1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Atsushi Onoe
5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/endian.h>
40
41 #include <sys/socket.h>
42
43 #include <net/bpf.h>
44 #include <net/ethernet.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_llc.h>
48 #include <net/if_media.h>
49 #include <net/if_private.h>
50 #include <net/if_vlan_var.h>
51
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_regdomain.h>
54 #ifdef IEEE80211_SUPPORT_SUPERG
55 #include <net80211/ieee80211_superg.h>
56 #endif
57 #ifdef IEEE80211_SUPPORT_TDMA
58 #include <net80211/ieee80211_tdma.h>
59 #endif
60 #include <net80211/ieee80211_wds.h>
61 #include <net80211/ieee80211_mesh.h>
62 #include <net80211/ieee80211_vht.h>
63
64 #if defined(INET) || defined(INET6)
65 #include <netinet/in.h>
66 #endif
67
68 #ifdef INET
69 #include <netinet/if_ether.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/ip.h>
72 #endif
73 #ifdef INET6
74 #include <netinet/ip6.h>
75 #endif
76
77 #include <security/mac/mac_framework.h>
78
79 #define ETHER_HEADER_COPY(dst, src) \
80 memcpy(dst, src, sizeof(struct ether_header))
81
82 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
83 u_int hdrsize, u_int ciphdrsize, u_int mtu);
84 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
85
86 #ifdef IEEE80211_DEBUG
87 /*
88 * Decide if an outbound management frame should be
89 * printed when debugging is enabled. This filters some
90 * of the less interesting frames that come frequently
91 * (e.g. beacons).
92 */
93 static __inline int
doprint(struct ieee80211vap * vap,int subtype)94 doprint(struct ieee80211vap *vap, int subtype)
95 {
96 switch (subtype) {
97 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
98 return (vap->iv_opmode == IEEE80211_M_IBSS);
99 }
100 return 1;
101 }
102 #endif
103
104 /*
105 * Transmit a frame to the given destination on the given VAP.
106 *
107 * It's up to the caller to figure out the details of who this
108 * is going to and resolving the node.
109 *
110 * This routine takes care of queuing it for power save,
111 * A-MPDU state stuff, fast-frames state stuff, encapsulation
112 * if required, then passing it up to the driver layer.
113 *
114 * This routine (for now) consumes the mbuf and frees the node
115 * reference; it ideally will return a TX status which reflects
116 * whether the mbuf was consumed or not, so the caller can
117 * free the mbuf (if appropriate) and the node reference (again,
118 * if appropriate.)
119 */
120 int
ieee80211_vap_pkt_send_dest(struct ieee80211vap * vap,struct mbuf * m,struct ieee80211_node * ni)121 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
122 struct ieee80211_node *ni)
123 {
124 struct ieee80211com *ic = vap->iv_ic;
125 struct ifnet *ifp = vap->iv_ifp;
126 int mcast;
127 int do_ampdu = 0;
128 #ifdef IEEE80211_SUPPORT_SUPERG
129 int do_amsdu = 0;
130 int do_ampdu_amsdu = 0;
131 int no_ampdu = 1; /* Will be set to 0 if ampdu is active */
132 int do_ff = 0;
133 #endif
134
135 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
136 (m->m_flags & M_PWR_SAV) == 0) {
137 /*
138 * Station in power save mode; pass the frame
139 * to the 802.11 layer and continue. We'll get
140 * the frame back when the time is right.
141 * XXX lose WDS vap linkage?
142 */
143 if (ieee80211_pwrsave(ni, m) != 0)
144 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
145 ieee80211_free_node(ni);
146
147 /*
148 * We queued it fine, so tell the upper layer
149 * that we consumed it.
150 */
151 return (0);
152 }
153 /* calculate priority so drivers can find the tx queue */
154 if (ieee80211_classify(ni, m)) {
155 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
156 ni->ni_macaddr, NULL,
157 "%s", "classification failure");
158 vap->iv_stats.is_tx_classify++;
159 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
160 m_freem(m);
161 ieee80211_free_node(ni);
162
163 /* XXX better status? */
164 return (0);
165 }
166 /*
167 * Stash the node pointer. Note that we do this after
168 * any call to ieee80211_dwds_mcast because that code
169 * uses any existing value for rcvif to identify the
170 * interface it (might have been) received on.
171 */
172 //MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
173 m->m_pkthdr.rcvif = (void *)ni;
174 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
175
176 BPF_MTAP(ifp, m); /* 802.3 tx */
177
178 /*
179 * Figure out if we can do A-MPDU, A-MSDU or FF.
180 *
181 * A-MPDU depends upon vap/node config.
182 * A-MSDU depends upon vap/node config.
183 * FF depends upon vap config, IE and whether
184 * it's 11abg (and not 11n/11ac/etc.)
185 *
186 * Note that these flags indiciate whether we can do
187 * it at all, rather than the situation (eg traffic type.)
188 */
189 do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
190 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX));
191 #ifdef IEEE80211_SUPPORT_SUPERG
192 do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
193 (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX));
194 do_ff =
195 ((ni->ni_flags & IEEE80211_NODE_HT) == 0) &&
196 ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) &&
197 (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF));
198 #endif
199
200 /*
201 * Check if A-MPDU tx aggregation is setup or if we
202 * should try to enable it. The sta must be associated
203 * with HT and A-MPDU enabled for use. When the policy
204 * routine decides we should enable A-MPDU we issue an
205 * ADDBA request and wait for a reply. The frame being
206 * encapsulated will go out w/o using A-MPDU, or possibly
207 * it might be collected by the driver and held/retransmit.
208 * The default ic_ampdu_enable routine handles staggering
209 * ADDBA requests in case the receiver NAK's us or we are
210 * otherwise unable to establish a BA stream.
211 *
212 * Don't treat group-addressed frames as candidates for aggregation;
213 * net80211 doesn't support 802.11aa-2012 and so group addressed
214 * frames will always have sequence numbers allocated from the NON_QOS
215 * TID.
216 */
217 if (do_ampdu) {
218 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
219 int tid = WME_AC_TO_TID(M_WME_GETAC(m));
220 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
221
222 ieee80211_txampdu_count_packet(tap);
223 if (IEEE80211_AMPDU_RUNNING(tap)) {
224 /*
225 * Operational, mark frame for aggregation.
226 *
227 * XXX do tx aggregation here
228 */
229 m->m_flags |= M_AMPDU_MPDU;
230 } else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
231 ic->ic_ampdu_enable(ni, tap)) {
232 /*
233 * Not negotiated yet, request service.
234 */
235 ieee80211_ampdu_request(ni, tap);
236 /* XXX hold frame for reply? */
237 }
238 /*
239 * Now update the no-ampdu flag. A-MPDU may have been
240 * started or administratively disabled above; so now we
241 * know whether we're running yet or not.
242 *
243 * This will let us know whether we should be doing A-MSDU
244 * at this point. We only do A-MSDU if we're either not
245 * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU
246 * is available.
247 *
248 * Whilst here, update the amsdu-ampdu flag. The above may
249 * have also set or cleared the amsdu-in-ampdu txa_flags
250 * combination so we can correctly do A-MPDU + A-MSDU.
251 */
252 #ifdef IEEE80211_SUPPORT_SUPERG
253 no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap)
254 || (IEEE80211_AMPDU_NACKED(tap)));
255 do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap);
256 #endif
257 }
258 }
259
260 #ifdef IEEE80211_SUPPORT_SUPERG
261 /*
262 * Check for AMSDU/FF; queue for aggregation
263 *
264 * Note: we don't bother trying to do fast frames or
265 * A-MSDU encapsulation for 802.3 drivers. Now, we
266 * likely could do it for FF (because it's a magic
267 * atheros tunnel LLC type) but I don't think we're going
268 * to really need to. For A-MSDU we'd have to set the
269 * A-MSDU QoS bit in the wifi header, so we just plain
270 * can't do it.
271 */
272 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
273 if ((! mcast) &&
274 (do_ampdu_amsdu || (no_ampdu && do_amsdu)) &&
275 ieee80211_amsdu_tx_ok(ni)) {
276 m = ieee80211_amsdu_check(ni, m);
277 if (m == NULL) {
278 /* NB: any ni ref held on stageq */
279 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
280 "%s: amsdu_check queued frame\n",
281 __func__);
282 return (0);
283 }
284 } else if ((! mcast) && do_ff) {
285 m = ieee80211_ff_check(ni, m);
286 if (m == NULL) {
287 /* NB: any ni ref held on stageq */
288 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
289 "%s: ff_check queued frame\n",
290 __func__);
291 return (0);
292 }
293 }
294 }
295 #endif /* IEEE80211_SUPPORT_SUPERG */
296
297 /*
298 * Grab the TX lock - serialise the TX process from this
299 * point (where TX state is being checked/modified)
300 * through to driver queue.
301 */
302 IEEE80211_TX_LOCK(ic);
303
304 /*
305 * XXX make the encap and transmit code a separate function
306 * so things like the FF (and later A-MSDU) path can just call
307 * it for flushed frames.
308 */
309 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
310 /*
311 * Encapsulate the packet in prep for transmission.
312 */
313 m = ieee80211_encap(vap, ni, m);
314 if (m == NULL) {
315 /* NB: stat+msg handled in ieee80211_encap */
316 IEEE80211_TX_UNLOCK(ic);
317 ieee80211_free_node(ni);
318 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
319 return (ENOBUFS);
320 }
321 }
322 (void) ieee80211_parent_xmitpkt(ic, m);
323
324 /*
325 * Unlock at this point - no need to hold it across
326 * ieee80211_free_node() (ie, the comlock)
327 */
328 IEEE80211_TX_UNLOCK(ic);
329 ic->ic_lastdata = ticks;
330
331 return (0);
332 }
333
334 /*
335 * Send the given mbuf through the given vap.
336 *
337 * This consumes the mbuf regardless of whether the transmit
338 * was successful or not.
339 *
340 * This does none of the initial checks that ieee80211_start()
341 * does (eg CAC timeout, interface wakeup) - the caller must
342 * do this first.
343 */
344 static int
ieee80211_start_pkt(struct ieee80211vap * vap,struct mbuf * m)345 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
346 {
347 #define IS_DWDS(vap) \
348 (vap->iv_opmode == IEEE80211_M_WDS && \
349 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
350 struct ieee80211com *ic = vap->iv_ic;
351 struct ifnet *ifp = vap->iv_ifp;
352 struct ieee80211_node *ni;
353 struct ether_header *eh;
354
355 /*
356 * Cancel any background scan.
357 */
358 if (ic->ic_flags & IEEE80211_F_SCAN)
359 ieee80211_cancel_anyscan(vap);
360 /*
361 * Find the node for the destination so we can do
362 * things like power save and fast frames aggregation.
363 *
364 * NB: past this point various code assumes the first
365 * mbuf has the 802.3 header present (and contiguous).
366 */
367 ni = NULL;
368 if (m->m_len < sizeof(struct ether_header) &&
369 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
370 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
371 "discard frame, %s\n", "m_pullup failed");
372 vap->iv_stats.is_tx_nobuf++; /* XXX */
373 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
374 return (ENOBUFS);
375 }
376 eh = mtod(m, struct ether_header *);
377 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
378 if (IS_DWDS(vap)) {
379 /*
380 * Only unicast frames from the above go out
381 * DWDS vaps; multicast frames are handled by
382 * dispatching the frame as it comes through
383 * the AP vap (see below).
384 */
385 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
386 eh->ether_dhost, "mcast", "%s", "on DWDS");
387 vap->iv_stats.is_dwds_mcast++;
388 m_freem(m);
389 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
390 /* XXX better status? */
391 return (ENOBUFS);
392 }
393 if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
394 /*
395 * Spam DWDS vap's w/ multicast traffic.
396 */
397 /* XXX only if dwds in use? */
398 ieee80211_dwds_mcast(vap, m);
399 }
400 }
401 #ifdef IEEE80211_SUPPORT_MESH
402 if (vap->iv_opmode != IEEE80211_M_MBSS) {
403 #endif
404 ni = ieee80211_find_txnode(vap, eh->ether_dhost);
405 if (ni == NULL) {
406 /* NB: ieee80211_find_txnode does stat+msg */
407 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
408 m_freem(m);
409 /* XXX better status? */
410 return (ENOBUFS);
411 }
412 if (ni->ni_associd == 0 &&
413 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
414 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
415 eh->ether_dhost, NULL,
416 "sta not associated (type 0x%04x)",
417 htons(eh->ether_type));
418 vap->iv_stats.is_tx_notassoc++;
419 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
420 m_freem(m);
421 ieee80211_free_node(ni);
422 /* XXX better status? */
423 return (ENOBUFS);
424 }
425 #ifdef IEEE80211_SUPPORT_MESH
426 } else {
427 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
428 /*
429 * Proxy station only if configured.
430 */
431 if (!ieee80211_mesh_isproxyena(vap)) {
432 IEEE80211_DISCARD_MAC(vap,
433 IEEE80211_MSG_OUTPUT |
434 IEEE80211_MSG_MESH,
435 eh->ether_dhost, NULL,
436 "%s", "proxy not enabled");
437 vap->iv_stats.is_mesh_notproxy++;
438 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
439 m_freem(m);
440 /* XXX better status? */
441 return (ENOBUFS);
442 }
443 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
444 "forward frame from DS SA(%6D), DA(%6D)\n",
445 eh->ether_shost, ":",
446 eh->ether_dhost, ":");
447 ieee80211_mesh_proxy_check(vap, eh->ether_shost);
448 }
449 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
450 if (ni == NULL) {
451 /*
452 * NB: ieee80211_mesh_discover holds/disposes
453 * frame (e.g. queueing on path discovery).
454 */
455 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
456 /* XXX better status? */
457 return (ENOBUFS);
458 }
459 }
460 #endif
461
462 /*
463 * We've resolved the sender, so attempt to transmit it.
464 */
465
466 if (vap->iv_state == IEEE80211_S_SLEEP) {
467 /*
468 * In power save; queue frame and then wakeup device
469 * for transmit.
470 */
471 ic->ic_lastdata = ticks;
472 if (ieee80211_pwrsave(ni, m) != 0)
473 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
474 ieee80211_free_node(ni);
475 ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
476 return (0);
477 }
478
479 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
480 return (ENOBUFS);
481 return (0);
482 #undef IS_DWDS
483 }
484
485 /*
486 * Start method for vap's. All packets from the stack come
487 * through here. We handle common processing of the packets
488 * before dispatching them to the underlying device.
489 *
490 * if_transmit() requires that the mbuf be consumed by this call
491 * regardless of the return condition.
492 */
493 int
ieee80211_vap_transmit(struct ifnet * ifp,struct mbuf * m)494 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
495 {
496 struct ieee80211vap *vap = ifp->if_softc;
497 struct ieee80211com *ic = vap->iv_ic;
498
499 /*
500 * No data frames go out unless we're running.
501 * Note in particular this covers CAC and CSA
502 * states (though maybe we should check muting
503 * for CSA).
504 */
505 if (vap->iv_state != IEEE80211_S_RUN &&
506 vap->iv_state != IEEE80211_S_SLEEP) {
507 IEEE80211_LOCK(ic);
508 /* re-check under the com lock to avoid races */
509 if (vap->iv_state != IEEE80211_S_RUN &&
510 vap->iv_state != IEEE80211_S_SLEEP) {
511 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
512 "%s: ignore queue, in %s state\n",
513 __func__, ieee80211_state_name[vap->iv_state]);
514 vap->iv_stats.is_tx_badstate++;
515 IEEE80211_UNLOCK(ic);
516 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
517 m_freem(m);
518 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
519 return (ENETDOWN);
520 }
521 IEEE80211_UNLOCK(ic);
522 }
523
524 /*
525 * Sanitize mbuf flags for net80211 use. We cannot
526 * clear M_PWR_SAV or M_MORE_DATA because these may
527 * be set for frames that are re-submitted from the
528 * power save queue.
529 *
530 * NB: This must be done before ieee80211_classify as
531 * it marks EAPOL in frames with M_EAPOL.
532 */
533 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
534
535 /*
536 * Bump to the packet transmission path.
537 * The mbuf will be consumed here.
538 */
539 return (ieee80211_start_pkt(vap, m));
540 }
541
542 void
ieee80211_vap_qflush(struct ifnet * ifp)543 ieee80211_vap_qflush(struct ifnet *ifp)
544 {
545
546 /* Empty for now */
547 }
548
549 /*
550 * 802.11 raw output routine.
551 *
552 * XXX TODO: this (and other send routines) should correctly
553 * XXX keep the pwr mgmt bit set if it decides to call into the
554 * XXX driver to send a frame whilst the state is SLEEP.
555 *
556 * Otherwise the peer may decide that we're awake and flood us
557 * with traffic we are still too asleep to receive!
558 */
559 int
ieee80211_raw_output(struct ieee80211vap * vap,struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_bpf_params * params)560 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
561 struct mbuf *m, const struct ieee80211_bpf_params *params)
562 {
563 struct ieee80211com *ic = vap->iv_ic;
564 int error;
565
566 /*
567 * Set node - the caller has taken a reference, so ensure
568 * that the mbuf has the same node value that
569 * it would if it were going via the normal path.
570 */
571 //MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
572 m->m_pkthdr.rcvif = (void *)ni;
573
574 /*
575 * Attempt to add bpf transmit parameters.
576 *
577 * For now it's ok to fail; the raw_xmit api still takes
578 * them as an option.
579 *
580 * Later on when ic_raw_xmit() has params removed,
581 * they'll have to be added - so fail the transmit if
582 * they can't be.
583 */
584 if (params)
585 (void) ieee80211_add_xmit_params(m, params);
586
587 error = ic->ic_raw_xmit(ni, m, params);
588 if (error) {
589 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
590 ieee80211_free_node(ni);
591 }
592 return (error);
593 }
594
595 static int
ieee80211_validate_frame(struct mbuf * m,const struct ieee80211_bpf_params * params)596 ieee80211_validate_frame(struct mbuf *m,
597 const struct ieee80211_bpf_params *params)
598 {
599 struct ieee80211_frame *wh;
600 int type;
601
602 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
603 return (EINVAL);
604
605 wh = mtod(m, struct ieee80211_frame *);
606 if (!IEEE80211_IS_FC0_CHECK_VER(wh, IEEE80211_FC0_VERSION_0))
607 return (EINVAL);
608
609 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
610 if (type != IEEE80211_FC0_TYPE_DATA) {
611 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
612 IEEE80211_FC1_DIR_NODS)
613 return (EINVAL);
614
615 if (type != IEEE80211_FC0_TYPE_MGT &&
616 (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
617 return (EINVAL);
618
619 /* XXX skip other field checks? */
620 }
621
622 if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
623 (IEEE80211_IS_PROTECTED(wh))) {
624 int subtype;
625
626 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
627
628 /*
629 * See IEEE Std 802.11-2012,
630 * 8.2.4.1.9 'Protected Frame field'
631 */
632 /* XXX no support for robust management frames yet. */
633 if (!(type == IEEE80211_FC0_TYPE_DATA ||
634 (type == IEEE80211_FC0_TYPE_MGT &&
635 subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
636 return (EINVAL);
637
638 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
639 }
640
641 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
642 return (EINVAL);
643
644 return (0);
645 }
646
647 static int
ieee80211_validate_rate(struct ieee80211_node * ni,uint8_t rate)648 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate)
649 {
650 struct ieee80211com *ic = ni->ni_ic;
651
652 if (IEEE80211_IS_HT_RATE(rate)) {
653 if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0)
654 return (EINVAL);
655
656 rate = IEEE80211_RV(rate);
657 if (rate <= 31) {
658 if (rate > ic->ic_txstream * 8 - 1)
659 return (EINVAL);
660
661 return (0);
662 }
663
664 if (rate == 32) {
665 if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
666 return (EINVAL);
667
668 return (0);
669 }
670
671 if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0)
672 return (EINVAL);
673
674 switch (ic->ic_txstream) {
675 case 0:
676 case 1:
677 return (EINVAL);
678 case 2:
679 if (rate > 38)
680 return (EINVAL);
681
682 return (0);
683 case 3:
684 if (rate > 52)
685 return (EINVAL);
686
687 return (0);
688 case 4:
689 default:
690 if (rate > 76)
691 return (EINVAL);
692
693 return (0);
694 }
695 }
696
697 if (!ieee80211_isratevalid(ic->ic_rt, rate))
698 return (EINVAL);
699
700 return (0);
701 }
702
703 static int
ieee80211_sanitize_rates(struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_bpf_params * params)704 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m,
705 const struct ieee80211_bpf_params *params)
706 {
707 int error;
708
709 if (!params)
710 return (0); /* nothing to do */
711
712 /* NB: most drivers assume that ibp_rate0 is set (!= 0). */
713 if (params->ibp_rate0 != 0) {
714 error = ieee80211_validate_rate(ni, params->ibp_rate0);
715 if (error != 0)
716 return (error);
717 } else {
718 /* XXX pre-setup some default (e.g., mgmt / mcast) rate */
719 /* XXX __DECONST? */
720 (void) m;
721 }
722
723 if (params->ibp_rate1 != 0 &&
724 (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0)
725 return (error);
726
727 if (params->ibp_rate2 != 0 &&
728 (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0)
729 return (error);
730
731 if (params->ibp_rate3 != 0 &&
732 (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0)
733 return (error);
734
735 return (0);
736 }
737
738 /*
739 * 802.11 output routine. This is (currently) used only to
740 * connect bpf write calls to the 802.11 layer for injecting
741 * raw 802.11 frames.
742 */
743 int
ieee80211_output(struct ifnet * ifp,struct mbuf * m,const struct sockaddr * dst,struct route * ro)744 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
745 const struct sockaddr *dst, struct route *ro)
746 {
747 #define senderr(e) do { error = (e); goto bad;} while (0)
748 const struct ieee80211_bpf_params *params = NULL;
749 struct ieee80211_node *ni = NULL;
750 struct ieee80211vap *vap;
751 struct ieee80211_frame *wh;
752 struct ieee80211com *ic = NULL;
753 int error;
754 int ret;
755
756 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
757 /*
758 * Short-circuit requests if the vap is marked OACTIVE
759 * as this can happen because a packet came down through
760 * ieee80211_start before the vap entered RUN state in
761 * which case it's ok to just drop the frame. This
762 * should not be necessary but callers of if_output don't
763 * check OACTIVE.
764 */
765 senderr(ENETDOWN);
766 }
767 vap = ifp->if_softc;
768 ic = vap->iv_ic;
769 /*
770 * Hand to the 802.3 code if not tagged as
771 * a raw 802.11 frame.
772 */
773 #ifdef __HAIKU__
774 if (!dst || dst->sa_family != AF_IEEE80211)
775 #else
776 if (dst->sa_family != AF_IEEE80211)
777 #endif
778 return vap->iv_output(ifp, m, dst, ro);
779 #ifdef MAC
780 error = mac_ifnet_check_transmit(ifp, m);
781 if (error)
782 senderr(error);
783 #endif
784 if (ifp->if_flags & IFF_MONITOR)
785 senderr(ENETDOWN);
786 if (!IFNET_IS_UP_RUNNING(ifp))
787 senderr(ENETDOWN);
788 if (vap->iv_state == IEEE80211_S_CAC) {
789 IEEE80211_DPRINTF(vap,
790 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
791 "block %s frame in CAC state\n", "raw data");
792 vap->iv_stats.is_tx_badstate++;
793 senderr(EIO); /* XXX */
794 } else if (vap->iv_state == IEEE80211_S_SCAN)
795 senderr(EIO);
796 /* XXX bypass bridge, pfil, carp, etc. */
797
798 /*
799 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
800 * present by setting the sa_len field of the sockaddr (yes,
801 * this is a hack).
802 * NB: we assume sa_data is suitably aligned to cast.
803 */
804 if (dst->sa_len != 0)
805 params = (const struct ieee80211_bpf_params *)dst->sa_data;
806
807 error = ieee80211_validate_frame(m, params);
808 if (error != 0)
809 senderr(error);
810
811 wh = mtod(m, struct ieee80211_frame *);
812
813 /* locate destination node */
814 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
815 case IEEE80211_FC1_DIR_NODS:
816 case IEEE80211_FC1_DIR_FROMDS:
817 ni = ieee80211_find_txnode(vap, wh->i_addr1);
818 break;
819 case IEEE80211_FC1_DIR_TODS:
820 case IEEE80211_FC1_DIR_DSTODS:
821 ni = ieee80211_find_txnode(vap, wh->i_addr3);
822 break;
823 default:
824 senderr(EDOOFUS);
825 }
826 if (ni == NULL) {
827 /*
828 * Permit packets w/ bpf params through regardless
829 * (see below about sa_len).
830 */
831 if (dst->sa_len == 0)
832 senderr(EHOSTUNREACH);
833 ni = ieee80211_ref_node(vap->iv_bss);
834 }
835
836 /*
837 * Sanitize mbuf for net80211 flags leaked from above.
838 *
839 * NB: This must be done before ieee80211_classify as
840 * it marks EAPOL in frames with M_EAPOL.
841 */
842 m->m_flags &= ~M_80211_TX;
843 m->m_flags |= M_ENCAP; /* mark encapsulated */
844
845 if (IEEE80211_IS_DATA(wh)) {
846 /* calculate priority so drivers can find the tx queue */
847 if (ieee80211_classify(ni, m))
848 senderr(EIO); /* XXX */
849
850 /* NB: ieee80211_encap does not include 802.11 header */
851 IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
852 m->m_pkthdr.len - ieee80211_hdrsize(wh));
853 } else
854 M_WME_SETAC(m, WME_AC_BE);
855
856 error = ieee80211_sanitize_rates(ni, m, params);
857 if (error != 0)
858 senderr(error);
859
860 IEEE80211_NODE_STAT(ni, tx_data);
861 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
862 IEEE80211_NODE_STAT(ni, tx_mcast);
863 m->m_flags |= M_MCAST;
864 } else
865 IEEE80211_NODE_STAT(ni, tx_ucast);
866
867 IEEE80211_TX_LOCK(ic);
868 ret = ieee80211_raw_output(vap, ni, m, params);
869 IEEE80211_TX_UNLOCK(ic);
870 return (ret);
871 bad:
872 if (m != NULL)
873 m_freem(m);
874 if (ni != NULL)
875 ieee80211_free_node(ni);
876 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
877 return error;
878 #undef senderr
879 }
880
881 /*
882 * Set the direction field and address fields of an outgoing
883 * frame. Note this should be called early on in constructing
884 * a frame as it sets i_fc[1]; other bits can then be or'd in.
885 */
886 void
ieee80211_send_setup(struct ieee80211_node * ni,struct mbuf * m,int type,int tid,const uint8_t sa[IEEE80211_ADDR_LEN],const uint8_t da[IEEE80211_ADDR_LEN],const uint8_t bssid[IEEE80211_ADDR_LEN])887 ieee80211_send_setup(
888 struct ieee80211_node *ni,
889 struct mbuf *m,
890 int type, int tid,
891 const uint8_t sa[IEEE80211_ADDR_LEN],
892 const uint8_t da[IEEE80211_ADDR_LEN],
893 const uint8_t bssid[IEEE80211_ADDR_LEN])
894 {
895 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
896 struct ieee80211vap *vap = ni->ni_vap;
897 struct ieee80211_tx_ampdu *tap;
898 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
899 ieee80211_seq seqno;
900
901 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
902
903 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
904 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
905 switch (vap->iv_opmode) {
906 case IEEE80211_M_STA:
907 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
908 IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
909 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
910 IEEE80211_ADDR_COPY(wh->i_addr3, da);
911 break;
912 case IEEE80211_M_IBSS:
913 case IEEE80211_M_AHDEMO:
914 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
915 IEEE80211_ADDR_COPY(wh->i_addr1, da);
916 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
917 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
918 break;
919 case IEEE80211_M_HOSTAP:
920 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
921 IEEE80211_ADDR_COPY(wh->i_addr1, da);
922 IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
923 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
924 break;
925 case IEEE80211_M_WDS:
926 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
927 IEEE80211_ADDR_COPY(wh->i_addr1, da);
928 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
929 IEEE80211_ADDR_COPY(wh->i_addr3, da);
930 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
931 break;
932 case IEEE80211_M_MBSS:
933 #ifdef IEEE80211_SUPPORT_MESH
934 if (IEEE80211_IS_MULTICAST(da)) {
935 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
936 /* XXX next hop */
937 IEEE80211_ADDR_COPY(wh->i_addr1, da);
938 IEEE80211_ADDR_COPY(wh->i_addr2,
939 vap->iv_myaddr);
940 } else {
941 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
942 IEEE80211_ADDR_COPY(wh->i_addr1, da);
943 IEEE80211_ADDR_COPY(wh->i_addr2,
944 vap->iv_myaddr);
945 IEEE80211_ADDR_COPY(wh->i_addr3, da);
946 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
947 }
948 #endif
949 break;
950 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
951 break;
952 }
953 } else {
954 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
955 IEEE80211_ADDR_COPY(wh->i_addr1, da);
956 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
957 #ifdef IEEE80211_SUPPORT_MESH
958 if (vap->iv_opmode == IEEE80211_M_MBSS)
959 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
960 else
961 #endif
962 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
963 }
964 *(uint16_t *)&wh->i_dur[0] = 0;
965
966 /*
967 * XXX TODO: this is what the TX lock is for.
968 * Here we're incrementing sequence numbers, and they
969 * need to be in lock-step with what the driver is doing
970 * both in TX ordering and crypto encap (IV increment.)
971 *
972 * If the driver does seqno itself, then we can skip
973 * assigning sequence numbers here, and we can avoid
974 * requiring the TX lock.
975 */
976 tap = &ni->ni_tx_ampdu[tid];
977 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
978 m->m_flags |= M_AMPDU_MPDU;
979
980 /* NB: zero out i_seq field (for s/w encryption etc) */
981 *(uint16_t *)&wh->i_seq[0] = 0;
982 } else {
983 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
984 type & IEEE80211_FC0_SUBTYPE_MASK))
985 /*
986 * 802.11-2012 9.3.2.10 - QoS multicast frames
987 * come out of a different seqno space.
988 */
989 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
990 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
991 } else {
992 seqno = ni->ni_txseqs[tid]++;
993 }
994 else
995 seqno = 0;
996
997 *(uint16_t *)&wh->i_seq[0] =
998 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
999 M_SEQNO_SET(m, seqno);
1000 }
1001
1002 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1003 m->m_flags |= M_MCAST;
1004 #undef WH4
1005 }
1006
1007 /*
1008 * Send a management frame to the specified node. The node pointer
1009 * must have a reference as the pointer will be passed to the driver
1010 * and potentially held for a long time. If the frame is successfully
1011 * dispatched to the driver, then it is responsible for freeing the
1012 * reference (and potentially free'ing up any associated storage);
1013 * otherwise deal with reclaiming any reference (on error).
1014 */
1015 int
ieee80211_mgmt_output(struct ieee80211_node * ni,struct mbuf * m,int type,struct ieee80211_bpf_params * params)1016 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
1017 struct ieee80211_bpf_params *params)
1018 {
1019 struct ieee80211vap *vap = ni->ni_vap;
1020 struct ieee80211com *ic = ni->ni_ic;
1021 struct ieee80211_frame *wh;
1022 int ret;
1023
1024 KASSERT(ni != NULL, ("null node"));
1025
1026 if (vap->iv_state == IEEE80211_S_CAC) {
1027 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1028 ni, "block %s frame in CAC state",
1029 ieee80211_mgt_subtype_name(type));
1030 vap->iv_stats.is_tx_badstate++;
1031 ieee80211_free_node(ni);
1032 m_freem(m);
1033 return EIO; /* XXX */
1034 }
1035
1036 M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
1037 if (m == NULL) {
1038 ieee80211_free_node(ni);
1039 return ENOMEM;
1040 }
1041
1042 IEEE80211_TX_LOCK(ic);
1043
1044 wh = mtod(m, struct ieee80211_frame *);
1045 ieee80211_send_setup(ni, m,
1046 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
1047 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1048 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
1049 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
1050 "encrypting frame (%s)", __func__);
1051 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1052 }
1053 m->m_flags |= M_ENCAP; /* mark encapsulated */
1054
1055 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
1056 M_WME_SETAC(m, params->ibp_pri);
1057
1058 #ifdef IEEE80211_DEBUG
1059 /* avoid printing too many frames */
1060 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
1061 ieee80211_msg_dumppkts(vap)) {
1062 ieee80211_note(vap, "[%s] send %s on channel %u\n",
1063 ether_sprintf(wh->i_addr1),
1064 ieee80211_mgt_subtype_name(type),
1065 ieee80211_chan2ieee(ic, ic->ic_curchan));
1066 }
1067 #endif
1068 IEEE80211_NODE_STAT(ni, tx_mgmt);
1069
1070 ret = ieee80211_raw_output(vap, ni, m, params);
1071 IEEE80211_TX_UNLOCK(ic);
1072 return (ret);
1073 }
1074
1075 static void
ieee80211_nulldata_transmitted(struct ieee80211_node * ni,void * arg,int status)1076 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
1077 int status)
1078 {
1079 struct ieee80211vap *vap = ni->ni_vap;
1080
1081 wakeup(vap);
1082 }
1083
1084 /*
1085 * Send a null data frame to the specified node. If the station
1086 * is setup for QoS then a QoS Null Data frame is constructed.
1087 * If this is a WDS station then a 4-address frame is constructed.
1088 *
1089 * NB: the caller is assumed to have setup a node reference
1090 * for use; this is necessary to deal with a race condition
1091 * when probing for inactive stations. Like ieee80211_mgmt_output
1092 * we must cleanup any node reference on error; however we
1093 * can safely just unref it as we know it will never be the
1094 * last reference to the node.
1095 */
1096 int
ieee80211_send_nulldata(struct ieee80211_node * ni)1097 ieee80211_send_nulldata(struct ieee80211_node *ni)
1098 {
1099 struct ieee80211vap *vap = ni->ni_vap;
1100 struct ieee80211com *ic = ni->ni_ic;
1101 struct mbuf *m;
1102 struct ieee80211_frame *wh;
1103 int hdrlen;
1104 uint8_t *frm;
1105 int ret;
1106
1107 if (vap->iv_state == IEEE80211_S_CAC) {
1108 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1109 ni, "block %s frame in CAC state", "null data");
1110 ieee80211_node_decref(ni);
1111 vap->iv_stats.is_tx_badstate++;
1112 return EIO; /* XXX */
1113 }
1114
1115 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
1116 hdrlen = sizeof(struct ieee80211_qosframe);
1117 else
1118 hdrlen = sizeof(struct ieee80211_frame);
1119 /* NB: only WDS vap's get 4-address frames */
1120 if (vap->iv_opmode == IEEE80211_M_WDS)
1121 hdrlen += IEEE80211_ADDR_LEN;
1122 if (ic->ic_flags & IEEE80211_F_DATAPAD)
1123 hdrlen = roundup(hdrlen, sizeof(uint32_t));
1124
1125 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
1126 if (m == NULL) {
1127 /* XXX debug msg */
1128 ieee80211_node_decref(ni);
1129 vap->iv_stats.is_tx_nobuf++;
1130 return ENOMEM;
1131 }
1132 KASSERT(M_LEADINGSPACE(m) >= hdrlen,
1133 ("leading space %zd", M_LEADINGSPACE(m)));
1134 M_PREPEND(m, hdrlen, IEEE80211_M_NOWAIT);
1135 if (m == NULL) {
1136 /* NB: cannot happen */
1137 ieee80211_free_node(ni);
1138 return ENOMEM;
1139 }
1140
1141 IEEE80211_TX_LOCK(ic);
1142
1143 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */
1144 if (ni->ni_flags & IEEE80211_NODE_QOS) {
1145 const int tid = WME_AC_TO_TID(WME_AC_BE);
1146 uint8_t *qos;
1147
1148 ieee80211_send_setup(ni, m,
1149 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1150 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1151
1152 if (vap->iv_opmode == IEEE80211_M_WDS)
1153 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1154 else
1155 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1156 qos[0] = tid & IEEE80211_QOS_TID;
1157 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1158 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1159 qos[1] = 0;
1160 } else {
1161 ieee80211_send_setup(ni, m,
1162 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1163 IEEE80211_NONQOS_TID,
1164 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1165 }
1166 if (vap->iv_opmode != IEEE80211_M_WDS) {
1167 /* NB: power management bit is never sent by an AP */
1168 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1169 vap->iv_opmode != IEEE80211_M_HOSTAP)
1170 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1171 }
1172 if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1173 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1174 ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1175 NULL);
1176 }
1177 m->m_len = m->m_pkthdr.len = hdrlen;
1178 m->m_flags |= M_ENCAP; /* mark encapsulated */
1179
1180 M_WME_SETAC(m, WME_AC_BE);
1181
1182 IEEE80211_NODE_STAT(ni, tx_data);
1183
1184 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1185 "send %snull data frame on channel %u, pwr mgt %s",
1186 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1187 ieee80211_chan2ieee(ic, ic->ic_curchan),
1188 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1189
1190 ret = ieee80211_raw_output(vap, ni, m, NULL);
1191 IEEE80211_TX_UNLOCK(ic);
1192 return (ret);
1193 }
1194
1195 /*
1196 * Assign priority to a frame based on any vlan tag assigned
1197 * to the station and/or any Diffserv setting in an IP header.
1198 * Finally, if an ACM policy is setup (in station mode) it's
1199 * applied.
1200 */
1201 int
ieee80211_classify(struct ieee80211_node * ni,struct mbuf * m)1202 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1203 {
1204 const struct ether_header *eh = NULL;
1205 uint16_t ether_type;
1206 int v_wme_ac, d_wme_ac, ac;
1207
1208 if (__predict_false(m->m_flags & M_ENCAP)) {
1209 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1210 struct llc *llc;
1211 int hdrlen, subtype;
1212
1213 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1214 if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
1215 ac = WME_AC_BE;
1216 goto done;
1217 }
1218
1219 hdrlen = ieee80211_hdrsize(wh);
1220 if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
1221 return 1;
1222
1223 llc = (struct llc *)mtodo(m, hdrlen);
1224 if (llc->llc_dsap != LLC_SNAP_LSAP ||
1225 llc->llc_ssap != LLC_SNAP_LSAP ||
1226 llc->llc_control != LLC_UI ||
1227 llc->llc_snap.org_code[0] != 0 ||
1228 llc->llc_snap.org_code[1] != 0 ||
1229 llc->llc_snap.org_code[2] != 0)
1230 return 1;
1231
1232 ether_type = llc->llc_snap.ether_type;
1233 } else {
1234 eh = mtod(m, struct ether_header *);
1235 ether_type = eh->ether_type;
1236 }
1237
1238 /*
1239 * Always promote PAE/EAPOL frames to high priority.
1240 */
1241 if (ether_type == htons(ETHERTYPE_PAE)) {
1242 /* NB: mark so others don't need to check header */
1243 m->m_flags |= M_EAPOL;
1244 ac = WME_AC_VO;
1245 goto done;
1246 }
1247 /*
1248 * Non-qos traffic goes to BE.
1249 */
1250 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1251 ac = WME_AC_BE;
1252 goto done;
1253 }
1254
1255 /*
1256 * If node has a vlan tag then all traffic
1257 * to it must have a matching tag.
1258 */
1259 v_wme_ac = 0;
1260 if (ni->ni_vlan != 0) {
1261 if ((m->m_flags & M_VLANTAG) == 0) {
1262 IEEE80211_NODE_STAT(ni, tx_novlantag);
1263 return 1;
1264 }
1265 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1266 EVL_VLANOFTAG(ni->ni_vlan)) {
1267 IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1268 return 1;
1269 }
1270 /* map vlan priority to AC */
1271 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1272 }
1273
1274 if (eh == NULL)
1275 goto no_eh;
1276
1277 /* XXX m_copydata may be too slow for fast path */
1278 switch (ntohs(eh->ether_type)) {
1279 #ifdef INET
1280 case ETHERTYPE_IP:
1281 {
1282 uint8_t tos;
1283 /*
1284 * IP frame, map the DSCP bits from the TOS field.
1285 */
1286 /* NB: ip header may not be in first mbuf */
1287 m_copydata(m, sizeof(struct ether_header) +
1288 offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1289 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
1290 d_wme_ac = TID_TO_WME_AC(tos);
1291 break;
1292 }
1293 #endif
1294 #ifdef INET6
1295 case ETHERTYPE_IPV6:
1296 {
1297 uint32_t flow;
1298 uint8_t tos;
1299 /*
1300 * IPv6 frame, map the DSCP bits from the traffic class field.
1301 */
1302 m_copydata(m, sizeof(struct ether_header) +
1303 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1304 (caddr_t) &flow);
1305 tos = (uint8_t)(ntohl(flow) >> 20);
1306 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
1307 d_wme_ac = TID_TO_WME_AC(tos);
1308 break;
1309 }
1310 #endif
1311 default:
1312 no_eh:
1313 d_wme_ac = WME_AC_BE;
1314 break;
1315 }
1316
1317 /*
1318 * Use highest priority AC.
1319 */
1320 if (v_wme_ac > d_wme_ac)
1321 ac = v_wme_ac;
1322 else
1323 ac = d_wme_ac;
1324
1325 /*
1326 * Apply ACM policy.
1327 */
1328 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1329 static const int acmap[4] = {
1330 WME_AC_BK, /* WME_AC_BE */
1331 WME_AC_BK, /* WME_AC_BK */
1332 WME_AC_BE, /* WME_AC_VI */
1333 WME_AC_VI, /* WME_AC_VO */
1334 };
1335 struct ieee80211com *ic = ni->ni_ic;
1336
1337 while (ac != WME_AC_BK &&
1338 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1339 ac = acmap[ac];
1340 }
1341 done:
1342 M_WME_SETAC(m, ac);
1343 return 0;
1344 }
1345
1346 /*
1347 * Insure there is sufficient contiguous space to encapsulate the
1348 * 802.11 data frame. If room isn't already there, arrange for it.
1349 * Drivers and cipher modules assume we have done the necessary work
1350 * and fail rudely if they don't find the space they need.
1351 */
1352 struct mbuf *
ieee80211_mbuf_adjust(struct ieee80211vap * vap,int hdrsize,struct ieee80211_key * key,struct mbuf * m)1353 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1354 struct ieee80211_key *key, struct mbuf *m)
1355 {
1356 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
1357 int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1358
1359 if (key != NULL) {
1360 /* XXX belongs in crypto code? */
1361 needed_space += key->wk_cipher->ic_header;
1362 /* XXX frags */
1363 /*
1364 * When crypto is being done in the host we must insure
1365 * the data are writable for the cipher routines; clone
1366 * a writable mbuf chain.
1367 * XXX handle SWMIC specially
1368 */
1369 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1370 m = m_unshare(m, IEEE80211_M_NOWAIT);
1371 if (m == NULL) {
1372 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1373 "%s: cannot get writable mbuf\n", __func__);
1374 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1375 return NULL;
1376 }
1377 }
1378 }
1379 /*
1380 * We know we are called just before stripping an Ethernet
1381 * header and prepending an LLC header. This means we know
1382 * there will be
1383 * sizeof(struct ether_header) - sizeof(struct llc)
1384 * bytes recovered to which we need additional space for the
1385 * 802.11 header and any crypto header.
1386 */
1387 /* XXX check trailing space and copy instead? */
1388 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1389 struct mbuf *n = m_gethdr(IEEE80211_M_NOWAIT, m->m_type);
1390 if (n == NULL) {
1391 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1392 "%s: cannot expand storage\n", __func__);
1393 vap->iv_stats.is_tx_nobuf++;
1394 m_freem(m);
1395 return NULL;
1396 }
1397 KASSERT(needed_space <= MHLEN,
1398 ("not enough room, need %u got %d\n", needed_space, MHLEN));
1399 /*
1400 * Setup new mbuf to have leading space to prepend the
1401 * 802.11 header and any crypto header bits that are
1402 * required (the latter are added when the driver calls
1403 * back to ieee80211_crypto_encap to do crypto encapsulation).
1404 */
1405 /* NB: must be first 'cuz it clobbers m_data */
1406 m_move_pkthdr(n, m);
1407 n->m_len = 0; /* NB: m_gethdr does not set */
1408 n->m_data += needed_space;
1409 /*
1410 * Pull up Ethernet header to create the expected layout.
1411 * We could use m_pullup but that's overkill (i.e. we don't
1412 * need the actual data) and it cannot fail so do it inline
1413 * for speed.
1414 */
1415 /* NB: struct ether_header is known to be contiguous */
1416 n->m_len += sizeof(struct ether_header);
1417 m->m_len -= sizeof(struct ether_header);
1418 m->m_data += sizeof(struct ether_header);
1419 /*
1420 * Replace the head of the chain.
1421 */
1422 n->m_next = m;
1423 m = n;
1424 }
1425 return m;
1426 #undef TO_BE_RECLAIMED
1427 }
1428
1429 /*
1430 * Return the transmit key to use in sending a unicast frame.
1431 * If a unicast key is set we use that. When no unicast key is set
1432 * we fall back to the default transmit key.
1433 */
1434 static __inline struct ieee80211_key *
ieee80211_crypto_getucastkey(struct ieee80211vap * vap,struct ieee80211_node * ni)1435 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1436 struct ieee80211_node *ni)
1437 {
1438 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1439 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1440 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1441 return NULL;
1442 return &vap->iv_nw_keys[vap->iv_def_txkey];
1443 } else {
1444 return &ni->ni_ucastkey;
1445 }
1446 }
1447
1448 /*
1449 * Return the transmit key to use in sending a multicast frame.
1450 * Multicast traffic always uses the group key which is installed as
1451 * the default tx key.
1452 */
1453 static __inline struct ieee80211_key *
ieee80211_crypto_getmcastkey(struct ieee80211vap * vap,struct ieee80211_node * ni)1454 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1455 struct ieee80211_node *ni)
1456 {
1457 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1458 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1459 return NULL;
1460 return &vap->iv_nw_keys[vap->iv_def_txkey];
1461 }
1462
1463 /*
1464 * Encapsulate an outbound data frame. The mbuf chain is updated.
1465 * If an error is encountered NULL is returned. The caller is required
1466 * to provide a node reference and pullup the ethernet header in the
1467 * first mbuf.
1468 *
1469 * NB: Packet is assumed to be processed by ieee80211_classify which
1470 * marked EAPOL frames w/ M_EAPOL.
1471 */
1472 struct mbuf *
ieee80211_encap(struct ieee80211vap * vap,struct ieee80211_node * ni,struct mbuf * m)1473 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1474 struct mbuf *m)
1475 {
1476 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh))
1477 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc)
1478 struct ieee80211com *ic = ni->ni_ic;
1479 #ifdef IEEE80211_SUPPORT_MESH
1480 struct ieee80211_mesh_state *ms = vap->iv_mesh;
1481 struct ieee80211_meshcntl_ae10 *mc;
1482 struct ieee80211_mesh_route *rt = NULL;
1483 int dir = -1;
1484 #endif
1485 struct ether_header eh;
1486 struct ieee80211_frame *wh;
1487 struct ieee80211_key *key;
1488 struct llc *llc;
1489 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1490 ieee80211_seq seqno;
1491 int meshhdrsize, meshae;
1492 uint8_t *qos;
1493 int is_amsdu = 0;
1494
1495 IEEE80211_TX_LOCK_ASSERT(ic);
1496
1497 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1498
1499 /*
1500 * Copy existing Ethernet header to a safe place. The
1501 * rest of the code assumes it's ok to strip it when
1502 * reorganizing state for the final encapsulation.
1503 */
1504 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1505 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1506
1507 /*
1508 * Insure space for additional headers. First identify
1509 * transmit key to use in calculating any buffer adjustments
1510 * required. This is also used below to do privacy
1511 * encapsulation work. Then calculate the 802.11 header
1512 * size and any padding required by the driver.
1513 *
1514 * Note key may be NULL if we fall back to the default
1515 * transmit key and that is not set. In that case the
1516 * buffer may not be expanded as needed by the cipher
1517 * routines, but they will/should discard it.
1518 */
1519 if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1520 if (vap->iv_opmode == IEEE80211_M_STA ||
1521 !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1522 (vap->iv_opmode == IEEE80211_M_WDS &&
1523 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1524 key = ieee80211_crypto_getucastkey(vap, ni);
1525 } else if ((vap->iv_opmode == IEEE80211_M_WDS) &&
1526 (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1527 /*
1528 * Use ucastkey for DWDS transmit nodes, multicast
1529 * or otherwise.
1530 *
1531 * This is required to ensure that multicast frames
1532 * from a DWDS AP to a DWDS STA is encrypted with
1533 * a key that can actually work.
1534 *
1535 * There's no default key for multicast traffic
1536 * on a DWDS WDS VAP node (note NOT the DWDS enabled
1537 * AP VAP, the dynamically created per-STA WDS node)
1538 * so encap fails and transmit fails.
1539 */
1540 key = ieee80211_crypto_getucastkey(vap, ni);
1541 } else {
1542 key = ieee80211_crypto_getmcastkey(vap, ni);
1543 }
1544 if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1545 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1546 eh.ether_dhost,
1547 "no default transmit key (%s) deftxkey %u",
1548 __func__, vap->iv_def_txkey);
1549 vap->iv_stats.is_tx_nodefkey++;
1550 goto bad;
1551 }
1552 } else
1553 key = NULL;
1554 /*
1555 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1556 * frames so suppress use. This may be an issue if other
1557 * ap's require all data frames to be QoS-encapsulated
1558 * once negotiated in which case we'll need to make this
1559 * configurable.
1560 *
1561 * Don't send multicast QoS frames.
1562 * Technically multicast frames can be QoS if all stations in the
1563 * BSS are also QoS.
1564 *
1565 * NB: mesh data frames are QoS, including multicast frames.
1566 */
1567 addqos =
1568 (((is_mcast == 0) && (ni->ni_flags &
1569 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1570 (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1571 (m->m_flags & M_EAPOL) == 0;
1572
1573 if (addqos)
1574 hdrsize = sizeof(struct ieee80211_qosframe);
1575 else
1576 hdrsize = sizeof(struct ieee80211_frame);
1577 #ifdef IEEE80211_SUPPORT_MESH
1578 if (vap->iv_opmode == IEEE80211_M_MBSS) {
1579 /*
1580 * Mesh data frames are encapsulated according to the
1581 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1582 * o Group Addressed data (aka multicast) originating
1583 * at the local sta are sent w/ 3-address format and
1584 * address extension mode 00
1585 * o Individually Addressed data (aka unicast) originating
1586 * at the local sta are sent w/ 4-address format and
1587 * address extension mode 00
1588 * o Group Addressed data forwarded from a non-mesh sta are
1589 * sent w/ 3-address format and address extension mode 01
1590 * o Individually Address data from another sta are sent
1591 * w/ 4-address format and address extension mode 10
1592 */
1593 is4addr = 0; /* NB: don't use, disable */
1594 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1595 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1596 KASSERT(rt != NULL, ("route is NULL"));
1597 dir = IEEE80211_FC1_DIR_DSTODS;
1598 hdrsize += IEEE80211_ADDR_LEN;
1599 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1600 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1601 vap->iv_myaddr)) {
1602 IEEE80211_NOTE_MAC(vap,
1603 IEEE80211_MSG_MESH,
1604 eh.ether_dhost,
1605 "%s", "trying to send to ourself");
1606 goto bad;
1607 }
1608 meshae = IEEE80211_MESH_AE_10;
1609 meshhdrsize =
1610 sizeof(struct ieee80211_meshcntl_ae10);
1611 } else {
1612 meshae = IEEE80211_MESH_AE_00;
1613 meshhdrsize =
1614 sizeof(struct ieee80211_meshcntl);
1615 }
1616 } else {
1617 dir = IEEE80211_FC1_DIR_FROMDS;
1618 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1619 /* proxy group */
1620 meshae = IEEE80211_MESH_AE_01;
1621 meshhdrsize =
1622 sizeof(struct ieee80211_meshcntl_ae01);
1623 } else {
1624 /* group */
1625 meshae = IEEE80211_MESH_AE_00;
1626 meshhdrsize = sizeof(struct ieee80211_meshcntl);
1627 }
1628 }
1629 } else {
1630 #endif
1631 /*
1632 * 4-address frames need to be generated for:
1633 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1634 * o packets sent through a vap marked for relaying
1635 * (e.g. a station operating with dynamic WDS)
1636 */
1637 is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1638 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1639 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1640 if (is4addr)
1641 hdrsize += IEEE80211_ADDR_LEN;
1642 meshhdrsize = meshae = 0;
1643 #ifdef IEEE80211_SUPPORT_MESH
1644 }
1645 #endif
1646 /*
1647 * Honor driver DATAPAD requirement.
1648 */
1649 if (ic->ic_flags & IEEE80211_F_DATAPAD)
1650 hdrspace = roundup(hdrsize, sizeof(uint32_t));
1651 else
1652 hdrspace = hdrsize;
1653
1654 if (__predict_true((m->m_flags & M_FF) == 0)) {
1655 /*
1656 * Normal frame.
1657 */
1658 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1659 if (m == NULL) {
1660 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1661 goto bad;
1662 }
1663 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1664 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1665 llc = mtod(m, struct llc *);
1666 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1667 llc->llc_control = LLC_UI;
1668 llc->llc_snap.org_code[0] = 0;
1669 llc->llc_snap.org_code[1] = 0;
1670 llc->llc_snap.org_code[2] = 0;
1671 llc->llc_snap.ether_type = eh.ether_type;
1672 } else {
1673 #ifdef IEEE80211_SUPPORT_SUPERG
1674 /*
1675 * Aggregated frame. Check if it's for AMSDU or FF.
1676 *
1677 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1678 * anywhere for some reason. But, since 11n requires
1679 * AMSDU RX, we can just assume "11n" == "AMSDU".
1680 */
1681 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1682 if (ieee80211_amsdu_tx_ok(ni)) {
1683 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1684 is_amsdu = 1;
1685 } else {
1686 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1687 }
1688 if (m == NULL)
1689 #endif
1690 goto bad;
1691 }
1692 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
1693
1694 M_PREPEND(m, hdrspace + meshhdrsize, IEEE80211_M_NOWAIT);
1695 if (m == NULL) {
1696 vap->iv_stats.is_tx_nobuf++;
1697 goto bad;
1698 }
1699 wh = mtod(m, struct ieee80211_frame *);
1700 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1701 *(uint16_t *)wh->i_dur = 0;
1702 qos = NULL; /* NB: quiet compiler */
1703 if (is4addr) {
1704 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1705 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1706 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1707 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1708 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1709 } else switch (vap->iv_opmode) {
1710 case IEEE80211_M_STA:
1711 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1712 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1713 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1714 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1715 break;
1716 case IEEE80211_M_IBSS:
1717 case IEEE80211_M_AHDEMO:
1718 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1719 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1720 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1721 /*
1722 * NB: always use the bssid from iv_bss as the
1723 * neighbor's may be stale after an ibss merge
1724 */
1725 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1726 break;
1727 case IEEE80211_M_HOSTAP:
1728 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1729 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1730 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1731 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1732 break;
1733 #ifdef IEEE80211_SUPPORT_MESH
1734 case IEEE80211_M_MBSS:
1735 /* NB: offset by hdrspace to deal with DATAPAD */
1736 mc = (struct ieee80211_meshcntl_ae10 *)
1737 (mtod(m, uint8_t *) + hdrspace);
1738 wh->i_fc[1] = dir;
1739 switch (meshae) {
1740 case IEEE80211_MESH_AE_00: /* no proxy */
1741 mc->mc_flags = 0;
1742 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1743 IEEE80211_ADDR_COPY(wh->i_addr1,
1744 ni->ni_macaddr);
1745 IEEE80211_ADDR_COPY(wh->i_addr2,
1746 vap->iv_myaddr);
1747 IEEE80211_ADDR_COPY(wh->i_addr3,
1748 eh.ether_dhost);
1749 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1750 eh.ether_shost);
1751 qos =((struct ieee80211_qosframe_addr4 *)
1752 wh)->i_qos;
1753 } else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1754 /* mcast */
1755 IEEE80211_ADDR_COPY(wh->i_addr1,
1756 eh.ether_dhost);
1757 IEEE80211_ADDR_COPY(wh->i_addr2,
1758 vap->iv_myaddr);
1759 IEEE80211_ADDR_COPY(wh->i_addr3,
1760 eh.ether_shost);
1761 qos = ((struct ieee80211_qosframe *)
1762 wh)->i_qos;
1763 }
1764 break;
1765 case IEEE80211_MESH_AE_01: /* mcast, proxy */
1766 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1767 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1768 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1769 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1770 mc->mc_flags = 1;
1771 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1772 eh.ether_shost);
1773 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1774 break;
1775 case IEEE80211_MESH_AE_10: /* ucast, proxy */
1776 KASSERT(rt != NULL, ("route is NULL"));
1777 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1778 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1779 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1780 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1781 mc->mc_flags = IEEE80211_MESH_AE_10;
1782 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1783 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1784 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1785 break;
1786 default:
1787 KASSERT(0, ("meshae %d", meshae));
1788 break;
1789 }
1790 mc->mc_ttl = ms->ms_ttl;
1791 ms->ms_seq++;
1792 le32enc(mc->mc_seq, ms->ms_seq);
1793 break;
1794 #endif
1795 case IEEE80211_M_WDS: /* NB: is4addr should always be true */
1796 default:
1797 goto bad;
1798 }
1799 if (m->m_flags & M_MORE_DATA)
1800 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1801 if (addqos) {
1802 int ac, tid;
1803
1804 if (is4addr) {
1805 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1806 /* NB: mesh case handled earlier */
1807 } else if (vap->iv_opmode != IEEE80211_M_MBSS)
1808 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1809 ac = M_WME_GETAC(m);
1810 /* map from access class/queue to 11e header priorty value */
1811 tid = WME_AC_TO_TID(ac);
1812 qos[0] = tid & IEEE80211_QOS_TID;
1813 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1814 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1815 #ifdef IEEE80211_SUPPORT_MESH
1816 if (vap->iv_opmode == IEEE80211_M_MBSS)
1817 qos[1] = IEEE80211_QOS_MC;
1818 else
1819 #endif
1820 qos[1] = 0;
1821 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS_DATA;
1822
1823 /*
1824 * If this is an A-MSDU then ensure we set the
1825 * relevant field.
1826 */
1827 if (is_amsdu)
1828 qos[0] |= IEEE80211_QOS_AMSDU;
1829
1830 /*
1831 * XXX TODO TX lock is needed for atomic updates of sequence
1832 * numbers. If the driver does it, then don't do it here;
1833 * and we don't need the TX lock held.
1834 */
1835 if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1836 /*
1837 * 802.11-2012 9.3.2.10 -
1838 *
1839 * If this is a multicast frame then we need
1840 * to ensure that the sequence number comes from
1841 * a separate seqno space and not the TID space.
1842 *
1843 * Otherwise multicast frames may actually cause
1844 * holes in the TX blockack window space and
1845 * upset various things.
1846 */
1847 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1848 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1849 else
1850 seqno = ni->ni_txseqs[tid]++;
1851
1852 /*
1853 * NB: don't assign a sequence # to potential
1854 * aggregates; we expect this happens at the
1855 * point the frame comes off any aggregation q
1856 * as otherwise we may introduce holes in the
1857 * BA sequence space and/or make window accouting
1858 * more difficult.
1859 *
1860 * XXX may want to control this with a driver
1861 * capability; this may also change when we pull
1862 * aggregation up into net80211
1863 */
1864 *(uint16_t *)wh->i_seq =
1865 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1866 M_SEQNO_SET(m, seqno);
1867 } else {
1868 /* NB: zero out i_seq field (for s/w encryption etc) */
1869 *(uint16_t *)wh->i_seq = 0;
1870 }
1871 } else {
1872 /*
1873 * XXX TODO TX lock is needed for atomic updates of sequence
1874 * numbers. If the driver does it, then don't do it here;
1875 * and we don't need the TX lock held.
1876 */
1877 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1878 *(uint16_t *)wh->i_seq =
1879 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1880 M_SEQNO_SET(m, seqno);
1881
1882 /*
1883 * XXX TODO: we shouldn't allow EAPOL, etc that would
1884 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1885 */
1886 if (is_amsdu)
1887 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1888 __func__);
1889 }
1890
1891 /*
1892 * Check if xmit fragmentation is required.
1893 *
1894 * If the hardware does fragmentation offload, then don't bother
1895 * doing it here.
1896 */
1897 if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1898 txfrag = 0;
1899 else
1900 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1901 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1902 (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1903 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1904
1905 if (key != NULL) {
1906 /*
1907 * IEEE 802.1X: send EAPOL frames always in the clear.
1908 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1909 */
1910 if ((m->m_flags & M_EAPOL) == 0 ||
1911 ((vap->iv_flags & IEEE80211_F_WPA) &&
1912 (vap->iv_opmode == IEEE80211_M_STA ?
1913 !IEEE80211_KEY_UNDEFINED(key) :
1914 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1915 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1916 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1917 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1918 eh.ether_dhost,
1919 "%s", "enmic failed, discard frame");
1920 vap->iv_stats.is_crypto_enmicfail++;
1921 goto bad;
1922 }
1923 }
1924 }
1925 if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1926 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1927 goto bad;
1928
1929 m->m_flags |= M_ENCAP; /* mark encapsulated */
1930
1931 IEEE80211_NODE_STAT(ni, tx_data);
1932 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1933 IEEE80211_NODE_STAT(ni, tx_mcast);
1934 m->m_flags |= M_MCAST;
1935 } else
1936 IEEE80211_NODE_STAT(ni, tx_ucast);
1937 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1938
1939 return m;
1940 bad:
1941 if (m != NULL)
1942 m_freem(m);
1943 return NULL;
1944 #undef WH4
1945 #undef MC01
1946 }
1947
1948 void
ieee80211_free_mbuf(struct mbuf * m)1949 ieee80211_free_mbuf(struct mbuf *m)
1950 {
1951 struct mbuf *next;
1952
1953 if (m == NULL)
1954 return;
1955
1956 do {
1957 next = m->m_nextpkt;
1958 m->m_nextpkt = NULL;
1959 m_freem(m);
1960 } while ((m = next) != NULL);
1961 }
1962
1963 /*
1964 * Fragment the frame according to the specified mtu.
1965 * The size of the 802.11 header (w/o padding) is provided
1966 * so we don't need to recalculate it. We create a new
1967 * mbuf for each fragment and chain it through m_nextpkt;
1968 * we might be able to optimize this by reusing the original
1969 * packet's mbufs but that is significantly more complicated.
1970 */
1971 static int
ieee80211_fragment(struct ieee80211vap * vap,struct mbuf * m0,u_int hdrsize,u_int ciphdrsize,u_int mtu)1972 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1973 u_int hdrsize, u_int ciphdrsize, u_int mtu)
1974 {
1975 struct ieee80211com *ic = vap->iv_ic;
1976 struct ieee80211_frame *wh, *whf;
1977 struct mbuf *m, *prev;
1978 u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1979 u_int hdrspace;
1980
1981 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1982 KASSERT(m0->m_pkthdr.len > mtu,
1983 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1984
1985 /*
1986 * Honor driver DATAPAD requirement.
1987 */
1988 if (ic->ic_flags & IEEE80211_F_DATAPAD)
1989 hdrspace = roundup(hdrsize, sizeof(uint32_t));
1990 else
1991 hdrspace = hdrsize;
1992
1993 wh = mtod(m0, struct ieee80211_frame *);
1994 /* NB: mark the first frag; it will be propagated below */
1995 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1996 totalhdrsize = hdrspace + ciphdrsize;
1997 fragno = 1;
1998 off = mtu - ciphdrsize;
1999 remainder = m0->m_pkthdr.len - off;
2000 prev = m0;
2001 do {
2002 fragsize = MIN(totalhdrsize + remainder, mtu);
2003 m = m_get2(fragsize, IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR);
2004 if (m == NULL)
2005 goto bad;
2006 /* leave room to prepend any cipher header */
2007 m_align(m, fragsize - ciphdrsize);
2008
2009 /*
2010 * Form the header in the fragment. Note that since
2011 * we mark the first fragment with the MORE_FRAG bit
2012 * it automatically is propagated to each fragment; we
2013 * need only clear it on the last fragment (done below).
2014 * NB: frag 1+ dont have Mesh Control field present.
2015 */
2016 whf = mtod(m, struct ieee80211_frame *);
2017 memcpy(whf, wh, hdrsize);
2018 #ifdef IEEE80211_SUPPORT_MESH
2019 if (vap->iv_opmode == IEEE80211_M_MBSS)
2020 ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC;
2021 #endif
2022 *(uint16_t *)&whf->i_seq[0] |= htole16(
2023 (fragno & IEEE80211_SEQ_FRAG_MASK) <<
2024 IEEE80211_SEQ_FRAG_SHIFT);
2025 fragno++;
2026
2027 payload = fragsize - totalhdrsize;
2028 /* NB: destination is known to be contiguous */
2029
2030 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
2031 m->m_len = hdrspace + payload;
2032 m->m_pkthdr.len = hdrspace + payload;
2033 m->m_flags |= M_FRAG;
2034
2035 /* chain up the fragment */
2036 prev->m_nextpkt = m;
2037 prev = m;
2038
2039 /* deduct fragment just formed */
2040 remainder -= payload;
2041 off += payload;
2042 } while (remainder != 0);
2043
2044 /* set the last fragment */
2045 m->m_flags |= M_LASTFRAG;
2046 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
2047
2048 /* strip first mbuf now that everything has been copied */
2049 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
2050 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
2051
2052 vap->iv_stats.is_tx_fragframes++;
2053 vap->iv_stats.is_tx_frags += fragno-1;
2054
2055 return 1;
2056 bad:
2057 /* reclaim fragments but leave original frame for caller to free */
2058 ieee80211_free_mbuf(m0->m_nextpkt);
2059 m0->m_nextpkt = NULL;
2060 return 0;
2061 }
2062
2063 /*
2064 * Add a supported rates element id to a frame.
2065 */
2066 uint8_t *
ieee80211_add_rates(uint8_t * frm,const struct ieee80211_rateset * rs)2067 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
2068 {
2069 int nrates;
2070
2071 *frm++ = IEEE80211_ELEMID_RATES;
2072 nrates = rs->rs_nrates;
2073 if (nrates > IEEE80211_RATE_SIZE)
2074 nrates = IEEE80211_RATE_SIZE;
2075 *frm++ = nrates;
2076 memcpy(frm, rs->rs_rates, nrates);
2077 return frm + nrates;
2078 }
2079
2080 /*
2081 * Add an extended supported rates element id to a frame.
2082 */
2083 uint8_t *
ieee80211_add_xrates(uint8_t * frm,const struct ieee80211_rateset * rs)2084 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
2085 {
2086 /*
2087 * Add an extended supported rates element if operating in 11g mode.
2088 */
2089 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2090 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2091 *frm++ = IEEE80211_ELEMID_XRATES;
2092 *frm++ = nrates;
2093 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2094 frm += nrates;
2095 }
2096 return frm;
2097 }
2098
2099 /*
2100 * Add an ssid element to a frame.
2101 */
2102 uint8_t *
ieee80211_add_ssid(uint8_t * frm,const uint8_t * ssid,u_int len)2103 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
2104 {
2105 *frm++ = IEEE80211_ELEMID_SSID;
2106 *frm++ = len;
2107 memcpy(frm, ssid, len);
2108 return frm + len;
2109 }
2110
2111 /*
2112 * Add an erp element to a frame.
2113 */
2114 static uint8_t *
ieee80211_add_erp(uint8_t * frm,struct ieee80211vap * vap)2115 ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap)
2116 {
2117 struct ieee80211com *ic = vap->iv_ic;
2118 uint8_t erp;
2119
2120 *frm++ = IEEE80211_ELEMID_ERP;
2121 *frm++ = 1;
2122 erp = 0;
2123
2124 /*
2125 * TODO: This uses the global flags for now because
2126 * the per-VAP flags are fine for per-VAP, but don't
2127 * take into account which VAPs share the same channel
2128 * and which are on different channels.
2129 *
2130 * ERP and HT/VHT protection mode is a function of
2131 * how many stations are on a channel, not specifically
2132 * the VAP or global. But, until we grow that status,
2133 * the global flag will have to do.
2134 */
2135 if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR)
2136 erp |= IEEE80211_ERP_NON_ERP_PRESENT;
2137
2138 /*
2139 * TODO: same as above; these should be based not
2140 * on the vap or ic flags, but instead on a combination
2141 * of per-VAP and channels.
2142 */
2143 if (ic->ic_flags & IEEE80211_F_USEPROT)
2144 erp |= IEEE80211_ERP_USE_PROTECTION;
2145 if (ic->ic_flags & IEEE80211_F_USEBARKER)
2146 erp |= IEEE80211_ERP_LONG_PREAMBLE;
2147 *frm++ = erp;
2148 return frm;
2149 }
2150
2151 /*
2152 * Add a CFParams element to a frame.
2153 */
2154 static uint8_t *
ieee80211_add_cfparms(uint8_t * frm,struct ieee80211com * ic)2155 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
2156 {
2157 #define ADDSHORT(frm, v) do { \
2158 le16enc(frm, v); \
2159 frm += 2; \
2160 } while (0)
2161 *frm++ = IEEE80211_ELEMID_CFPARMS;
2162 *frm++ = 6;
2163 *frm++ = 0; /* CFP count */
2164 *frm++ = 2; /* CFP period */
2165 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */
2166 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */
2167 return frm;
2168 #undef ADDSHORT
2169 }
2170
2171 static __inline uint8_t *
add_appie(uint8_t * frm,const struct ieee80211_appie * ie)2172 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
2173 {
2174 memcpy(frm, ie->ie_data, ie->ie_len);
2175 return frm + ie->ie_len;
2176 }
2177
2178 static __inline uint8_t *
add_ie(uint8_t * frm,const uint8_t * ie)2179 add_ie(uint8_t *frm, const uint8_t *ie)
2180 {
2181 memcpy(frm, ie, 2 + ie[1]);
2182 return frm + 2 + ie[1];
2183 }
2184
2185 #define WME_OUI_BYTES 0x00, 0x50, 0xf2
2186 /*
2187 * Add a WME information element to a frame.
2188 */
2189 uint8_t *
ieee80211_add_wme_info(uint8_t * frm,struct ieee80211_wme_state * wme,struct ieee80211_node * ni)2190 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme,
2191 struct ieee80211_node *ni)
2192 {
2193 static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE };
2194 struct ieee80211vap *vap = ni->ni_vap;
2195
2196 *frm++ = IEEE80211_ELEMID_VENDOR;
2197 *frm++ = sizeof(struct ieee80211_wme_info) - 2;
2198 memcpy(frm, oui, sizeof(oui));
2199 frm += sizeof(oui);
2200 *frm++ = WME_INFO_OUI_SUBTYPE;
2201 *frm++ = WME_VERSION;
2202
2203 /* QoS info field depends upon operating mode */
2204 switch (vap->iv_opmode) {
2205 case IEEE80211_M_HOSTAP:
2206 *frm = wme->wme_bssChanParams.cap_info;
2207 if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)
2208 *frm |= WME_CAPINFO_UAPSD_EN;
2209 frm++;
2210 break;
2211 case IEEE80211_M_STA:
2212 /*
2213 * NB: UAPSD drivers must set this up in their
2214 * VAP creation method.
2215 */
2216 *frm++ = vap->iv_uapsdinfo;
2217 break;
2218 default:
2219 *frm++ = 0;
2220 break;
2221 }
2222
2223 return frm;
2224 }
2225
2226 /*
2227 * Add a WME parameters element to a frame.
2228 */
2229 static uint8_t *
ieee80211_add_wme_param(uint8_t * frm,struct ieee80211_wme_state * wme,int uapsd_enable)2230 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme,
2231 int uapsd_enable)
2232 {
2233 #define ADDSHORT(frm, v) do { \
2234 le16enc(frm, v); \
2235 frm += 2; \
2236 } while (0)
2237 /* NB: this works 'cuz a param has an info at the front */
2238 static const struct ieee80211_wme_info param = {
2239 .wme_id = IEEE80211_ELEMID_VENDOR,
2240 .wme_len = sizeof(struct ieee80211_wme_param) - 2,
2241 .wme_oui = { WME_OUI_BYTES },
2242 .wme_type = WME_OUI_TYPE,
2243 .wme_subtype = WME_PARAM_OUI_SUBTYPE,
2244 .wme_version = WME_VERSION,
2245 };
2246 int i;
2247
2248 memcpy(frm, ¶m, sizeof(param));
2249 frm += __offsetof(struct ieee80211_wme_info, wme_info);
2250 *frm = wme->wme_bssChanParams.cap_info; /* AC info */
2251 if (uapsd_enable)
2252 *frm |= WME_CAPINFO_UAPSD_EN;
2253 frm++;
2254 *frm++ = 0; /* reserved field */
2255 /* XXX TODO - U-APSD bits - SP, flags below */
2256 for (i = 0; i < WME_NUM_AC; i++) {
2257 const struct wmeParams *ac =
2258 &wme->wme_bssChanParams.cap_wmeParams[i];
2259 *frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI)
2260 | _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM)
2261 | _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN)
2262 ;
2263 *frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax,
2264 WME_PARAM_LOGCWMAX)
2265 | _IEEE80211_SHIFTMASK(ac->wmep_logcwmin,
2266 WME_PARAM_LOGCWMIN)
2267 ;
2268 ADDSHORT(frm, ac->wmep_txopLimit);
2269 }
2270 return frm;
2271 #undef ADDSHORT
2272 }
2273 #undef WME_OUI_BYTES
2274
2275 /*
2276 * Add an 11h Power Constraint element to a frame.
2277 */
2278 static uint8_t *
ieee80211_add_powerconstraint(uint8_t * frm,struct ieee80211vap * vap)2279 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2280 {
2281 const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2282 /* XXX per-vap tx power limit? */
2283 int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2284
2285 frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2286 frm[1] = 1;
2287 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0;
2288 return frm + 3;
2289 }
2290
2291 /*
2292 * Add an 11h Power Capability element to a frame.
2293 */
2294 static uint8_t *
ieee80211_add_powercapability(uint8_t * frm,const struct ieee80211_channel * c)2295 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2296 {
2297 frm[0] = IEEE80211_ELEMID_PWRCAP;
2298 frm[1] = 2;
2299 frm[2] = c->ic_minpower;
2300 frm[3] = c->ic_maxpower;
2301 return frm + 4;
2302 }
2303
2304 /*
2305 * Add an 11h Supported Channels element to a frame.
2306 */
2307 static uint8_t *
ieee80211_add_supportedchannels(uint8_t * frm,struct ieee80211com * ic)2308 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2309 {
2310 static const int ielen = 26;
2311
2312 frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2313 frm[1] = ielen;
2314 /* XXX not correct */
2315 memcpy(frm+2, ic->ic_chan_avail, ielen);
2316 return frm + 2 + ielen;
2317 }
2318
2319 /*
2320 * Add an 11h Quiet time element to a frame.
2321 */
2322 static uint8_t *
ieee80211_add_quiet(uint8_t * frm,struct ieee80211vap * vap,int update)2323 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2324 {
2325 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2326
2327 quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2328 quiet->len = 6;
2329
2330 /*
2331 * Only update every beacon interval - otherwise probe responses
2332 * would update the quiet count value.
2333 */
2334 if (update) {
2335 if (vap->iv_quiet_count_value == 1)
2336 vap->iv_quiet_count_value = vap->iv_quiet_count;
2337 else if (vap->iv_quiet_count_value > 1)
2338 vap->iv_quiet_count_value--;
2339 }
2340
2341 if (vap->iv_quiet_count_value == 0) {
2342 /* value 0 is reserved as per 802.11h standerd */
2343 vap->iv_quiet_count_value = 1;
2344 }
2345
2346 quiet->tbttcount = vap->iv_quiet_count_value;
2347 quiet->period = vap->iv_quiet_period;
2348 quiet->duration = htole16(vap->iv_quiet_duration);
2349 quiet->offset = htole16(vap->iv_quiet_offset);
2350 return frm + sizeof(*quiet);
2351 }
2352
2353 /*
2354 * Add an 11h Channel Switch Announcement element to a frame.
2355 * Note that we use the per-vap CSA count to adjust the global
2356 * counter so we can use this routine to form probe response
2357 * frames and get the current count.
2358 */
2359 static uint8_t *
ieee80211_add_csa(uint8_t * frm,struct ieee80211vap * vap)2360 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2361 {
2362 struct ieee80211com *ic = vap->iv_ic;
2363 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2364
2365 csa->csa_ie = IEEE80211_ELEMID_CSA;
2366 csa->csa_len = 3;
2367 csa->csa_mode = 1; /* XXX force quiet on channel */
2368 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2369 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2370 return frm + sizeof(*csa);
2371 }
2372
2373 /*
2374 * Add an 11h country information element to a frame.
2375 */
2376 static uint8_t *
ieee80211_add_countryie(uint8_t * frm,struct ieee80211com * ic)2377 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2378 {
2379
2380 if (ic->ic_countryie == NULL ||
2381 ic->ic_countryie_chan != ic->ic_bsschan) {
2382 /*
2383 * Handle lazy construction of ie. This is done on
2384 * first use and after a channel change that requires
2385 * re-calculation.
2386 */
2387 if (ic->ic_countryie != NULL)
2388 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2389 ic->ic_countryie = ieee80211_alloc_countryie(ic);
2390 if (ic->ic_countryie == NULL)
2391 return frm;
2392 ic->ic_countryie_chan = ic->ic_bsschan;
2393 }
2394 return add_appie(frm, ic->ic_countryie);
2395 }
2396
2397 uint8_t *
ieee80211_add_wpa(uint8_t * frm,const struct ieee80211vap * vap)2398 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2399 {
2400 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2401 return (add_ie(frm, vap->iv_wpa_ie));
2402 else {
2403 /* XXX else complain? */
2404 return (frm);
2405 }
2406 }
2407
2408 uint8_t *
ieee80211_add_rsn(uint8_t * frm,const struct ieee80211vap * vap)2409 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2410 {
2411 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2412 return (add_ie(frm, vap->iv_rsn_ie));
2413 else {
2414 /* XXX else complain? */
2415 return (frm);
2416 }
2417 }
2418
2419 uint8_t *
ieee80211_add_qos(uint8_t * frm,const struct ieee80211_node * ni)2420 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2421 {
2422 if (ni->ni_flags & IEEE80211_NODE_QOS) {
2423 *frm++ = IEEE80211_ELEMID_QOS;
2424 *frm++ = 1;
2425 *frm++ = 0;
2426 }
2427
2428 return (frm);
2429 }
2430
2431 /*
2432 * ieee80211_send_probereq(): send a probe request frame with the specified ssid
2433 * and any optional information element data; some helper functions as FW based
2434 * HW scans need some of that information passed too.
2435 */
2436 static uint32_t
ieee80211_probereq_ie_len(struct ieee80211vap * vap,struct ieee80211com * ic)2437 ieee80211_probereq_ie_len(struct ieee80211vap *vap, struct ieee80211com *ic)
2438 {
2439 const struct ieee80211_rateset *rs;
2440
2441 rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2442
2443 /*
2444 * prreq frame format
2445 * [tlv] ssid
2446 * [tlv] supported rates
2447 * [tlv] extended supported rates (if needed)
2448 * [tlv] HT cap (optional)
2449 * [tlv] VHT cap (optional)
2450 * [tlv] WPA (optional)
2451 * [tlv] user-specified ie's
2452 */
2453 return ( 2 + IEEE80211_NWID_LEN
2454 + 2 + IEEE80211_RATE_SIZE
2455 + ((rs->rs_nrates > IEEE80211_RATE_SIZE) ?
2456 2 + (rs->rs_nrates - IEEE80211_RATE_SIZE) : 0)
2457 + (((vap->iv_opmode == IEEE80211_M_IBSS) &&
2458 (vap->iv_flags_ht & IEEE80211_FHT_HT)) ?
2459 sizeof(struct ieee80211_ie_htcap) : 0)
2460 #ifdef notyet
2461 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */
2462 + 2 + sizeof(struct ieee80211_vht_cap)
2463 #endif
2464 + ((vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) ?
2465 vap->iv_wpa_ie[1] : 0)
2466 + (vap->iv_appie_probereq != NULL ?
2467 vap->iv_appie_probereq->ie_len : 0)
2468 );
2469 }
2470
2471 int
ieee80211_probereq_ie(struct ieee80211vap * vap,struct ieee80211com * ic,uint8_t ** frmp,uint32_t * frmlen,const uint8_t * ssid,size_t ssidlen,bool alloc)2472 ieee80211_probereq_ie(struct ieee80211vap *vap, struct ieee80211com *ic,
2473 uint8_t **frmp, uint32_t *frmlen, const uint8_t *ssid, size_t ssidlen,
2474 bool alloc)
2475 {
2476 const struct ieee80211_rateset *rs;
2477 uint8_t *frm;
2478 uint32_t len;
2479
2480 if (!alloc && (frmp == NULL || frmlen == NULL))
2481 return (EINVAL);
2482
2483 len = ieee80211_probereq_ie_len(vap, ic);
2484 if (!alloc && len > *frmlen)
2485 return (ENOBUFS);
2486
2487 /* For HW scans we usually do not pass in the SSID as IE. */
2488 if (ssidlen == -1)
2489 len -= (2 + IEEE80211_NWID_LEN);
2490
2491 if (alloc) {
2492 frm = IEEE80211_MALLOC(len, M_80211_VAP,
2493 IEEE80211_M_WAITOK | IEEE80211_M_ZERO);
2494 *frmp = frm;
2495 *frmlen = len;
2496 } else
2497 frm = *frmp;
2498
2499 if (ssidlen != -1)
2500 frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2501 rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2502 frm = ieee80211_add_rates(frm, rs);
2503 frm = ieee80211_add_xrates(frm, rs);
2504
2505 /*
2506 * Note: we can't use bss; we don't have one yet.
2507 *
2508 * So, we should announce our capabilities
2509 * in this channel mode (2g/5g), not the
2510 * channel details itself.
2511 */
2512 if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2513 (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2514 struct ieee80211_channel *c;
2515
2516 /*
2517 * Get the HT channel that we should try upgrading to.
2518 * If we can do 40MHz then this'll upgrade it appropriately.
2519 */
2520 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2521 vap->iv_flags_ht);
2522 frm = ieee80211_add_htcap_ch(frm, vap, c);
2523 }
2524
2525 /*
2526 * XXX TODO: need to figure out what/how to update the
2527 * VHT channel.
2528 */
2529 #ifdef notyet
2530 if (vap->iv_vht_flags & IEEE80211_FVHT_VHT) {
2531 struct ieee80211_channel *c;
2532
2533 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2534 vap->iv_flags_ht);
2535 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_vht_flags);
2536 frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2537 }
2538 #endif
2539
2540 frm = ieee80211_add_wpa(frm, vap);
2541 if (vap->iv_appie_probereq != NULL)
2542 frm = add_appie(frm, vap->iv_appie_probereq);
2543
2544 if (!alloc) {
2545 *frmp = frm;
2546 *frmlen = len;
2547 }
2548
2549 return (0);
2550 }
2551
2552 int
ieee80211_send_probereq(struct ieee80211_node * ni,const uint8_t sa[IEEE80211_ADDR_LEN],const uint8_t da[IEEE80211_ADDR_LEN],const uint8_t bssid[IEEE80211_ADDR_LEN],const uint8_t * ssid,size_t ssidlen)2553 ieee80211_send_probereq(struct ieee80211_node *ni,
2554 const uint8_t sa[IEEE80211_ADDR_LEN],
2555 const uint8_t da[IEEE80211_ADDR_LEN],
2556 const uint8_t bssid[IEEE80211_ADDR_LEN],
2557 const uint8_t *ssid, size_t ssidlen)
2558 {
2559 struct ieee80211vap *vap = ni->ni_vap;
2560 struct ieee80211com *ic = ni->ni_ic;
2561 struct ieee80211_node *bss;
2562 const struct ieee80211_txparam *tp;
2563 struct ieee80211_bpf_params params;
2564 struct mbuf *m;
2565 uint8_t *frm;
2566 uint32_t frmlen;
2567 int ret;
2568
2569 bss = ieee80211_ref_node(vap->iv_bss);
2570
2571 if (vap->iv_state == IEEE80211_S_CAC) {
2572 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2573 "block %s frame in CAC state", "probe request");
2574 vap->iv_stats.is_tx_badstate++;
2575 ieee80211_free_node(bss);
2576 return EIO; /* XXX */
2577 }
2578
2579 /*
2580 * Hold a reference on the node so it doesn't go away until after
2581 * the xmit is complete all the way in the driver. On error we
2582 * will remove our reference.
2583 */
2584 #ifndef __HAIKU__
2585 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2586 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2587 __func__, __LINE__,
2588 ni, ether_sprintf(ni->ni_macaddr),
2589 ieee80211_node_refcnt(ni)+1);
2590 #endif
2591 ieee80211_ref_node(ni);
2592
2593 /* See comments above for entire frame format. */
2594 frmlen = ieee80211_probereq_ie_len(vap, ic);
2595 m = ieee80211_getmgtframe(&frm,
2596 ic->ic_headroom + sizeof(struct ieee80211_frame), frmlen);
2597 if (m == NULL) {
2598 vap->iv_stats.is_tx_nobuf++;
2599 ieee80211_free_node(ni);
2600 ieee80211_free_node(bss);
2601 return ENOMEM;
2602 }
2603
2604 ret = ieee80211_probereq_ie(vap, ic, &frm, &frmlen, ssid, ssidlen,
2605 false);
2606 KASSERT(ret == 0,
2607 ("%s: ieee80211_probereq_ie failed: %d\n", __func__, ret));
2608
2609 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2610 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2611 ("leading space %zd", M_LEADINGSPACE(m)));
2612 M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
2613 if (m == NULL) {
2614 /* NB: cannot happen */
2615 ieee80211_free_node(ni);
2616 ieee80211_free_node(bss);
2617 return ENOMEM;
2618 }
2619
2620 IEEE80211_TX_LOCK(ic);
2621 ieee80211_send_setup(ni, m,
2622 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2623 IEEE80211_NONQOS_TID, sa, da, bssid);
2624 /* XXX power management? */
2625 m->m_flags |= M_ENCAP; /* mark encapsulated */
2626
2627 M_WME_SETAC(m, WME_AC_BE);
2628
2629 IEEE80211_NODE_STAT(ni, tx_probereq);
2630 IEEE80211_NODE_STAT(ni, tx_mgmt);
2631
2632 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2633 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2634 ieee80211_chan2ieee(ic, ic->ic_curchan),
2635 ether_sprintf(bssid),
2636 sa, ":",
2637 da, ":",
2638 ssidlen, ssid);
2639
2640 memset(¶ms, 0, sizeof(params));
2641 params.ibp_pri = M_WME_GETAC(m);
2642 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2643 params.ibp_rate0 = tp->mgmtrate;
2644 if (IEEE80211_IS_MULTICAST(da)) {
2645 params.ibp_flags |= IEEE80211_BPF_NOACK;
2646 params.ibp_try0 = 1;
2647 } else
2648 params.ibp_try0 = tp->maxretry;
2649 params.ibp_power = ni->ni_txpower;
2650 ret = ieee80211_raw_output(vap, ni, m, ¶ms);
2651 IEEE80211_TX_UNLOCK(ic);
2652 ieee80211_free_node(bss);
2653 return (ret);
2654 }
2655
2656 /*
2657 * Calculate capability information for mgt frames.
2658 */
2659 uint16_t
ieee80211_getcapinfo(struct ieee80211vap * vap,struct ieee80211_channel * chan)2660 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2661 {
2662 uint16_t capinfo;
2663
2664 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2665
2666 if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2667 capinfo = IEEE80211_CAPINFO_ESS;
2668 else if (vap->iv_opmode == IEEE80211_M_IBSS)
2669 capinfo = IEEE80211_CAPINFO_IBSS;
2670 else
2671 capinfo = 0;
2672 if (vap->iv_flags & IEEE80211_F_PRIVACY)
2673 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2674 if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2675 IEEE80211_IS_CHAN_2GHZ(chan))
2676 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2677 if (vap->iv_flags & IEEE80211_F_SHSLOT)
2678 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2679 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2680 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2681 return capinfo;
2682 }
2683
2684 /*
2685 * Send a management frame. The node is for the destination (or ic_bss
2686 * when in station mode). Nodes other than ic_bss have their reference
2687 * count bumped to reflect our use for an indeterminant time.
2688 */
2689 int
ieee80211_send_mgmt(struct ieee80211_node * ni,int type,int arg)2690 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2691 {
2692 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2693 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2694 struct ieee80211vap *vap = ni->ni_vap;
2695 struct ieee80211com *ic = ni->ni_ic;
2696 struct ieee80211_node *bss = vap->iv_bss;
2697 struct ieee80211_bpf_params params;
2698 struct mbuf *m;
2699 uint8_t *frm;
2700 uint16_t capinfo;
2701 int has_challenge, is_shared_key, ret, status;
2702
2703 KASSERT(ni != NULL, ("null node"));
2704
2705 /*
2706 * Hold a reference on the node so it doesn't go away until after
2707 * the xmit is complete all the way in the driver. On error we
2708 * will remove our reference.
2709 */
2710 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2711 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2712 __func__, __LINE__,
2713 ni, ether_sprintf(ni->ni_macaddr),
2714 ieee80211_node_refcnt(ni)+1);
2715 ieee80211_ref_node(ni);
2716
2717 memset(¶ms, 0, sizeof(params));
2718 switch (type) {
2719 case IEEE80211_FC0_SUBTYPE_AUTH:
2720 status = arg >> 16;
2721 arg &= 0xffff;
2722 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2723 arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2724 ni->ni_challenge != NULL);
2725
2726 /*
2727 * Deduce whether we're doing open authentication or
2728 * shared key authentication. We do the latter if
2729 * we're in the middle of a shared key authentication
2730 * handshake or if we're initiating an authentication
2731 * request and configured to use shared key.
2732 */
2733 is_shared_key = has_challenge ||
2734 arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2735 (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2736 bss->ni_authmode == IEEE80211_AUTH_SHARED);
2737
2738 m = ieee80211_getmgtframe(&frm,
2739 ic->ic_headroom + sizeof(struct ieee80211_frame),
2740 3 * sizeof(uint16_t)
2741 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2742 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0));
2743 if (m == NULL)
2744 senderr(ENOMEM, is_tx_nobuf);
2745
2746 ((uint16_t *)frm)[0] =
2747 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2748 : htole16(IEEE80211_AUTH_ALG_OPEN);
2749 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */
2750 ((uint16_t *)frm)[2] = htole16(status);/* status */
2751
2752 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2753 ((uint16_t *)frm)[3] =
2754 htole16((IEEE80211_CHALLENGE_LEN << 8) |
2755 IEEE80211_ELEMID_CHALLENGE);
2756 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2757 IEEE80211_CHALLENGE_LEN);
2758 m->m_pkthdr.len = m->m_len =
2759 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2760 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2761 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2762 "request encrypt frame (%s)", __func__);
2763 /* mark frame for encryption */
2764 params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2765 }
2766 } else
2767 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2768
2769 /* XXX not right for shared key */
2770 if (status == IEEE80211_STATUS_SUCCESS)
2771 IEEE80211_NODE_STAT(ni, tx_auth);
2772 else
2773 IEEE80211_NODE_STAT(ni, tx_auth_fail);
2774
2775 if (vap->iv_opmode == IEEE80211_M_STA)
2776 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2777 (void *) vap->iv_state);
2778 break;
2779
2780 case IEEE80211_FC0_SUBTYPE_DEAUTH:
2781 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2782 "send station deauthenticate (reason: %d (%s))", arg,
2783 ieee80211_reason_to_string(arg));
2784 m = ieee80211_getmgtframe(&frm,
2785 ic->ic_headroom + sizeof(struct ieee80211_frame),
2786 sizeof(uint16_t));
2787 if (m == NULL)
2788 senderr(ENOMEM, is_tx_nobuf);
2789 *(uint16_t *)frm = htole16(arg); /* reason */
2790 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2791
2792 IEEE80211_NODE_STAT(ni, tx_deauth);
2793 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2794
2795 ieee80211_node_unauthorize(ni); /* port closed */
2796 break;
2797
2798 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2799 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2800 /*
2801 * asreq frame format
2802 * [2] capability information
2803 * [2] listen interval
2804 * [6*] current AP address (reassoc only)
2805 * [tlv] ssid
2806 * [tlv] supported rates
2807 * [tlv] extended supported rates
2808 * [4] power capability (optional)
2809 * [28] supported channels (optional)
2810 * [tlv] HT capabilities
2811 * [tlv] VHT capabilities
2812 * [tlv] WME (optional)
2813 * [tlv] Vendor OUI HT capabilities (optional)
2814 * [tlv] Atheros capabilities (if negotiated)
2815 * [tlv] AppIE's (optional)
2816 */
2817 m = ieee80211_getmgtframe(&frm,
2818 ic->ic_headroom + sizeof(struct ieee80211_frame),
2819 sizeof(uint16_t)
2820 + sizeof(uint16_t)
2821 + IEEE80211_ADDR_LEN
2822 + 2 + IEEE80211_NWID_LEN
2823 + 2 + IEEE80211_RATE_SIZE
2824 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2825 + 4
2826 + 2 + 26
2827 + sizeof(struct ieee80211_wme_info)
2828 + sizeof(struct ieee80211_ie_htcap)
2829 + 2 + sizeof(struct ieee80211_vht_cap)
2830 + 4 + sizeof(struct ieee80211_ie_htcap)
2831 #ifdef IEEE80211_SUPPORT_SUPERG
2832 + sizeof(struct ieee80211_ath_ie)
2833 #endif
2834 + (vap->iv_appie_wpa != NULL ?
2835 vap->iv_appie_wpa->ie_len : 0)
2836 + (vap->iv_appie_assocreq != NULL ?
2837 vap->iv_appie_assocreq->ie_len : 0)
2838 );
2839 if (m == NULL)
2840 senderr(ENOMEM, is_tx_nobuf);
2841
2842 KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2843 ("wrong mode %u", vap->iv_opmode));
2844 capinfo = IEEE80211_CAPINFO_ESS;
2845 if (vap->iv_flags & IEEE80211_F_PRIVACY)
2846 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2847 /*
2848 * NB: Some 11a AP's reject the request when
2849 * short preamble is set.
2850 */
2851 if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2852 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2853 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2854 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2855 (ic->ic_caps & IEEE80211_C_SHSLOT))
2856 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2857 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2858 (vap->iv_flags & IEEE80211_F_DOTH))
2859 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2860 *(uint16_t *)frm = htole16(capinfo);
2861 frm += 2;
2862
2863 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2864 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2865 bss->ni_intval));
2866 frm += 2;
2867
2868 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2869 IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2870 frm += IEEE80211_ADDR_LEN;
2871 }
2872
2873 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2874 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2875 frm = ieee80211_add_rsn(frm, vap);
2876 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2877 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2878 frm = ieee80211_add_powercapability(frm,
2879 ic->ic_curchan);
2880 frm = ieee80211_add_supportedchannels(frm, ic);
2881 }
2882
2883 /*
2884 * Check the channel - we may be using an 11n NIC with an
2885 * 11n capable station, but we're configured to be an 11b
2886 * channel.
2887 */
2888 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2889 IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2890 ni->ni_ies.htcap_ie != NULL &&
2891 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2892 frm = ieee80211_add_htcap(frm, ni);
2893 }
2894
2895 if ((vap->iv_vht_flags & IEEE80211_FVHT_VHT) &&
2896 IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2897 ni->ni_ies.vhtcap_ie != NULL &&
2898 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2899 frm = ieee80211_add_vhtcap(frm, ni);
2900 }
2901
2902 frm = ieee80211_add_wpa(frm, vap);
2903 if ((vap->iv_flags & IEEE80211_F_WME) &&
2904 ni->ni_ies.wme_ie != NULL)
2905 frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni);
2906
2907 /*
2908 * Same deal - only send HT info if we're on an 11n
2909 * capable channel.
2910 */
2911 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2912 IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2913 ni->ni_ies.htcap_ie != NULL &&
2914 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2915 frm = ieee80211_add_htcap_vendor(frm, ni);
2916 }
2917 #ifdef IEEE80211_SUPPORT_SUPERG
2918 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2919 frm = ieee80211_add_ath(frm,
2920 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2921 ((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2922 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2923 vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2924 }
2925 #endif /* IEEE80211_SUPPORT_SUPERG */
2926 if (vap->iv_appie_assocreq != NULL)
2927 frm = add_appie(frm, vap->iv_appie_assocreq);
2928 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2929
2930 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2931 (void *) vap->iv_state);
2932 break;
2933
2934 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2935 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2936 /*
2937 * asresp frame format
2938 * [2] capability information
2939 * [2] status
2940 * [2] association ID
2941 * [tlv] supported rates
2942 * [tlv] extended supported rates
2943 * [tlv] HT capabilities (standard, if STA enabled)
2944 * [tlv] HT information (standard, if STA enabled)
2945 * [tlv] VHT capabilities (standard, if STA enabled)
2946 * [tlv] VHT information (standard, if STA enabled)
2947 * [tlv] WME (if configured and STA enabled)
2948 * [tlv] HT capabilities (vendor OUI, if STA enabled)
2949 * [tlv] HT information (vendor OUI, if STA enabled)
2950 * [tlv] Atheros capabilities (if STA enabled)
2951 * [tlv] AppIE's (optional)
2952 */
2953 m = ieee80211_getmgtframe(&frm,
2954 ic->ic_headroom + sizeof(struct ieee80211_frame),
2955 sizeof(uint16_t)
2956 + sizeof(uint16_t)
2957 + sizeof(uint16_t)
2958 + 2 + IEEE80211_RATE_SIZE
2959 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2960 + sizeof(struct ieee80211_ie_htcap) + 4
2961 + sizeof(struct ieee80211_ie_htinfo) + 4
2962 + 2 + sizeof(struct ieee80211_vht_cap)
2963 + 2 + sizeof(struct ieee80211_vht_operation)
2964 + sizeof(struct ieee80211_wme_param)
2965 #ifdef IEEE80211_SUPPORT_SUPERG
2966 + sizeof(struct ieee80211_ath_ie)
2967 #endif
2968 + (vap->iv_appie_assocresp != NULL ?
2969 vap->iv_appie_assocresp->ie_len : 0)
2970 );
2971 if (m == NULL)
2972 senderr(ENOMEM, is_tx_nobuf);
2973
2974 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2975 *(uint16_t *)frm = htole16(capinfo);
2976 frm += 2;
2977
2978 *(uint16_t *)frm = htole16(arg); /* status */
2979 frm += 2;
2980
2981 if (arg == IEEE80211_STATUS_SUCCESS) {
2982 *(uint16_t *)frm = htole16(ni->ni_associd);
2983 IEEE80211_NODE_STAT(ni, tx_assoc);
2984 } else
2985 IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2986 frm += 2;
2987
2988 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2989 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2990 /* NB: respond according to what we received */
2991 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2992 frm = ieee80211_add_htcap(frm, ni);
2993 frm = ieee80211_add_htinfo(frm, ni);
2994 }
2995 if ((vap->iv_flags & IEEE80211_F_WME) &&
2996 ni->ni_ies.wme_ie != NULL)
2997 frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
2998 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
2999 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
3000 frm = ieee80211_add_htcap_vendor(frm, ni);
3001 frm = ieee80211_add_htinfo_vendor(frm, ni);
3002 }
3003 if (ni->ni_flags & IEEE80211_NODE_VHT) {
3004 frm = ieee80211_add_vhtcap(frm, ni);
3005 frm = ieee80211_add_vhtinfo(frm, ni);
3006 }
3007 #ifdef IEEE80211_SUPPORT_SUPERG
3008 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
3009 frm = ieee80211_add_ath(frm,
3010 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
3011 ((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
3012 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
3013 vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
3014 #endif /* IEEE80211_SUPPORT_SUPERG */
3015 if (vap->iv_appie_assocresp != NULL)
3016 frm = add_appie(frm, vap->iv_appie_assocresp);
3017 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3018 break;
3019
3020 case IEEE80211_FC0_SUBTYPE_DISASSOC:
3021 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
3022 "send station disassociate (reason: %d (%s))", arg,
3023 ieee80211_reason_to_string(arg));
3024 m = ieee80211_getmgtframe(&frm,
3025 ic->ic_headroom + sizeof(struct ieee80211_frame),
3026 sizeof(uint16_t));
3027 if (m == NULL)
3028 senderr(ENOMEM, is_tx_nobuf);
3029 *(uint16_t *)frm = htole16(arg); /* reason */
3030 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
3031
3032 IEEE80211_NODE_STAT(ni, tx_disassoc);
3033 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
3034 break;
3035
3036 default:
3037 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
3038 "invalid mgmt frame type %u", type);
3039 senderr(EINVAL, is_tx_unknownmgt);
3040 /* NOTREACHED */
3041 }
3042
3043 /* NB: force non-ProbeResp frames to the highest queue */
3044 params.ibp_pri = WME_AC_VO;
3045 params.ibp_rate0 = bss->ni_txparms->mgmtrate;
3046 /* NB: we know all frames are unicast */
3047 params.ibp_try0 = bss->ni_txparms->maxretry;
3048 params.ibp_power = bss->ni_txpower;
3049 return ieee80211_mgmt_output(ni, m, type, ¶ms);
3050 bad:
3051 ieee80211_free_node(ni);
3052 return ret;
3053 #undef senderr
3054 #undef HTFLAGS
3055 }
3056
3057 /*
3058 * Return an mbuf with a probe response frame in it.
3059 * Space is left to prepend and 802.11 header at the
3060 * front but it's left to the caller to fill in.
3061 */
3062 struct mbuf *
ieee80211_alloc_proberesp(struct ieee80211_node * bss,int legacy)3063 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
3064 {
3065 struct ieee80211vap *vap = bss->ni_vap;
3066 struct ieee80211com *ic = bss->ni_ic;
3067 const struct ieee80211_rateset *rs;
3068 struct mbuf *m;
3069 uint16_t capinfo;
3070 uint8_t *frm;
3071
3072 /*
3073 * probe response frame format
3074 * [8] time stamp
3075 * [2] beacon interval
3076 * [2] cabability information
3077 * [tlv] ssid
3078 * [tlv] supported rates
3079 * [tlv] parameter set (FH/DS)
3080 * [tlv] parameter set (IBSS)
3081 * [tlv] country (optional)
3082 * [3] power control (optional)
3083 * [5] channel switch announcement (CSA) (optional)
3084 * [tlv] extended rate phy (ERP)
3085 * [tlv] extended supported rates
3086 * [tlv] RSN (optional)
3087 * [tlv] HT capabilities
3088 * [tlv] HT information
3089 * [tlv] VHT capabilities
3090 * [tlv] VHT information
3091 * [tlv] WPA (optional)
3092 * [tlv] WME (optional)
3093 * [tlv] Vendor OUI HT capabilities (optional)
3094 * [tlv] Vendor OUI HT information (optional)
3095 * [tlv] Atheros capabilities
3096 * [tlv] AppIE's (optional)
3097 * [tlv] Mesh ID (MBSS)
3098 * [tlv] Mesh Conf (MBSS)
3099 */
3100 m = ieee80211_getmgtframe(&frm,
3101 ic->ic_headroom + sizeof(struct ieee80211_frame),
3102 8
3103 + sizeof(uint16_t)
3104 + sizeof(uint16_t)
3105 + 2 + IEEE80211_NWID_LEN
3106 + 2 + IEEE80211_RATE_SIZE
3107 + 7 /* max(7,3) */
3108 + IEEE80211_COUNTRY_MAX_SIZE
3109 + 3
3110 + sizeof(struct ieee80211_csa_ie)
3111 + sizeof(struct ieee80211_quiet_ie)
3112 + 3
3113 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3114 + sizeof(struct ieee80211_ie_wpa)
3115 + sizeof(struct ieee80211_ie_htcap)
3116 + sizeof(struct ieee80211_ie_htinfo)
3117 + sizeof(struct ieee80211_ie_wpa)
3118 + sizeof(struct ieee80211_wme_param)
3119 + 4 + sizeof(struct ieee80211_ie_htcap)
3120 + 4 + sizeof(struct ieee80211_ie_htinfo)
3121 + 2 + sizeof(struct ieee80211_vht_cap)
3122 + 2 + sizeof(struct ieee80211_vht_operation)
3123 #ifdef IEEE80211_SUPPORT_SUPERG
3124 + sizeof(struct ieee80211_ath_ie)
3125 #endif
3126 #ifdef IEEE80211_SUPPORT_MESH
3127 + 2 + IEEE80211_MESHID_LEN
3128 + sizeof(struct ieee80211_meshconf_ie)
3129 #endif
3130 + (vap->iv_appie_proberesp != NULL ?
3131 vap->iv_appie_proberesp->ie_len : 0)
3132 );
3133 if (m == NULL) {
3134 vap->iv_stats.is_tx_nobuf++;
3135 return NULL;
3136 }
3137
3138 memset(frm, 0, 8); /* timestamp should be filled later */
3139 frm += 8;
3140 *(uint16_t *)frm = htole16(bss->ni_intval);
3141 frm += 2;
3142 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
3143 *(uint16_t *)frm = htole16(capinfo);
3144 frm += 2;
3145
3146 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
3147 rs = ieee80211_get_suprates(ic, bss->ni_chan);
3148 frm = ieee80211_add_rates(frm, rs);
3149
3150 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
3151 *frm++ = IEEE80211_ELEMID_FHPARMS;
3152 *frm++ = 5;
3153 *frm++ = bss->ni_fhdwell & 0x00ff;
3154 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
3155 *frm++ = IEEE80211_FH_CHANSET(
3156 ieee80211_chan2ieee(ic, bss->ni_chan));
3157 *frm++ = IEEE80211_FH_CHANPAT(
3158 ieee80211_chan2ieee(ic, bss->ni_chan));
3159 *frm++ = bss->ni_fhindex;
3160 } else {
3161 *frm++ = IEEE80211_ELEMID_DSPARMS;
3162 *frm++ = 1;
3163 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
3164 }
3165
3166 if (vap->iv_opmode == IEEE80211_M_IBSS) {
3167 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
3168 *frm++ = 2;
3169 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
3170 }
3171 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3172 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3173 frm = ieee80211_add_countryie(frm, ic);
3174 if (vap->iv_flags & IEEE80211_F_DOTH) {
3175 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
3176 frm = ieee80211_add_powerconstraint(frm, vap);
3177 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3178 frm = ieee80211_add_csa(frm, vap);
3179 }
3180 if (vap->iv_flags & IEEE80211_F_DOTH) {
3181 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3182 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3183 if (vap->iv_quiet)
3184 frm = ieee80211_add_quiet(frm, vap, 0);
3185 }
3186 }
3187 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
3188 frm = ieee80211_add_erp(frm, vap);
3189 frm = ieee80211_add_xrates(frm, rs);
3190 frm = ieee80211_add_rsn(frm, vap);
3191 /*
3192 * NB: legacy 11b clients do not get certain ie's.
3193 * The caller identifies such clients by passing
3194 * a token in legacy to us. Could expand this to be
3195 * any legacy client for stuff like HT ie's.
3196 */
3197 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3198 legacy != IEEE80211_SEND_LEGACY_11B) {
3199 frm = ieee80211_add_htcap(frm, bss);
3200 frm = ieee80211_add_htinfo(frm, bss);
3201 }
3202 if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
3203 legacy != IEEE80211_SEND_LEGACY_11B) {
3204 frm = ieee80211_add_vhtcap(frm, bss);
3205 frm = ieee80211_add_vhtinfo(frm, bss);
3206 }
3207 frm = ieee80211_add_wpa(frm, vap);
3208 if (vap->iv_flags & IEEE80211_F_WME)
3209 frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3210 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3211 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3212 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
3213 legacy != IEEE80211_SEND_LEGACY_11B) {
3214 frm = ieee80211_add_htcap_vendor(frm, bss);
3215 frm = ieee80211_add_htinfo_vendor(frm, bss);
3216 }
3217 #ifdef IEEE80211_SUPPORT_SUPERG
3218 if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
3219 legacy != IEEE80211_SEND_LEGACY_11B)
3220 frm = ieee80211_add_athcaps(frm, bss);
3221 #endif
3222 if (vap->iv_appie_proberesp != NULL)
3223 frm = add_appie(frm, vap->iv_appie_proberesp);
3224 #ifdef IEEE80211_SUPPORT_MESH
3225 if (vap->iv_opmode == IEEE80211_M_MBSS) {
3226 frm = ieee80211_add_meshid(frm, vap);
3227 frm = ieee80211_add_meshconf(frm, vap);
3228 }
3229 #endif
3230 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3231
3232 return m;
3233 }
3234
3235 /*
3236 * Send a probe response frame to the specified mac address.
3237 * This does not go through the normal mgt frame api so we
3238 * can specify the destination address and re-use the bss node
3239 * for the sta reference.
3240 */
3241 int
ieee80211_send_proberesp(struct ieee80211vap * vap,const uint8_t da[IEEE80211_ADDR_LEN],int legacy)3242 ieee80211_send_proberesp(struct ieee80211vap *vap,
3243 const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
3244 {
3245 struct ieee80211_node *bss = vap->iv_bss;
3246 struct ieee80211com *ic = vap->iv_ic;
3247 struct mbuf *m;
3248 int ret;
3249
3250 if (vap->iv_state == IEEE80211_S_CAC) {
3251 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
3252 "block %s frame in CAC state", "probe response");
3253 vap->iv_stats.is_tx_badstate++;
3254 return EIO; /* XXX */
3255 }
3256
3257 /*
3258 * Hold a reference on the node so it doesn't go away until after
3259 * the xmit is complete all the way in the driver. On error we
3260 * will remove our reference.
3261 */
3262 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3263 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
3264 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
3265 ieee80211_node_refcnt(bss)+1);
3266 ieee80211_ref_node(bss);
3267
3268 m = ieee80211_alloc_proberesp(bss, legacy);
3269 if (m == NULL) {
3270 ieee80211_free_node(bss);
3271 return ENOMEM;
3272 }
3273
3274 M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3275 KASSERT(m != NULL, ("no room for header"));
3276
3277 IEEE80211_TX_LOCK(ic);
3278 ieee80211_send_setup(bss, m,
3279 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
3280 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
3281 /* XXX power management? */
3282 m->m_flags |= M_ENCAP; /* mark encapsulated */
3283
3284 M_WME_SETAC(m, WME_AC_BE);
3285
3286 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
3287 "send probe resp on channel %u to %s%s\n",
3288 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
3289 legacy ? " <legacy>" : "");
3290 IEEE80211_NODE_STAT(bss, tx_mgmt);
3291
3292 ret = ieee80211_raw_output(vap, bss, m, NULL);
3293 IEEE80211_TX_UNLOCK(ic);
3294 return (ret);
3295 }
3296
3297 /*
3298 * Allocate and build a RTS (Request To Send) control frame.
3299 */
3300 struct mbuf *
ieee80211_alloc_rts(struct ieee80211com * ic,const uint8_t ra[IEEE80211_ADDR_LEN],const uint8_t ta[IEEE80211_ADDR_LEN],uint16_t dur)3301 ieee80211_alloc_rts(struct ieee80211com *ic,
3302 const uint8_t ra[IEEE80211_ADDR_LEN],
3303 const uint8_t ta[IEEE80211_ADDR_LEN],
3304 uint16_t dur)
3305 {
3306 struct ieee80211_frame_rts *rts;
3307 struct mbuf *m;
3308
3309 /* XXX honor ic_headroom */
3310 m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3311 if (m != NULL) {
3312 rts = mtod(m, struct ieee80211_frame_rts *);
3313 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3314 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
3315 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3316 *(u_int16_t *)rts->i_dur = htole16(dur);
3317 IEEE80211_ADDR_COPY(rts->i_ra, ra);
3318 IEEE80211_ADDR_COPY(rts->i_ta, ta);
3319
3320 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
3321 }
3322 return m;
3323 }
3324
3325 /*
3326 * Allocate and build a CTS (Clear To Send) control frame.
3327 */
3328 struct mbuf *
ieee80211_alloc_cts(struct ieee80211com * ic,const uint8_t ra[IEEE80211_ADDR_LEN],uint16_t dur)3329 ieee80211_alloc_cts(struct ieee80211com *ic,
3330 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
3331 {
3332 struct ieee80211_frame_cts *cts;
3333 struct mbuf *m;
3334
3335 /* XXX honor ic_headroom */
3336 m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3337 if (m != NULL) {
3338 cts = mtod(m, struct ieee80211_frame_cts *);
3339 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3340 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
3341 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3342 *(u_int16_t *)cts->i_dur = htole16(dur);
3343 IEEE80211_ADDR_COPY(cts->i_ra, ra);
3344
3345 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3346 }
3347 return m;
3348 }
3349
3350 /*
3351 * Wrapper for CTS/RTS frame allocation.
3352 */
3353 struct mbuf *
ieee80211_alloc_prot(struct ieee80211_node * ni,const struct mbuf * m,uint8_t rate,int prot)3354 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
3355 uint8_t rate, int prot)
3356 {
3357 struct ieee80211com *ic = ni->ni_ic;
3358 struct ieee80211vap *vap = ni->ni_vap;
3359 const struct ieee80211_frame *wh;
3360 struct mbuf *mprot;
3361 uint16_t dur;
3362 int pktlen, isshort;
3363
3364 KASSERT(prot == IEEE80211_PROT_RTSCTS ||
3365 prot == IEEE80211_PROT_CTSONLY,
3366 ("wrong protection type %d", prot));
3367
3368 wh = mtod(m, const struct ieee80211_frame *);
3369 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3370 isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0;
3371 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3372 + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3373
3374 if (prot == IEEE80211_PROT_RTSCTS) {
3375 /* NB: CTS is the same size as an ACK */
3376 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3377 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3378 } else
3379 mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur);
3380
3381 return (mprot);
3382 }
3383
3384 static void
ieee80211_tx_mgt_timeout(void * arg)3385 ieee80211_tx_mgt_timeout(void *arg)
3386 {
3387 struct ieee80211vap *vap = arg;
3388
3389 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3390 "vap %p mode %s state %s flags %#x & %#x\n", vap,
3391 ieee80211_opmode_name[vap->iv_opmode],
3392 ieee80211_state_name[vap->iv_state],
3393 vap->iv_ic->ic_flags, IEEE80211_F_SCAN);
3394
3395 IEEE80211_LOCK(vap->iv_ic);
3396 if (vap->iv_state != IEEE80211_S_INIT &&
3397 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3398 /*
3399 * NB: it's safe to specify a timeout as the reason here;
3400 * it'll only be used in the right state.
3401 */
3402 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3403 IEEE80211_SCAN_FAIL_TIMEOUT);
3404 }
3405 IEEE80211_UNLOCK(vap->iv_ic);
3406 }
3407
3408 /*
3409 * This is the callback set on net80211-sourced transmitted
3410 * authentication request frames.
3411 *
3412 * This does a couple of things:
3413 *
3414 * + If the frame transmitted was a success, it schedules a future
3415 * event which will transition the interface to scan.
3416 * If a state transition _then_ occurs before that event occurs,
3417 * said state transition will cancel this callout.
3418 *
3419 * + If the frame transmit was a failure, it immediately schedules
3420 * the transition back to scan.
3421 */
3422 static void
ieee80211_tx_mgt_cb(struct ieee80211_node * ni,void * arg,int status)3423 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3424 {
3425 struct ieee80211vap *vap = ni->ni_vap;
3426 enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg;
3427
3428 /*
3429 * Frame transmit completed; arrange timer callback. If
3430 * transmit was successfully we wait for response. Otherwise
3431 * we arrange an immediate callback instead of doing the
3432 * callback directly since we don't know what state the driver
3433 * is in (e.g. what locks it is holding). This work should
3434 * not be too time-critical and not happen too often so the
3435 * added overhead is acceptable.
3436 *
3437 * XXX what happens if !acked but response shows up before callback?
3438 */
3439 if (vap->iv_state == ostate) {
3440 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3441 "ni %p mode %s state %s arg %p status %d\n", ni,
3442 ieee80211_opmode_name[vap->iv_opmode],
3443 ieee80211_state_name[vap->iv_state], arg, status);
3444
3445 callout_reset(&vap->iv_mgtsend,
3446 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3447 ieee80211_tx_mgt_timeout, vap);
3448 }
3449 }
3450
3451 static void
ieee80211_beacon_construct(struct mbuf * m,uint8_t * frm,struct ieee80211_node * ni)3452 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3453 struct ieee80211_node *ni)
3454 {
3455 struct ieee80211vap *vap = ni->ni_vap;
3456 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3457 struct ieee80211com *ic = ni->ni_ic;
3458 struct ieee80211_rateset *rs = &ni->ni_rates;
3459 uint16_t capinfo;
3460
3461 /*
3462 * beacon frame format
3463 *
3464 * TODO: update to 802.11-2012; a lot of stuff has changed;
3465 * vendor extensions should be at the end, etc.
3466 *
3467 * [8] time stamp
3468 * [2] beacon interval
3469 * [2] cabability information
3470 * [tlv] ssid
3471 * [tlv] supported rates
3472 * [3] parameter set (DS)
3473 * [8] CF parameter set (optional)
3474 * [tlv] parameter set (IBSS/TIM)
3475 * [tlv] country (optional)
3476 * [3] power control (optional)
3477 * [5] channel switch announcement (CSA) (optional)
3478 * XXX TODO: Quiet
3479 * XXX TODO: IBSS DFS
3480 * XXX TODO: TPC report
3481 * [tlv] extended rate phy (ERP)
3482 * [tlv] extended supported rates
3483 * [tlv] RSN parameters
3484 * XXX TODO: BSSLOAD
3485 * (XXX EDCA parameter set, QoS capability?)
3486 * XXX TODO: AP channel report
3487 *
3488 * [tlv] HT capabilities
3489 * [tlv] HT information
3490 * XXX TODO: 20/40 BSS coexistence
3491 * Mesh:
3492 * XXX TODO: Meshid
3493 * XXX TODO: mesh config
3494 * XXX TODO: mesh awake window
3495 * XXX TODO: beacon timing (mesh, etc)
3496 * XXX TODO: MCCAOP Advertisement Overview
3497 * XXX TODO: MCCAOP Advertisement
3498 * XXX TODO: Mesh channel switch parameters
3499 * VHT:
3500 * XXX TODO: VHT capabilities
3501 * XXX TODO: VHT operation
3502 * XXX TODO: VHT transmit power envelope
3503 * XXX TODO: channel switch wrapper element
3504 * XXX TODO: extended BSS load element
3505 *
3506 * XXX Vendor-specific OIDs (e.g. Atheros)
3507 * [tlv] WPA parameters
3508 * [tlv] WME parameters
3509 * [tlv] Vendor OUI HT capabilities (optional)
3510 * [tlv] Vendor OUI HT information (optional)
3511 * [tlv] Atheros capabilities (optional)
3512 * [tlv] TDMA parameters (optional)
3513 * [tlv] Mesh ID (MBSS)
3514 * [tlv] Mesh Conf (MBSS)
3515 * [tlv] application data (optional)
3516 */
3517
3518 memset(bo, 0, sizeof(*bo));
3519
3520 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
3521 frm += 8;
3522 *(uint16_t *)frm = htole16(ni->ni_intval);
3523 frm += 2;
3524 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3525 bo->bo_caps = (uint16_t *)frm;
3526 *(uint16_t *)frm = htole16(capinfo);
3527 frm += 2;
3528 *frm++ = IEEE80211_ELEMID_SSID;
3529 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3530 *frm++ = ni->ni_esslen;
3531 memcpy(frm, ni->ni_essid, ni->ni_esslen);
3532 frm += ni->ni_esslen;
3533 } else
3534 *frm++ = 0;
3535 frm = ieee80211_add_rates(frm, rs);
3536 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3537 *frm++ = IEEE80211_ELEMID_DSPARMS;
3538 *frm++ = 1;
3539 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3540 }
3541 if (ic->ic_flags & IEEE80211_F_PCF) {
3542 bo->bo_cfp = frm;
3543 frm = ieee80211_add_cfparms(frm, ic);
3544 }
3545 bo->bo_tim = frm;
3546 if (vap->iv_opmode == IEEE80211_M_IBSS) {
3547 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
3548 *frm++ = 2;
3549 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
3550 bo->bo_tim_len = 0;
3551 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3552 vap->iv_opmode == IEEE80211_M_MBSS) {
3553 /* TIM IE is the same for Mesh and Hostap */
3554 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3555
3556 tie->tim_ie = IEEE80211_ELEMID_TIM;
3557 tie->tim_len = 4; /* length */
3558 tie->tim_count = 0; /* DTIM count */
3559 tie->tim_period = vap->iv_dtim_period; /* DTIM period */
3560 tie->tim_bitctl = 0; /* bitmap control */
3561 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
3562 frm += sizeof(struct ieee80211_tim_ie);
3563 bo->bo_tim_len = 1;
3564 }
3565 bo->bo_tim_trailer = frm;
3566 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3567 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3568 frm = ieee80211_add_countryie(frm, ic);
3569 if (vap->iv_flags & IEEE80211_F_DOTH) {
3570 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3571 frm = ieee80211_add_powerconstraint(frm, vap);
3572 bo->bo_csa = frm;
3573 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3574 frm = ieee80211_add_csa(frm, vap);
3575 } else
3576 bo->bo_csa = frm;
3577
3578 bo->bo_quiet = NULL;
3579 if (vap->iv_flags & IEEE80211_F_DOTH) {
3580 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3581 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3582 (vap->iv_quiet == 1)) {
3583 /*
3584 * We only insert the quiet IE offset if
3585 * the quiet IE is enabled. Otherwise don't
3586 * put it here or we'll just overwrite
3587 * some other beacon contents.
3588 */
3589 if (vap->iv_quiet) {
3590 bo->bo_quiet = frm;
3591 frm = ieee80211_add_quiet(frm,vap, 0);
3592 }
3593 }
3594 }
3595
3596 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3597 bo->bo_erp = frm;
3598 frm = ieee80211_add_erp(frm, vap);
3599 }
3600 frm = ieee80211_add_xrates(frm, rs);
3601 frm = ieee80211_add_rsn(frm, vap);
3602 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3603 frm = ieee80211_add_htcap(frm, ni);
3604 bo->bo_htinfo = frm;
3605 frm = ieee80211_add_htinfo(frm, ni);
3606 }
3607
3608 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3609 frm = ieee80211_add_vhtcap(frm, ni);
3610 bo->bo_vhtinfo = frm;
3611 frm = ieee80211_add_vhtinfo(frm, ni);
3612 /* Transmit power envelope */
3613 /* Channel switch wrapper element */
3614 /* Extended bss load element */
3615 }
3616
3617 frm = ieee80211_add_wpa(frm, vap);
3618 if (vap->iv_flags & IEEE80211_F_WME) {
3619 bo->bo_wme = frm;
3620 frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3621 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3622 }
3623 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3624 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3625 frm = ieee80211_add_htcap_vendor(frm, ni);
3626 frm = ieee80211_add_htinfo_vendor(frm, ni);
3627 }
3628
3629 #ifdef IEEE80211_SUPPORT_SUPERG
3630 if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3631 bo->bo_ath = frm;
3632 frm = ieee80211_add_athcaps(frm, ni);
3633 }
3634 #endif
3635 #ifdef IEEE80211_SUPPORT_TDMA
3636 if (vap->iv_caps & IEEE80211_C_TDMA) {
3637 bo->bo_tdma = frm;
3638 frm = ieee80211_add_tdma(frm, vap);
3639 }
3640 #endif
3641 if (vap->iv_appie_beacon != NULL) {
3642 bo->bo_appie = frm;
3643 bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3644 frm = add_appie(frm, vap->iv_appie_beacon);
3645 }
3646
3647 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3648 #ifdef IEEE80211_SUPPORT_MESH
3649 if (vap->iv_opmode == IEEE80211_M_MBSS) {
3650 frm = ieee80211_add_meshid(frm, vap);
3651 bo->bo_meshconf = frm;
3652 frm = ieee80211_add_meshconf(frm, vap);
3653 }
3654 #endif
3655 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3656 bo->bo_csa_trailer_len = frm - bo->bo_csa;
3657 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3658 }
3659
3660 /*
3661 * Allocate a beacon frame and fillin the appropriate bits.
3662 */
3663 struct mbuf *
ieee80211_beacon_alloc(struct ieee80211_node * ni)3664 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3665 {
3666 struct ieee80211vap *vap = ni->ni_vap;
3667 struct ieee80211com *ic = ni->ni_ic;
3668 struct ifnet *ifp = vap->iv_ifp;
3669 struct ieee80211_frame *wh;
3670 struct mbuf *m;
3671 int pktlen;
3672 uint8_t *frm;
3673
3674 /*
3675 * Update the "We're putting the quiet IE in the beacon" state.
3676 */
3677 if (vap->iv_quiet == 1)
3678 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3679 else if (vap->iv_quiet == 0)
3680 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3681
3682 /*
3683 * beacon frame format
3684 *
3685 * Note: This needs updating for 802.11-2012.
3686 *
3687 * [8] time stamp
3688 * [2] beacon interval
3689 * [2] cabability information
3690 * [tlv] ssid
3691 * [tlv] supported rates
3692 * [3] parameter set (DS)
3693 * [8] CF parameter set (optional)
3694 * [tlv] parameter set (IBSS/TIM)
3695 * [tlv] country (optional)
3696 * [3] power control (optional)
3697 * [5] channel switch announcement (CSA) (optional)
3698 * [tlv] extended rate phy (ERP)
3699 * [tlv] extended supported rates
3700 * [tlv] RSN parameters
3701 * [tlv] HT capabilities
3702 * [tlv] HT information
3703 * [tlv] VHT capabilities
3704 * [tlv] VHT operation
3705 * [tlv] Vendor OUI HT capabilities (optional)
3706 * [tlv] Vendor OUI HT information (optional)
3707 * XXX Vendor-specific OIDs (e.g. Atheros)
3708 * [tlv] WPA parameters
3709 * [tlv] WME parameters
3710 * [tlv] TDMA parameters (optional)
3711 * [tlv] Mesh ID (MBSS)
3712 * [tlv] Mesh Conf (MBSS)
3713 * [tlv] application data (optional)
3714 * NB: we allocate the max space required for the TIM bitmap.
3715 * XXX how big is this?
3716 */
3717 pktlen = 8 /* time stamp */
3718 + sizeof(uint16_t) /* beacon interval */
3719 + sizeof(uint16_t) /* capabilities */
3720 + 2 + ni->ni_esslen /* ssid */
3721 + 2 + IEEE80211_RATE_SIZE /* supported rates */
3722 + 2 + 1 /* DS parameters */
3723 + 2 + 6 /* CF parameters */
3724 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */
3725 + IEEE80211_COUNTRY_MAX_SIZE /* country */
3726 + 2 + 1 /* power control */
3727 + sizeof(struct ieee80211_csa_ie) /* CSA */
3728 + sizeof(struct ieee80211_quiet_ie) /* Quiet */
3729 + 2 + 1 /* ERP */
3730 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3731 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
3732 2*sizeof(struct ieee80211_ie_wpa) : 0)
3733 /* XXX conditional? */
3734 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3735 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3736 + 2 + sizeof(struct ieee80211_vht_cap)/* VHT caps */
3737 + 2 + sizeof(struct ieee80211_vht_operation)/* VHT info */
3738 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */
3739 sizeof(struct ieee80211_wme_param) : 0)
3740 #ifdef IEEE80211_SUPPORT_SUPERG
3741 + sizeof(struct ieee80211_ath_ie) /* ATH */
3742 #endif
3743 #ifdef IEEE80211_SUPPORT_TDMA
3744 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */
3745 sizeof(struct ieee80211_tdma_param) : 0)
3746 #endif
3747 #ifdef IEEE80211_SUPPORT_MESH
3748 + 2 + ni->ni_meshidlen
3749 + sizeof(struct ieee80211_meshconf_ie)
3750 #endif
3751 + IEEE80211_MAX_APPIE
3752 ;
3753 m = ieee80211_getmgtframe(&frm,
3754 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3755 if (m == NULL) {
3756 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3757 "%s: cannot get buf; size %u\n", __func__, pktlen);
3758 vap->iv_stats.is_tx_nobuf++;
3759 return NULL;
3760 }
3761 ieee80211_beacon_construct(m, frm, ni);
3762
3763 M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3764 KASSERT(m != NULL, ("no space for 802.11 header?"));
3765 wh = mtod(m, struct ieee80211_frame *);
3766 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3767 IEEE80211_FC0_SUBTYPE_BEACON;
3768 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3769 *(uint16_t *)wh->i_dur = 0;
3770 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3771 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3772 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3773 *(uint16_t *)wh->i_seq = 0;
3774
3775 return m;
3776 }
3777
3778 /*
3779 * Update the dynamic parts of a beacon frame based on the current state.
3780 */
3781 int
ieee80211_beacon_update(struct ieee80211_node * ni,struct mbuf * m,int mcast)3782 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3783 {
3784 struct ieee80211vap *vap = ni->ni_vap;
3785 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3786 struct ieee80211com *ic = ni->ni_ic;
3787 int len_changed = 0;
3788 uint16_t capinfo;
3789 struct ieee80211_frame *wh;
3790 ieee80211_seq seqno;
3791
3792 IEEE80211_LOCK(ic);
3793 /*
3794 * Handle 11h channel change when we've reached the count.
3795 * We must recalculate the beacon frame contents to account
3796 * for the new channel. Note we do this only for the first
3797 * vap that reaches this point; subsequent vaps just update
3798 * their beacon state to reflect the recalculated channel.
3799 */
3800 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3801 vap->iv_csa_count == ic->ic_csa_count) {
3802 vap->iv_csa_count = 0;
3803 /*
3804 * Effect channel change before reconstructing the beacon
3805 * frame contents as many places reference ni_chan.
3806 */
3807 if (ic->ic_csa_newchan != NULL)
3808 ieee80211_csa_completeswitch(ic);
3809 /*
3810 * NB: ieee80211_beacon_construct clears all pending
3811 * updates in bo_flags so we don't need to explicitly
3812 * clear IEEE80211_BEACON_CSA.
3813 */
3814 ieee80211_beacon_construct(m,
3815 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3816
3817 /* XXX do WME aggressive mode processing? */
3818 IEEE80211_UNLOCK(ic);
3819 return 1; /* just assume length changed */
3820 }
3821
3822 /*
3823 * Handle the quiet time element being added and removed.
3824 * Again, for now we just cheat and reconstruct the whole
3825 * beacon - that way the gap is provided as appropriate.
3826 *
3827 * So, track whether we have already added the IE versus
3828 * whether we want to be adding the IE.
3829 */
3830 if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3831 (vap->iv_quiet == 0)) {
3832 /*
3833 * Quiet time beacon IE enabled, but it's disabled;
3834 * recalc
3835 */
3836 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3837 ieee80211_beacon_construct(m,
3838 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3839 /* XXX do WME aggressive mode processing? */
3840 IEEE80211_UNLOCK(ic);
3841 return 1; /* just assume length changed */
3842 }
3843
3844 if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3845 (vap->iv_quiet == 1)) {
3846 /*
3847 * Quiet time beacon IE disabled, but it's now enabled;
3848 * recalc
3849 */
3850 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3851 ieee80211_beacon_construct(m,
3852 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3853 /* XXX do WME aggressive mode processing? */
3854 IEEE80211_UNLOCK(ic);
3855 return 1; /* just assume length changed */
3856 }
3857
3858 wh = mtod(m, struct ieee80211_frame *);
3859
3860 /*
3861 * XXX TODO Strictly speaking this should be incremented with the TX
3862 * lock held so as to serialise access to the non-qos TID sequence
3863 * number space.
3864 *
3865 * If the driver identifies it does its own TX seqno management then
3866 * we can skip this (and still not do the TX seqno.)
3867 */
3868 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3869 *(uint16_t *)&wh->i_seq[0] =
3870 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3871 M_SEQNO_SET(m, seqno);
3872
3873 /* XXX faster to recalculate entirely or just changes? */
3874 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3875 *bo->bo_caps = htole16(capinfo);
3876
3877 if (vap->iv_flags & IEEE80211_F_WME) {
3878 struct ieee80211_wme_state *wme = &ic->ic_wme;
3879
3880 /*
3881 * Check for aggressive mode change. When there is
3882 * significant high priority traffic in the BSS
3883 * throttle back BE traffic by using conservative
3884 * parameters. Otherwise BE uses aggressive params
3885 * to optimize performance of legacy/non-QoS traffic.
3886 */
3887 if (wme->wme_flags & WME_F_AGGRMODE) {
3888 if (wme->wme_hipri_traffic >
3889 wme->wme_hipri_switch_thresh) {
3890 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3891 "%s: traffic %u, disable aggressive mode\n",
3892 __func__, wme->wme_hipri_traffic);
3893 wme->wme_flags &= ~WME_F_AGGRMODE;
3894 ieee80211_wme_updateparams_locked(vap);
3895 wme->wme_hipri_traffic =
3896 wme->wme_hipri_switch_hysteresis;
3897 } else
3898 wme->wme_hipri_traffic = 0;
3899 } else {
3900 if (wme->wme_hipri_traffic <=
3901 wme->wme_hipri_switch_thresh) {
3902 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3903 "%s: traffic %u, enable aggressive mode\n",
3904 __func__, wme->wme_hipri_traffic);
3905 wme->wme_flags |= WME_F_AGGRMODE;
3906 ieee80211_wme_updateparams_locked(vap);
3907 wme->wme_hipri_traffic = 0;
3908 } else
3909 wme->wme_hipri_traffic =
3910 wme->wme_hipri_switch_hysteresis;
3911 }
3912 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3913 (void) ieee80211_add_wme_param(bo->bo_wme, wme,
3914 vap->iv_flags_ext & IEEE80211_FEXT_UAPSD);
3915 clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3916 }
3917 }
3918
3919 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) {
3920 ieee80211_ht_update_beacon(vap, bo);
3921 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3922 }
3923 #ifdef IEEE80211_SUPPORT_TDMA
3924 if (vap->iv_caps & IEEE80211_C_TDMA) {
3925 /*
3926 * NB: the beacon is potentially updated every TBTT.
3927 */
3928 ieee80211_tdma_update_beacon(vap, bo);
3929 }
3930 #endif
3931 #ifdef IEEE80211_SUPPORT_MESH
3932 if (vap->iv_opmode == IEEE80211_M_MBSS)
3933 ieee80211_mesh_update_beacon(vap, bo);
3934 #endif
3935
3936 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3937 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/
3938 struct ieee80211_tim_ie *tie =
3939 (struct ieee80211_tim_ie *) bo->bo_tim;
3940 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3941 u_int timlen, timoff, i;
3942 /*
3943 * ATIM/DTIM needs updating. If it fits in the
3944 * current space allocated then just copy in the
3945 * new bits. Otherwise we need to move any trailing
3946 * data to make room. Note that we know there is
3947 * contiguous space because ieee80211_beacon_allocate
3948 * insures there is space in the mbuf to write a
3949 * maximal-size virtual bitmap (based on iv_max_aid).
3950 */
3951 /*
3952 * Calculate the bitmap size and offset, copy any
3953 * trailer out of the way, and then copy in the
3954 * new bitmap and update the information element.
3955 * Note that the tim bitmap must contain at least
3956 * one byte and any offset must be even.
3957 */
3958 if (vap->iv_ps_pending != 0) {
3959 timoff = 128; /* impossibly large */
3960 for (i = 0; i < vap->iv_tim_len; i++)
3961 if (vap->iv_tim_bitmap[i]) {
3962 timoff = i &~ 1;
3963 break;
3964 }
3965 KASSERT(timoff != 128, ("tim bitmap empty!"));
3966 for (i = vap->iv_tim_len-1; i >= timoff; i--)
3967 if (vap->iv_tim_bitmap[i])
3968 break;
3969 timlen = 1 + (i - timoff);
3970 } else {
3971 timoff = 0;
3972 timlen = 1;
3973 }
3974
3975 /*
3976 * TODO: validate this!
3977 */
3978 if (timlen != bo->bo_tim_len) {
3979 /* copy up/down trailer */
3980 int adjust = tie->tim_bitmap+timlen
3981 - bo->bo_tim_trailer;
3982 ovbcopy(bo->bo_tim_trailer,
3983 bo->bo_tim_trailer+adjust,
3984 bo->bo_tim_trailer_len);
3985 bo->bo_tim_trailer += adjust;
3986 bo->bo_erp += adjust;
3987 bo->bo_htinfo += adjust;
3988 bo->bo_vhtinfo += adjust;
3989 #ifdef IEEE80211_SUPPORT_SUPERG
3990 bo->bo_ath += adjust;
3991 #endif
3992 #ifdef IEEE80211_SUPPORT_TDMA
3993 bo->bo_tdma += adjust;
3994 #endif
3995 #ifdef IEEE80211_SUPPORT_MESH
3996 bo->bo_meshconf += adjust;
3997 #endif
3998 bo->bo_appie += adjust;
3999 bo->bo_wme += adjust;
4000 bo->bo_csa += adjust;
4001 bo->bo_quiet += adjust;
4002 bo->bo_tim_len = timlen;
4003
4004 /* update information element */
4005 tie->tim_len = 3 + timlen;
4006 tie->tim_bitctl = timoff;
4007 len_changed = 1;
4008 }
4009 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
4010 bo->bo_tim_len);
4011
4012 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
4013
4014 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
4015 "%s: TIM updated, pending %u, off %u, len %u\n",
4016 __func__, vap->iv_ps_pending, timoff, timlen);
4017 }
4018 /* count down DTIM period */
4019 if (tie->tim_count == 0)
4020 tie->tim_count = tie->tim_period - 1;
4021 else
4022 tie->tim_count--;
4023 /* update state for buffered multicast frames on DTIM */
4024 if (mcast && tie->tim_count == 0)
4025 tie->tim_bitctl |= 1;
4026 else
4027 tie->tim_bitctl &= ~1;
4028 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
4029 struct ieee80211_csa_ie *csa =
4030 (struct ieee80211_csa_ie *) bo->bo_csa;
4031
4032 /*
4033 * Insert or update CSA ie. If we're just starting
4034 * to count down to the channel switch then we need
4035 * to insert the CSA ie. Otherwise we just need to
4036 * drop the count. The actual change happens above
4037 * when the vap's count reaches the target count.
4038 */
4039 if (vap->iv_csa_count == 0) {
4040 memmove(&csa[1], csa, bo->bo_csa_trailer_len);
4041 bo->bo_erp += sizeof(*csa);
4042 bo->bo_htinfo += sizeof(*csa);
4043 bo->bo_vhtinfo += sizeof(*csa);
4044 bo->bo_wme += sizeof(*csa);
4045 #ifdef IEEE80211_SUPPORT_SUPERG
4046 bo->bo_ath += sizeof(*csa);
4047 #endif
4048 #ifdef IEEE80211_SUPPORT_TDMA
4049 bo->bo_tdma += sizeof(*csa);
4050 #endif
4051 #ifdef IEEE80211_SUPPORT_MESH
4052 bo->bo_meshconf += sizeof(*csa);
4053 #endif
4054 bo->bo_appie += sizeof(*csa);
4055 bo->bo_csa_trailer_len += sizeof(*csa);
4056 bo->bo_quiet += sizeof(*csa);
4057 bo->bo_tim_trailer_len += sizeof(*csa);
4058 m->m_len += sizeof(*csa);
4059 m->m_pkthdr.len += sizeof(*csa);
4060
4061 ieee80211_add_csa(bo->bo_csa, vap);
4062 } else
4063 csa->csa_count--;
4064 vap->iv_csa_count++;
4065 /* NB: don't clear IEEE80211_BEACON_CSA */
4066 }
4067
4068 /*
4069 * Only add the quiet time IE if we've enabled it
4070 * as appropriate.
4071 */
4072 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
4073 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
4074 if (vap->iv_quiet &&
4075 (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
4076 ieee80211_add_quiet(bo->bo_quiet, vap, 1);
4077 }
4078 }
4079 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
4080 /*
4081 * ERP element needs updating.
4082 */
4083 (void) ieee80211_add_erp(bo->bo_erp, vap);
4084 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
4085 }
4086 #ifdef IEEE80211_SUPPORT_SUPERG
4087 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) {
4088 ieee80211_add_athcaps(bo->bo_ath, ni);
4089 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
4090 }
4091 #endif
4092 }
4093 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
4094 const struct ieee80211_appie *aie = vap->iv_appie_beacon;
4095 int aielen;
4096 uint8_t *frm;
4097
4098 aielen = 0;
4099 if (aie != NULL)
4100 aielen += aie->ie_len;
4101 if (aielen != bo->bo_appie_len) {
4102 /* copy up/down trailer */
4103 int adjust = aielen - bo->bo_appie_len;
4104 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
4105 bo->bo_tim_trailer_len);
4106 bo->bo_tim_trailer += adjust;
4107 bo->bo_appie += adjust;
4108 bo->bo_appie_len = aielen;
4109
4110 len_changed = 1;
4111 }
4112 frm = bo->bo_appie;
4113 if (aie != NULL)
4114 frm = add_appie(frm, aie);
4115 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
4116 }
4117 IEEE80211_UNLOCK(ic);
4118
4119 return len_changed;
4120 }
4121
4122 /*
4123 * Do Ethernet-LLC encapsulation for each payload in a fast frame
4124 * tunnel encapsulation. The frame is assumed to have an Ethernet
4125 * header at the front that must be stripped before prepending the
4126 * LLC followed by the Ethernet header passed in (with an Ethernet
4127 * type that specifies the payload size).
4128 */
4129 struct mbuf *
ieee80211_ff_encap1(struct ieee80211vap * vap,struct mbuf * m,const struct ether_header * eh)4130 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
4131 const struct ether_header *eh)
4132 {
4133 struct llc *llc;
4134 uint16_t payload;
4135
4136 /* XXX optimize by combining m_adj+M_PREPEND */
4137 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
4138 llc = mtod(m, struct llc *);
4139 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
4140 llc->llc_control = LLC_UI;
4141 llc->llc_snap.org_code[0] = 0;
4142 llc->llc_snap.org_code[1] = 0;
4143 llc->llc_snap.org_code[2] = 0;
4144 llc->llc_snap.ether_type = eh->ether_type;
4145 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */
4146
4147 M_PREPEND(m, sizeof(struct ether_header), IEEE80211_M_NOWAIT);
4148 if (m == NULL) { /* XXX cannot happen */
4149 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
4150 "%s: no space for ether_header\n", __func__);
4151 vap->iv_stats.is_tx_nobuf++;
4152 return NULL;
4153 }
4154 ETHER_HEADER_COPY(mtod(m, void *), eh);
4155 mtod(m, struct ether_header *)->ether_type = htons(payload);
4156 return m;
4157 }
4158
4159 /*
4160 * Complete an mbuf transmission.
4161 *
4162 * For now, this simply processes a completed frame after the
4163 * driver has completed it's transmission and/or retransmission.
4164 * It assumes the frame is an 802.11 encapsulated frame.
4165 *
4166 * Later on it will grow to become the exit path for a given frame
4167 * from the driver and, depending upon how it's been encapsulated
4168 * and already transmitted, it may end up doing A-MPDU retransmission,
4169 * power save requeuing, etc.
4170 *
4171 * In order for the above to work, the driver entry point to this
4172 * must not hold any driver locks. Thus, the driver needs to delay
4173 * any actual mbuf completion until it can release said locks.
4174 *
4175 * This frees the mbuf and if the mbuf has a node reference,
4176 * the node reference will be freed.
4177 */
4178 void
ieee80211_tx_complete(struct ieee80211_node * ni,struct mbuf * m,int status)4179 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
4180 {
4181
4182 if (ni != NULL) {
4183 struct ifnet *ifp = ni->ni_vap->iv_ifp;
4184
4185 if (status == 0) {
4186 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
4187 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4188 if (m->m_flags & M_MCAST)
4189 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4190 } else
4191 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4192 if (m->m_flags & M_TXCB) {
4193 IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
4194 "ni %p vap %p mode %s state %s m %p status %d\n", ni, ni->ni_vap,
4195 ieee80211_opmode_name[ni->ni_vap->iv_opmode],
4196 ieee80211_state_name[ni->ni_vap->iv_state], m, status);
4197 ieee80211_process_callback(ni, m, status);
4198 }
4199 ieee80211_free_node(ni);
4200 }
4201 m_freem(m);
4202 }
4203