F_BURST) ?
1724 aggrParam[mode].txopLimit : 0;
1725 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1726 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1727 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1728 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1729 chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1730 }
1731
1732 /*
1733 * Change the contention window based on the number of associated
1734 * stations. If the number of associated stations is 1 and
1735 * aggressive mode is enabled, lower the contention window even
1736 * further.
1737 */
1738 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1739 vap->iv_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1740 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1741 [IEEE80211_MODE_AUTO] = 3,
1742 [IEEE80211_MODE_11A] = 3,
1743 [IEEE80211_MODE_11B] = 4,
1744 [IEEE80211_MODE_11G] = 3,
1745 [IEEE80211_MODE_FH] = 4,
1746 [IEEE80211_MODE_TURBO_A] = 3,
1747 [IEEE80211_MODE_TURBO_G] = 3,
1748 [IEEE80211_MODE_STURBO_A] = 3,
1749 [IEEE80211_MODE_HALF] = 3,
1750 [IEEE80211_MODE_QUARTER] = 3,
1751 [IEEE80211_MODE_11NA] = 3,
1752 [IEEE80211_MODE_11NG] = 3,
1753 [IEEE80211_MODE_VHT_2GHZ] = 3,
1754 [IEEE80211_MODE_VHT_5GHZ] = 3,
1755 };
1756 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1757 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1758
1759 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1760 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1761 "update %s (chan+bss) logcwmin %u\n",
1762 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1763 }
1764
1765 /* schedule the deferred WME update */
1766 ieee80211_runtask(ic, &vap->iv_wme_task);
1767
1768 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1769 "%s: WME params updated, cap_info 0x%x\n", __func__,
1770 vap->iv_opmode == IEEE80211_M_STA ?
1771 wme->wme_wmeChanParams.cap_info :
1772 wme->wme_bssChanParams.cap_info);
1773 }
1774
1775 void
ieee80211_wme_updateparams(struct ieee80211vap * vap)1776 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1777 {
1778 struct ieee80211com *ic = vap->iv_ic;
1779
1780 if (ic->ic_caps & IEEE80211_C_WME) {
1781 IEEE80211_LOCK(ic);
1782 ieee80211_wme_updateparams_locked(vap);
1783 IEEE80211_UNLOCK(ic);
1784 }
1785 }
1786
1787 /*
1788 * Fetch the WME parameters for the given VAP.
1789 *
1790 * When net80211 grows p2p, etc support, this may return different
1791 * parameters for each VAP.
1792 */
1793 void
ieee80211_wme_vap_getparams(struct ieee80211vap * vap,struct chanAccParams * wp)1794 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
1795 {
1796
1797 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
1798 }
1799
1800 /*
1801 * For NICs which only support one set of WME parameters (ie, softmac NICs)
1802 * there may be different VAP WME parameters but only one is "active".
1803 * This returns the "NIC" WME parameters for the currently active
1804 * context.
1805 */
1806 void
ieee80211_wme_ic_getparams(struct ieee80211com * ic,struct chanAccParams * wp)1807 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
1808 {
1809
1810 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
1811 }
1812
1813 /*
1814 * Return whether to use QoS on a given WME queue.
1815 *
1816 * This is intended to be called from the transmit path of softmac drivers
1817 * which are setting NoAck bits in transmit descriptors.
1818 *
1819 * Ideally this would be set in some transmit field before the packet is
1820 * queued to the driver but net80211 isn't quite there yet.
1821 */
1822 int
ieee80211_wme_vap_ac_is_noack(struct ieee80211vap * vap,int ac)1823 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac)
1824 {
1825 /* Bounds/sanity check */
1826 if (ac < 0 || ac >= WME_NUM_AC)
1827 return (0);
1828
1829 /* Again, there's only one global context for now */
1830 return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy);
1831 }
1832
1833 static void
parent_updown(void * arg,int npending)1834 parent_updown(void *arg, int npending)
1835 {
1836 struct ieee80211com *ic = arg;
1837
1838 ic->ic_parent(ic);
1839 }
1840
1841 static void
update_mcast(void * arg,int npending)1842 update_mcast(void *arg, int npending)
1843 {
1844 struct ieee80211com *ic = arg;
1845
1846 ic->ic_update_mcast(ic);
1847 }
1848
1849 static void
update_promisc(void * arg,int npending)1850 update_promisc(void *arg, int npending)
1851 {
1852 struct ieee80211com *ic = arg;
1853
1854 ic->ic_update_promisc(ic);
1855 }
1856
1857 static void
update_channel(void * arg,int npending)1858 update_channel(void *arg, int npending)
1859 {
1860 struct ieee80211com *ic = arg;
1861
1862 ic->ic_set_channel(ic);
1863 ieee80211_radiotap_chan_change(ic);
1864 }
1865
1866 static void
update_chw(void * arg,int npending)1867 update_chw(void *arg, int npending)
1868 {
1869 struct ieee80211com *ic = arg;
1870
1871 /*
1872 * XXX should we defer the channel width _config_ update until now?
1873 */
1874 ic->ic_update_chw(ic);
1875 }
1876
1877 /*
1878 * Deferred WME parameter and beacon update.
1879 *
1880 * In preparation for per-VAP WME configuration, call the VAP
1881 * method if the VAP requires it. Otherwise, just call the
1882 * older global method. There isn't a per-VAP WME configuration
1883 * just yet so for now just use the global configuration.
1884 */
1885 static void
vap_update_wme(void * arg,int npending)1886 vap_update_wme(void *arg, int npending)
1887 {
1888 struct ieee80211vap *vap = arg;
1889 struct ieee80211com *ic = vap->iv_ic;
1890 struct ieee80211_wme_state *wme = &ic->ic_wme;
1891
1892 /* Driver update */
1893 if (vap->iv_wme_update != NULL)
1894 vap->iv_wme_update(vap,
1895 ic->ic_wme.wme_chanParams.cap_wmeParams);
1896 else
1897 ic->ic_wme.wme_update(ic);
1898
1899 IEEE80211_LOCK(ic);
1900 /*
1901 * Arrange for the beacon update.
1902 *
1903 * XXX what about MBSS, WDS?
1904 */
1905 if (vap->iv_opmode == IEEE80211_M_HOSTAP
1906 || vap->iv_opmode == IEEE80211_M_IBSS) {
1907 /*
1908 * Arrange for a beacon update and bump the parameter
1909 * set number so associated stations load the new values.
1910 */
1911 wme->wme_bssChanParams.cap_info =
1912 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1913 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1914 }
1915 IEEE80211_UNLOCK(ic);
1916 }
1917
1918 static void
restart_vaps(void * arg,int npending)1919 restart_vaps(void *arg, int npending)
1920 {
1921 struct ieee80211com *ic = arg;
1922
1923 ieee80211_suspend_all(ic);
1924 ieee80211_resume_all(ic);
1925 }
1926
1927 /*
1928 * Block until the parent is in a known state. This is
1929 * used after any operations that dispatch a task (e.g.
1930 * to auto-configure the parent device up/down).
1931 */
1932 void
ieee80211_waitfor_parent(struct ieee80211com * ic)1933 ieee80211_waitfor_parent(struct ieee80211com *ic)
1934 {
1935 taskqueue_block(ic->ic_tq);
1936 ieee80211_draintask(ic, &ic->ic_parent_task);
1937 ieee80211_draintask(ic, &ic->ic_mcast_task);
1938 ieee80211_draintask(ic, &ic->ic_promisc_task);
1939 ieee80211_draintask(ic, &ic->ic_chan_task);
1940 ieee80211_draintask(ic, &ic->ic_bmiss_task);
1941 ieee80211_draintask(ic, &ic->ic_chw_task);
1942 taskqueue_unblock(ic->ic_tq);
1943 }
1944
1945 /*
1946 * Check to see whether the current channel needs reset.
1947 *
1948 * Some devices don't handle being given an invalid channel
1949 * in their operating mode very well (eg wpi(4) will throw a
1950 * firmware exception.)
1951 *
1952 * Return 0 if we're ok, 1 if the channel needs to be reset.
1953 *
1954 * See PR kern/202502.
1955 */
1956 static int
ieee80211_start_check_reset_chan(struct ieee80211vap * vap)1957 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1958 {
1959 struct ieee80211com *ic = vap->iv_ic;
1960
1961 if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1962 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1963 (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1964 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1965 return (1);
1966 return (0);
1967 }
1968
1969 /*
1970 * Reset the curchan to a known good state.
1971 */
1972 static void
ieee80211_start_reset_chan(struct ieee80211vap * vap)1973 ieee80211_start_reset_chan(struct ieee80211vap *vap)
1974 {
1975 struct ieee80211com *ic = vap->iv_ic;
1976
1977 ic->ic_curchan = &ic->ic_channels[0];
1978 }
1979
1980 /*
1981 * Start a vap running. If this is the first vap to be
1982 * set running on the underlying device then we
1983 * automatically bring the device up.
1984 */
1985 void
ieee80211_start_locked(struct ieee80211vap * vap)1986 ieee80211_start_locked(struct ieee80211vap *vap)
1987 {
1988 struct ifnet *ifp = vap->iv_ifp;
1989 struct ieee80211com *ic = vap->iv_ic;
1990
1991 IEEE80211_LOCK_ASSERT(ic);
1992
1993 IEEE80211_DPRINTF(vap,
1994 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1995 "start running, %d vaps running\n", ic->ic_nrunning);
1996
1997 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1998 /*
1999 * Mark us running. Note that it's ok to do this first;
2000 * if we need to bring the parent device up we defer that
2001 * to avoid dropping the com lock. We expect the device
2002 * to respond to being marked up by calling back into us
2003 * through ieee80211_start_all at which point we'll come
2004 * back in here and complete the work.
2005 */
2006 ifp->if_drv_flags |= IFF_DRV_RUNNING;
2007 ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING);
2008
2009 /*
2010 * We are not running; if this we are the first vap
2011 * to be brought up auto-up the parent if necessary.
2012 */
2013 if (ic->ic_nrunning++ == 0) {
2014 /* reset the channel to a known good channel */
2015 if (ieee80211_start_check_reset_chan(vap))
2016 ieee80211_start_reset_chan(vap);
2017
2018 IEEE80211_DPRINTF(vap,
2019 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2020 "%s: up parent %s\n", __func__, ic->ic_name);
2021 ieee80211_runtask(ic, &ic->ic_parent_task);
2022 return;
2023 }
2024 }
2025 /*
2026 * If the parent is up and running, then kick the
2027 * 802.11 state machine as appropriate.
2028 */
2029 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
2030 if (vap->iv_opmode == IEEE80211_M_STA) {
2031 #if 0
2032 /* XXX bypasses scan too easily; disable for now */
2033 /*
2034 * Try to be intelligent about clocking the state
2035 * machine. If we're currently in RUN state then
2036 * we should be able to apply any new state/parameters
2037 * simply by re-associating. Otherwise we need to
2038 * re-scan to select an appropriate ap.
2039 */
2040 if (vap->iv_state >= IEEE80211_S_RUN)
2041 ieee80211_new_state_locked(vap,
2042 IEEE80211_S_ASSOC, 1);
2043 else
2044 #endif
2045 ieee80211_new_state_locked(vap,
2046 IEEE80211_S_SCAN, 0);
2047 } else {
2048 /*
2049 * For monitor+wds mode there's nothing to do but
2050 * start running. Otherwise if this is the first
2051 * vap to be brought up, start a scan which may be
2052 * preempted if the station is locked to a particular
2053 * channel.
2054 */
2055 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
2056 if (vap->iv_opmode == IEEE80211_M_MONITOR ||
2057 vap->iv_opmode == IEEE80211_M_WDS)
2058 ieee80211_new_state_locked(vap,
2059 IEEE80211_S_RUN, -1);
2060 else
2061 ieee80211_new_state_locked(vap,
2062 IEEE80211_S_SCAN, 0);
2063 }
2064 }
2065 }
2066
2067 /*
2068 * Start a single vap.
2069 */
2070 void
ieee80211_init(void * arg)2071 ieee80211_init(void *arg)
2072 {
2073 struct ieee80211vap *vap = arg;
2074
2075 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2076 "%s\n", __func__);
2077
2078 IEEE80211_LOCK(vap->iv_ic);
2079 ieee80211_start_locked(vap);
2080 IEEE80211_UNLOCK(vap->iv_ic);
2081 }
2082
2083 /*
2084 * Start all runnable vap's on a device.
2085 */
2086 void
ieee80211_start_all(struct ieee80211com * ic)2087 ieee80211_start_all(struct ieee80211com *ic)
2088 {
2089 struct ieee80211vap *vap;
2090
2091 IEEE80211_LOCK(ic);
2092 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2093 struct ifnet *ifp = vap->iv_ifp;
2094 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
2095 ieee80211_start_locked(vap);
2096 }
2097 IEEE80211_UNLOCK(ic);
2098 }
2099
2100 /*
2101 * Stop a vap. We force it down using the state machine
2102 * then mark it's ifnet not running. If this is the last
2103 * vap running on the underlying device then we close it
2104 * too to insure it will be properly initialized when the
2105 * next vap is brought up.
2106 */
2107 void
ieee80211_stop_locked(struct ieee80211vap * vap)2108 ieee80211_stop_locked(struct ieee80211vap *vap)
2109 {
2110 struct ieee80211com *ic = vap->iv_ic;
2111 struct ifnet *ifp = vap->iv_ifp;
2112
2113 IEEE80211_LOCK_ASSERT(ic);
2114
2115 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2116 "stop running, %d vaps running\n", ic->ic_nrunning);
2117
2118 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
2119 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2120 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */
2121 ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING);
2122 if (--ic->ic_nrunning == 0) {
2123 IEEE80211_DPRINTF(vap,
2124 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2125 "down parent %s\n", ic->ic_name);
2126 ieee80211_runtask(ic, &ic->ic_parent_task);
2127 }
2128 }
2129 }
2130
2131 void
ieee80211_stop(struct ieee80211vap * vap)2132 ieee80211_stop(struct ieee80211vap *vap)
2133 {
2134 struct ieee80211com *ic = vap->iv_ic;
2135
2136 IEEE80211_LOCK(ic);
2137 ieee80211_stop_locked(vap);
2138 IEEE80211_UNLOCK(ic);
2139 }
2140
2141 /*
2142 * Stop all vap's running on a device.
2143 */
2144 void
ieee80211_stop_all(struct ieee80211com * ic)2145 ieee80211_stop_all(struct ieee80211com *ic)
2146 {
2147 struct ieee80211vap *vap;
2148
2149 IEEE80211_LOCK(ic);
2150 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2151 struct ifnet *ifp = vap->iv_ifp;
2152 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
2153 ieee80211_stop_locked(vap);
2154 }
2155 IEEE80211_UNLOCK(ic);
2156
2157 ieee80211_waitfor_parent(ic);
2158 }
2159
2160 /*
2161 * Stop all vap's running on a device and arrange
2162 * for those that were running to be resumed.
2163 */
2164 void
ieee80211_suspend_all(struct ieee80211com * ic)2165 ieee80211_suspend_all(struct ieee80211com *ic)
2166 {
2167 struct ieee80211vap *vap;
2168
2169 IEEE80211_LOCK(ic);
2170 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2171 struct ifnet *ifp = vap->iv_ifp;
2172 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */
2173 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
2174 ieee80211_stop_locked(vap);
2175 }
2176 }
2177 IEEE80211_UNLOCK(ic);
2178
2179 ieee80211_waitfor_parent(ic);
2180 }
2181
2182 /*
2183 * Start all vap's marked for resume.
2184 */
2185 void
ieee80211_resume_all(struct ieee80211com * ic)2186 ieee80211_resume_all(struct ieee80211com *ic)
2187 {
2188 struct ieee80211vap *vap;
2189
2190 IEEE80211_LOCK(ic);
2191 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2192 struct ifnet *ifp = vap->iv_ifp;
2193 if (!IFNET_IS_UP_RUNNING(ifp) &&
2194 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
2195 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
2196 ieee80211_start_locked(vap);
2197 }
2198 }
2199 IEEE80211_UNLOCK(ic);
2200 }
2201
2202 /*
2203 * Restart all vap's running on a device.
2204 */
2205 void
ieee80211_restart_all(struct ieee80211com * ic)2206 ieee80211_restart_all(struct ieee80211com *ic)
2207 {
2208 /*
2209 * NB: do not use ieee80211_runtask here, we will
2210 * block & drain net80211 taskqueue.
2211 */
2212 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
2213 }
2214
2215 void
ieee80211_beacon_miss(struct ieee80211com * ic)2216 ieee80211_beacon_miss(struct ieee80211com *ic)
2217 {
2218 IEEE80211_LOCK(ic);
2219 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2220 /* Process in a taskq, the handler may reenter the driver */
2221 ieee80211_runtask(ic, &ic->ic_bmiss_task);
2222 }
2223 IEEE80211_UNLOCK(ic);
2224 }
2225
2226 static void
beacon_miss(void * arg,int npending)2227 beacon_miss(void *arg, int npending)
2228 {
2229 struct ieee80211com *ic = arg;
2230 struct ieee80211vap *vap;
2231
2232 IEEE80211_LOCK(ic);
2233 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2234 /*
2235 * We only pass events through for sta vap's in RUN+ state;
2236 * may be too restrictive but for now this saves all the
2237 * handlers duplicating these checks.
2238 */
2239 if (vap->iv_opmode == IEEE80211_M_STA &&
2240 vap->iv_state >= IEEE80211_S_RUN &&
2241 vap->iv_bmiss != NULL)
2242 vap->iv_bmiss(vap);
2243 }
2244 IEEE80211_UNLOCK(ic);
2245 }
2246
2247 static void
beacon_swmiss(void * arg,int npending)2248 beacon_swmiss(void *arg, int npending)
2249 {
2250 struct ieee80211vap *vap = arg;
2251 struct ieee80211com *ic = vap->iv_ic;
2252
2253 IEEE80211_LOCK(ic);
2254 if (vap->iv_state >= IEEE80211_S_RUN) {
2255 /* XXX Call multiple times if npending > zero? */
2256 vap->iv_bmiss(vap);
2257 }
2258 IEEE80211_UNLOCK(ic);
2259 }
2260
2261 /*
2262 * Software beacon miss handling. Check if any beacons
2263 * were received in the last period. If not post a
2264 * beacon miss; otherwise reset the counter.
2265 */
2266 void
ieee80211_swbmiss(void * arg)2267 ieee80211_swbmiss(void *arg)
2268 {
2269 struct ieee80211vap *vap = arg;
2270 struct ieee80211com *ic = vap->iv_ic;
2271
2272 IEEE80211_LOCK_ASSERT(ic);
2273
2274 KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2275 ("wrong state %d", vap->iv_state));
2276
2277 if (ic->ic_flags & IEEE80211_F_SCAN) {
2278 /*
2279 * If scanning just ignore and reset state. If we get a
2280 * bmiss after coming out of scan because we haven't had
2281 * time to receive a beacon then we should probe the AP
2282 * before posting a real bmiss (unless iv_bmiss_max has
2283 * been artifiically lowered). A cleaner solution might
2284 * be to disable the timer on scan start/end but to handle
2285 * case of multiple sta vap's we'd need to disable the
2286 * timers of all affected vap's.
2287 */
2288 vap->iv_swbmiss_count = 0;
2289 } else if (vap->iv_swbmiss_count == 0) {
2290 if (vap->iv_bmiss != NULL)
2291 ieee80211_runtask(ic, &vap->iv_swbmiss_task);
2292 } else
2293 vap->iv_swbmiss_count = 0;
2294 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
2295 ieee80211_swbmiss, vap);
2296 }
2297
2298 /*
2299 * Start an 802.11h channel switch. We record the parameters,
2300 * mark the operation pending, notify each vap through the
2301 * beacon update mechanism so it can update the beacon frame
2302 * contents, and then switch vap's to CSA state to block outbound
2303 * traffic. Devices that handle CSA directly can use the state
2304 * switch to do the right thing so long as they call
2305 * ieee80211_csa_completeswitch when it's time to complete the
2306 * channel change. Devices that depend on the net80211 layer can
2307 * use ieee80211_beacon_update to handle the countdown and the
2308 * channel switch.
2309 */
2310 void
ieee80211_csa_startswitch(struct ieee80211com * ic,struct ieee80211_channel * c,int mode,int count)2311 ieee80211_csa_startswitch(struct ieee80211com *ic,
2312 struct ieee80211_channel *c, int mode, int count)
2313 {
2314 struct ieee80211vap *vap;
2315
2316 IEEE80211_LOCK_ASSERT(ic);
2317
2318 ic->ic_csa_newchan = c;
2319 ic->ic_csa_mode = mode;
2320 ic->ic_csa_count = count;
2321 ic->ic_flags |= IEEE80211_F_CSAPENDING;
2322 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2323 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2324 vap->iv_opmode == IEEE80211_M_IBSS ||
2325 vap->iv_opmode == IEEE80211_M_MBSS)
2326 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
2327 /* switch to CSA state to block outbound traffic */
2328 if (vap->iv_state == IEEE80211_S_RUN)
2329 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
2330 }
2331 ieee80211_notify_csa(ic, c, mode, count);
2332 }
2333
2334 /*
2335 * Complete the channel switch by transitioning all CSA VAPs to RUN.
2336 * This is called by both the completion and cancellation functions
2337 * so each VAP is placed back in the RUN state and can thus transmit.
2338 */
2339 static void
csa_completeswitch(struct ieee80211com * ic)2340 csa_completeswitch(struct ieee80211com *ic)
2341 {
2342 struct ieee80211vap *vap;
2343
2344 ic->ic_csa_newchan = NULL;
2345 ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
2346
2347 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2348 if (vap->iv_state == IEEE80211_S_CSA)
2349 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
2350 }
2351
2352 /*
2353 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
2354 * We clear state and move all vap's in CSA state to RUN state
2355 * so they can again transmit.
2356 *
2357 * Although this may not be completely correct, update the BSS channel
2358 * for each VAP to the newly configured channel. The setcurchan sets
2359 * the current operating channel for the interface (so the radio does
2360 * switch over) but the VAP BSS isn't updated, leading to incorrectly
2361 * reported information via ioctl.
2362 */
2363 void
ieee80211_csa_completeswitch(struct ieee80211com * ic)2364 ieee80211_csa_completeswitch(struct ieee80211com *ic)
2365 {
2366 struct ieee80211vap *vap;
2367
2368 IEEE80211_LOCK_ASSERT(ic);
2369
2370 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
2371
2372 ieee80211_setcurchan(ic, ic->ic_csa_newchan);
2373 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2374 if (vap->iv_state == IEEE80211_S_CSA)
2375 vap->iv_bss->ni_chan = ic->ic_curchan;
2376
2377 csa_completeswitch(ic);
2378 }
2379
2380 /*
2381 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
2382 * We clear state and move all vap's in CSA state to RUN state
2383 * so they can again transmit.
2384 */
2385 void
ieee80211_csa_cancelswitch(struct ieee80211com * ic)2386 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
2387 {
2388 IEEE80211_LOCK_ASSERT(ic);
2389
2390 csa_completeswitch(ic);
2391 }
2392
2393 /*
2394 * Complete a DFS CAC started by ieee80211_dfs_cac_start.
2395 * We clear state and move all vap's in CAC state to RUN state.
2396 */
2397 void
ieee80211_cac_completeswitch(struct ieee80211vap * vap0)2398 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
2399 {
2400 struct ieee80211com *ic = vap0->iv_ic;
2401 struct ieee80211vap *vap;
2402
2403 IEEE80211_LOCK(ic);
2404 /*
2405 * Complete CAC state change for lead vap first; then
2406 * clock all the other vap's waiting.
2407 */
2408 KASSERT(vap0->iv_state == IEEE80211_S_CAC,
2409 ("wrong state %d", vap0->iv_state));
2410 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
2411
2412 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2413 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
2414 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
2415 IEEE80211_UNLOCK(ic);
2416 }
2417
2418 /*
2419 * Force all vap's other than the specified vap to the INIT state
2420 * and mark them as waiting for a scan to complete. These vaps
2421 * will be brought up when the scan completes and the scanning vap
2422 * reaches RUN state by wakeupwaiting.
2423 */
2424 static void
markwaiting(struct ieee80211vap * vap0)2425 markwaiting(struct ieee80211vap *vap0)
2426 {
2427 struct ieee80211com *ic = vap0->iv_ic;
2428 struct ieee80211vap *vap;
2429
2430 IEEE80211_LOCK_ASSERT(ic);
2431
2432 /*
2433 * A vap list entry can not disappear since we are running on the
2434 * taskqueue and a vap destroy will queue and drain another state
2435 * change task.
2436 */
2437 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2438 if (vap == vap0)
2439 continue;
2440 if (vap->iv_state != IEEE80211_S_INIT) {
2441 /* NB: iv_newstate may drop the lock */
2442 vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
2443 IEEE80211_LOCK_ASSERT(ic);
2444 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2445 }
2446 }
2447 }
2448
2449 /*
2450 * Wakeup all vap's waiting for a scan to complete. This is the
2451 * companion to markwaiting (above) and is used to coordinate
2452 * multiple vaps scanning.
2453 * This is called from the state taskqueue.
2454 */
2455 static void
wakeupwaiting(struct ieee80211vap * vap0)2456 wakeupwaiting(struct ieee80211vap *vap0)
2457 {
2458 struct ieee80211com *ic = vap0->iv_ic;
2459 struct ieee80211vap *vap;
2460
2461 IEEE80211_LOCK_ASSERT(ic);
2462
2463 /*
2464 * A vap list entry can not disappear since we are running on the
2465 * taskqueue and a vap destroy will queue and drain another state
2466 * change task.
2467 */
2468 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2469 if (vap == vap0)
2470 continue;
2471 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
2472 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2473 /* NB: sta's cannot go INIT->RUN */
2474 /* NB: iv_newstate may drop the lock */
2475
2476 /*
2477 * This is problematic if the interface has OACTIVE
2478 * set. Only the deferred ieee80211_newstate_cb()
2479 * will end up actually /clearing/ the OACTIVE
2480 * flag on a state transition to RUN from a non-RUN
2481 * state.
2482 *
2483 * But, we're not actually deferring this callback;
2484 * and when the deferred call occurs it shows up as
2485 * a RUN->RUN transition! So the flag isn't/wasn't
2486 * cleared!
2487 *
2488 * I'm also not sure if it's correct to actually
2489 * do the transitions here fully through the deferred
2490 * paths either as other things can be invoked as
2491 * part of that state machine.
2492 *
2493 * So just keep this in mind when looking at what
2494 * the markwaiting/wakeupwaiting routines are doing
2495 * and how they invoke vap state changes.
2496 */
2497
2498 vap->iv_newstate(vap,
2499 vap->iv_opmode == IEEE80211_M_STA ?
2500 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
2501 IEEE80211_LOCK_ASSERT(ic);
2502 }
2503 }
2504 }
2505
2506 static int
_ieee80211_newstate_get_next_empty_slot(struct ieee80211vap * vap)2507 _ieee80211_newstate_get_next_empty_slot(struct ieee80211vap *vap)
2508 {
2509 int nstate_num;
2510
2511 IEEE80211_LOCK_ASSERT(vap->iv_ic);
2512
2513 if (vap->iv_nstate_n >= NET80211_IV_NSTATE_NUM)
2514 return (-1);
2515
2516 nstate_num = vap->iv_nstate_b + vap->iv_nstate_n;
2517 nstate_num %= NET80211_IV_NSTATE_NUM;
2518 vap->iv_nstate_n++;
2519
2520 return (nstate_num);
2521 }
2522
2523 static int
_ieee80211_newstate_get_next_pending_slot(struct ieee80211vap * vap)2524 _ieee80211_newstate_get_next_pending_slot(struct ieee80211vap *vap)
2525 {
2526 int nstate_num;
2527
2528 IEEE80211_LOCK_ASSERT(vap->iv_ic);
2529
2530 KASSERT(vap->iv_nstate_n > 0, ("%s: vap %p iv_nstate_n %d\n",
2531 __func__, vap, vap->iv_nstate_n));
2532
2533 nstate_num = vap->iv_nstate_b;
2534 vap->iv_nstate_b++;
2535 if (vap->iv_nstate_b >= NET80211_IV_NSTATE_NUM)
2536 vap->iv_nstate_b = 0;
2537 vap->iv_nstate_n--;
2538
2539 return (nstate_num);
2540 }
2541
2542 static int
_ieee80211_newstate_get_npending(struct ieee80211vap * vap)2543 _ieee80211_newstate_get_npending(struct ieee80211vap *vap)
2544 {
2545
2546 IEEE80211_LOCK_ASSERT(vap->iv_ic);
2547
2548 return (vap->iv_nstate_n);
2549 }
2550
2551 /*
2552 * Handle post state change work common to all operating modes.
2553 */
2554 static void
ieee80211_newstate_cb(void * xvap,int npending)2555 ieee80211_newstate_cb(void *xvap, int npending)
2556 {
2557 struct ieee80211vap *vap = xvap;
2558 struct ieee80211com *ic = vap->iv_ic;
2559 enum ieee80211_state nstate, ostate;
2560 int arg, rc, nstate_num;
2561
2562 KASSERT(npending == 1, ("%s: vap %p with npending %d != 1\n",
2563 __func__, vap, npending));
2564 IEEE80211_LOCK(ic);
2565 nstate_num = _ieee80211_newstate_get_next_pending_slot(vap);
2566
2567 /*
2568 * Update the historic fields for now as they are used in some
2569 * drivers and reduce code changes for now.
2570 */
2571 vap->iv_nstate = nstate = vap->iv_nstates[nstate_num];
2572 arg = vap->iv_nstate_args[nstate_num];
2573
2574 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2575 "%s:%d: running state update %s -> %s (%d)\n",
2576 __func__, __LINE__,
2577 ieee80211_state_name[vap->iv_state],
2578 ieee80211_state_name[nstate],
2579 npending);
2580
2581 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
2582 /*
2583 * We have been requested to drop back to the INIT before
2584 * proceeding to the new state.
2585 */
2586 /* Deny any state changes while we are here. */
2587 vap->iv_nstate = IEEE80211_S_INIT;
2588 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2589 "%s: %s -> %s arg %d -> %s arg %d\n", __func__,
2590 ieee80211_state_name[vap->iv_state],
2591 ieee80211_state_name[vap->iv_nstate], 0,
2592 ieee80211_state_name[nstate], arg);
2593 vap->iv_newstate(vap, vap->iv_nstate, 0);
2594 IEEE80211_LOCK_ASSERT(ic);
2595 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
2596 IEEE80211_FEXT_STATEWAIT);
2597 /* enqueue new state transition after cancel_scan() task */
2598 ieee80211_new_state_locked(vap, nstate, arg);
2599 goto done;
2600 }
2601
2602 ostate = vap->iv_state;
2603 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
2604 /*
2605 * SCAN was forced; e.g. on beacon miss. Force other running
2606 * vap's to INIT state and mark them as waiting for the scan to
2607 * complete. This insures they don't interfere with our
2608 * scanning. Since we are single threaded the vaps can not
2609 * transition again while we are executing.
2610 *
2611 * XXX not always right, assumes ap follows sta
2612 */
2613 markwaiting(vap);
2614 }
2615 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2616 "%s: %s -> %s arg %d\n", __func__,
2617 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
2618
2619 rc = vap->iv_newstate(vap, nstate, arg);
2620 IEEE80211_LOCK_ASSERT(ic);
2621 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
2622 if (rc != 0) {
2623 /* State transition failed */
2624 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
2625 KASSERT(nstate != IEEE80211_S_INIT,
2626 ("INIT state change failed"));
2627 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2628 "%s: %s returned error %d\n", __func__,
2629 ieee80211_state_name[nstate], rc);
2630 goto done;
2631 }
2632
2633 /*
2634 * Handle the case of a RUN->RUN transition occuring when STA + AP
2635 * VAPs occur on the same radio.
2636 *
2637 * The mark and wakeup waiting routines call iv_newstate() directly,
2638 * but they do not end up deferring state changes here.
2639 * Thus, although the VAP newstate method sees a transition
2640 * of RUN->INIT->RUN, the deferred path here only sees a RUN->RUN
2641 * transition. If OACTIVE is set then it is never cleared.
2642 *
2643 * So, if we're here and the state is RUN, just clear OACTIVE.
2644 * At some point if the markwaiting/wakeupwaiting paths end up
2645 * also invoking the deferred state updates then this will
2646 * be no-op code - and also if OACTIVE is finally retired, it'll
2647 * also be no-op code.
2648 */
2649 if (nstate == IEEE80211_S_RUN) {
2650 /*
2651 * OACTIVE may be set on the vap if the upper layer
2652 * tried to transmit (e.g. IPv6 NDP) before we reach
2653 * RUN state. Clear it and restart xmit.
2654 *
2655 * Note this can also happen as a result of SLEEP->RUN
2656 * (i.e. coming out of power save mode).
2657 *
2658 * Historically this was done only for a state change
2659 * but is needed earlier; see next comment. The 2nd half
2660 * of the work is still only done in case of an actual
2661 * state change below.
2662 */
2663 /*
2664 * Unblock the VAP queue; a RUN->RUN state can happen
2665 * on a STA+AP setup on the AP vap. See wakeupwaiting().
2666 */
2667 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2668
2669 /*
2670 * XXX TODO Kick-start a VAP queue - this should be a method!
2671 */
2672 }
2673
2674 /* No actual transition, skip post processing */
2675 if (ostate == nstate)
2676 goto done;
2677
2678 if (nstate == IEEE80211_S_RUN) {
2679
2680 /* bring up any vaps waiting on us */
2681 wakeupwaiting(vap);
2682 } else if (nstate == IEEE80211_S_INIT) {
2683 /*
2684 * Flush the scan cache if we did the last scan (XXX?)
2685 * and flush any frames on send queues from this vap.
2686 * Note the mgt q is used only for legacy drivers and
2687 * will go away shortly.
2688 */
2689 ieee80211_scan_flush(vap);
2690
2691 /*
2692 * XXX TODO: ic/vap queue flush
2693 */
2694 }
2695 done:
2696 IEEE80211_UNLOCK(ic);
2697 }
2698
2699 /*
2700 * Public interface for initiating a state machine change.
2701 * This routine single-threads the request and coordinates
2702 * the scheduling of multiple vaps for the purpose of selecting
2703 * an operating channel. Specifically the following scenarios
2704 * are handled:
2705 * o only one vap can be selecting a channel so on transition to
2706 * SCAN state if another vap is already scanning then
2707 * mark the caller for later processing and return without
2708 * doing anything (XXX? expectations by caller of synchronous operation)
2709 * o only one vap can be doing CAC of a channel so on transition to
2710 * CAC state if another vap is already scanning for radar then
2711 * mark the caller for later processing and return without
2712 * doing anything (XXX? expectations by caller of synchronous operation)
2713 * o if another vap is already running when a request is made
2714 * to SCAN then an operating channel has been chosen; bypass
2715 * the scan and just join the channel
2716 *
2717 * Note that the state change call is done through the iv_newstate
2718 * method pointer so any driver routine gets invoked. The driver
2719 * will normally call back into operating mode-specific
2720 * ieee80211_newstate routines (below) unless it needs to completely
2721 * bypass the state machine (e.g. because the firmware has it's
2722 * own idea how things should work). Bypassing the net80211 layer
2723 * is usually a mistake and indicates lack of proper integration
2724 * with the net80211 layer.
2725 */
2726 int
ieee80211_new_state_locked(struct ieee80211vap * vap,enum ieee80211_state nstate,int arg)2727 ieee80211_new_state_locked(struct ieee80211vap *vap,
2728 enum ieee80211_state nstate, int arg)
2729 {
2730 struct ieee80211com *ic = vap->iv_ic;
2731 struct ieee80211vap *vp;
2732 enum ieee80211_state ostate;
2733 int nrunning, nscanning, nstate_num;
2734
2735 IEEE80211_LOCK_ASSERT(ic);
2736
2737 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
2738 if (vap->iv_nstate == IEEE80211_S_INIT ||
2739 ((vap->iv_state == IEEE80211_S_INIT ||
2740 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
2741 vap->iv_nstate == IEEE80211_S_SCAN &&
2742 nstate > IEEE80211_S_SCAN)) {
2743 /*
2744 * XXX The vap is being stopped/started,
2745 * do not allow any other state changes
2746 * until this is completed.
2747 */
2748 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2749 "%s:%d: %s -> %s (%s) transition discarded\n",
2750 __func__, __LINE__,
2751 ieee80211_state_name[vap->iv_state],
2752 ieee80211_state_name[nstate],
2753 ieee80211_state_name[vap->iv_nstate]);
2754 return -1;
2755 }
2756 }
2757
2758 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2759 "%s:%d: starting state update %s -> %s (%s)\n",
2760 __func__, __LINE__,
2761 ieee80211_state_name[vap->iv_state],
2762 ieee80211_state_name[vap->iv_nstate],
2763 ieee80211_state_name[nstate]);
2764
2765 nrunning = nscanning = 0;
2766 /* XXX can track this state instead of calculating */
2767 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
2768 if (vp != vap) {
2769 if (vp->iv_state >= IEEE80211_S_RUN)
2770 nrunning++;
2771 /* XXX doesn't handle bg scan */
2772 /* NB: CAC+AUTH+ASSOC treated like SCAN */
2773 else if (vp->iv_state > IEEE80211_S_INIT)
2774 nscanning++;
2775 }
2776 }
2777 /*
2778 * Look ahead for the "old state" at that point when the last queued
2779 * state transition is run.
2780 */
2781 if (vap->iv_nstate_n == 0) {
2782 ostate = vap->iv_state;
2783 } else {
2784 nstate_num = (vap->iv_nstate_b + vap->iv_nstate_n - 1) % NET80211_IV_NSTATE_NUM;
2785 ostate = vap->iv_nstates[nstate_num];
2786 }
2787 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2788 "%s: %s -> %s (arg %d) (nrunning %d nscanning %d)\n", __func__,
2789 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg,
2790 nrunning, nscanning);
2791 switch (nstate) {
2792 case IEEE80211_S_SCAN:
2793 if (ostate == IEEE80211_S_INIT) {
2794 /*
2795 * INIT -> SCAN happens on initial bringup.
2796 */
2797 KASSERT(!(nscanning && nrunning),
2798 ("%d scanning and %d running", nscanning, nrunning));
2799 if (nscanning) {
2800 /*
2801 * Someone is scanning, defer our state
2802 * change until the work has completed.
2803 */
2804 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2805 "%s: defer %s -> %s\n",
2806 __func__, ieee80211_state_name[ostate],
2807 ieee80211_state_name[nstate]);
2808 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2809 return 0;
2810 }
2811 if (nrunning) {
2812 /*
2813 * Someone is operating; just join the channel
2814 * they have chosen.
2815 */
2816 /* XXX kill arg? */
2817 /* XXX check each opmode, adhoc? */
2818 if (vap->iv_opmode == IEEE80211_M_STA)
2819 nstate = IEEE80211_S_SCAN;
2820 else
2821 nstate = IEEE80211_S_RUN;
2822 #ifdef IEEE80211_DEBUG
2823 if (nstate != IEEE80211_S_SCAN) {
2824 IEEE80211_DPRINTF(vap,
2825 IEEE80211_MSG_STATE,
2826 "%s: override, now %s -> %s\n",
2827 __func__,
2828 ieee80211_state_name[ostate],
2829 ieee80211_state_name[nstate]);
2830 }
2831 #endif
2832 }
2833 }
2834 break;
2835 case IEEE80211_S_RUN:
2836 if (vap->iv_opmode == IEEE80211_M_WDS &&
2837 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
2838 nscanning) {
2839 /*
2840 * Legacy WDS with someone else scanning; don't
2841 * go online until that completes as we should
2842 * follow the other vap to the channel they choose.
2843 */
2844 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2845 "%s: defer %s -> %s (legacy WDS)\n", __func__,
2846 ieee80211_state_name[ostate],
2847 ieee80211_state_name[nstate]);
2848 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2849 return 0;
2850 }
2851 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
2852 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2853 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
2854 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
2855 /*
2856 * This is a DFS channel, transition to CAC state
2857 * instead of RUN. This allows us to initiate
2858 * Channel Availability Check (CAC) as specified
2859 * by 11h/DFS.
2860 */
2861 nstate = IEEE80211_S_CAC;
2862 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2863 "%s: override %s -> %s (DFS)\n", __func__,
2864 ieee80211_state_name[ostate],
2865 ieee80211_state_name[nstate]);
2866 }
2867 break;
2868 case IEEE80211_S_INIT:
2869 /* cancel any scan in progress */
2870 ieee80211_cancel_scan(vap);
2871 if (ostate == IEEE80211_S_INIT ) {
2872 /* XXX don't believe this */
2873 /* INIT -> INIT. nothing to do */
2874 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2875 }
2876 /* fall thru... */
2877 default:
2878 break;
2879 }
2880 /*
2881 * Defer the state change to a thread.
2882 * We support up-to NET80211_IV_NSTATE_NUM pending state changes
2883 * using a separate task for each. Otherwise, if we enqueue
2884 * more than one state change they will be folded together,
2885 * npedning will be > 1 and we may run then out of sequence with
2886 * other events.
2887 * This is kind-of a hack after 10 years but we know how to provoke
2888 * these cases now (and seen them in the wild).
2889 */
2890 nstate_num = _ieee80211_newstate_get_next_empty_slot(vap);
2891 if (nstate_num == -1) {
2892 /*
2893 * This is really bad and we should just go kaboom.
2894 * Instead drop it. No one checks the return code anyway.
2895 */
2896 ic_printf(ic, "%s:%d: pending %s -> %s (now to %s) "
2897 "transition lost. %d/%d pending state changes:\n",
2898 __func__, __LINE__,
2899 ieee80211_state_name[vap->iv_state],
2900 ieee80211_state_name[vap->iv_nstate],
2901 ieee80211_state_name[nstate],
2902 _ieee80211_newstate_get_npending(vap),
2903 NET80211_IV_NSTATE_NUM);
2904
2905 return (EAGAIN);
2906 }
2907 vap->iv_nstates[nstate_num] = nstate;
2908 vap->iv_nstate_args[nstate_num] = arg;
2909 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2910 ieee80211_runtask(ic, &vap->iv_nstate_task[nstate_num]);
2911 return EINPROGRESS;
2912 }
2913
2914 int
ieee80211_new_state(struct ieee80211vap * vap,enum ieee80211_state nstate,int arg)2915 ieee80211_new_state(struct ieee80211vap *vap,
2916 enum ieee80211_state nstate, int arg)
2917 {
2918 struct ieee80211com *ic = vap->iv_ic;
2919 int rc;
2920
2921 IEEE80211_LOCK(ic);
2922 rc = ieee80211_new_state_locked(vap, nstate, arg);
2923 IEEE80211_UNLOCK(ic);
2924 return rc;
2925 }
2926