xref: /haiku/src/system/libroot/os/arch/sparc/fpu_emu.h (revision 803a4704e82749bce36c05ee56792dad62576144)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)fpu_emu.h	8.1 (Berkeley) 6/11/93
36  *	$NetBSD: fpu_emu.h,v 1.4 2000/08/03 18:32:07 eeh Exp $
37  * $FreeBSD: head/lib/libc/sparc64/fpu/fpu_emu.h 326025 2017-11-20 19:49:47Z pfg $
38  */
39 
40 /*
41  * Floating point emulator (tailored for SPARC, but structurally
42  * machine-independent).
43  *
44  * Floating point numbers are carried around internally in an `expanded'
45  * or `unpacked' form consisting of:
46  *	- sign
47  *	- unbiased exponent
48  *	- mantissa (`1.' + 112-bit fraction + guard + round)
49  *	- sticky bit
50  * Any implied `1' bit is inserted, giving a 113-bit mantissa that is
51  * always nonzero.  Additional low-order `guard' and `round' bits are
52  * scrunched in, making the entire mantissa 115 bits long.  This is divided
53  * into four 32-bit words, with `spare' bits left over in the upper part
54  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
55  * number is thus kept within the half-open interval [1.0,2.0) (but see
56  * the `number classes' below).  This holds even for denormalized numbers:
57  * when we explode an external denorm, we normalize it, introducing low-order
58  * zero bits, so that the rest of the code always sees normalized values.
59  *
60  * Note that a number of our algorithms use the `spare' bits at the top.
61  * The most demanding algorithm---the one for sqrt---depends on two such
62  * bits, so that it can represent values up to (but not including) 8.0,
63  * and then it needs a carry on top of that, so that we need three `spares'.
64  *
65  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
66  * whole words from the mantissa into it.
67  *
68  * All operations are done in this internal extended precision.  According
69  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
70  * it is OK to do a+b in extended precision and then round the result to
71  * single precision---provided single, double, and extended precisions are
72  * `far enough apart' (they always are), but we will try to avoid any such
73  * extra work where possible.
74  */
75 
76 #ifndef _SPARC64_FPU_FPU_EMU_H_
77 #define _SPARC64_FPU_FPU_EMU_H_
78 
79 #include <stdint.h>
80 
81 #include "fpu_reg.h"
82 
83 struct fpn {
84 	int	fp_class;		/* see below */
85 	int	fp_sign;		/* 0 => positive, 1 => negative */
86 	int	fp_exp;			/* exponent (unbiased) */
87 	int	fp_sticky;		/* nonzero bits lost at right end */
88 	uint32_t	fp_mant[4];		/* 115-bit mantissa */
89 };
90 
91 #define	FP_NMANT	115		/* total bits in mantissa (incl g,r) */
92 #define	FP_NG		2		/* number of low-order guard bits */
93 #define	FP_LG		((FP_NMANT - 1) & 31)	/* log2(1.0) for fp_mant[0] */
94 #define	FP_LG2		((FP_NMANT - 1) & 63)	/* log2(1.0) for fp_mant[0] and fp_mant[1] */
95 #define	FP_QUIETBIT	(1 << (FP_LG - 1))	/* Quiet bit in NaNs (0.5) */
96 #define	FP_1		(1 << FP_LG)		/* 1.0 in fp_mant[0] */
97 #define	FP_2		(1 << (FP_LG + 1))	/* 2.0 in fp_mant[0] */
98 
99 /*
100  * Number classes.  Since zero, Inf, and NaN cannot be represented using
101  * the above layout, we distinguish these from other numbers via a class.
102  * In addition, to make computation easier and to follow Appendix N of
103  * the SPARC Version 8 standard, we give each kind of NaN a separate class.
104  */
105 #define	FPC_SNAN	-2		/* signalling NaN (sign irrelevant) */
106 #define	FPC_QNAN	-1		/* quiet NaN (sign irrelevant) */
107 #define	FPC_ZERO	0		/* zero (sign matters) */
108 #define	FPC_NUM		1		/* number (sign matters) */
109 #define	FPC_INF		2		/* infinity (sign matters) */
110 
111 #define	ISNAN(fp)	((fp)->fp_class < 0)
112 #define	ISZERO(fp)	((fp)->fp_class == 0)
113 #define	ISINF(fp)	((fp)->fp_class == FPC_INF)
114 
115 /*
116  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
117  * to the `more significant' operand for our purposes.  Appendix N says that
118  * the result of a computation involving two numbers are:
119  *
120  *	If both are SNaN: operand 2, converted to Quiet
121  *	If only one is SNaN: the SNaN operand, converted to Quiet
122  *	If both are QNaN: operand 2
123  *	If only one is QNaN: the QNaN operand
124  *
125  * In addition, in operations with an Inf operand, the result is usually
126  * Inf.  The class numbers are carefully arranged so that if
127  *	(unsigned)class(op1) > (unsigned)class(op2)
128  * then op1 is the one we want; otherwise op2 is the one we want.
129  */
130 #define	ORDER(x, y) { \
131 	if ((uint32_t)(x)->fp_class > (uint32_t)(y)->fp_class) \
132 		SWAP(x, y); \
133 }
134 #define	SWAP(x, y) { \
135 	register struct fpn *swap; \
136 	swap = (x), (x) = (y), (y) = swap; \
137 }
138 
139 /*
140  * Floating point operand types. FTYPE_LNG is syntethic (it does not occur in
141  * instructions).
142  */
143 #define	FTYPE_INT	INSFP_i
144 #define	FTYPE_SNG	INSFP_s
145 #define	FTYPE_DBL	INSFP_d
146 #define	FTYPE_EXT	INSFP_q
147 #define	FTYPE_LNG	4
148 
149 /*
150  * Emulator state.
151  */
152 struct fpemu {
153 	uint64_t	fe_fsr;			/* fsr copy (modified during op) */
154 	int	fe_cx;			/* exceptions */
155 	int     pad;                    /* align access to following fields */
156 	struct	fpn fe_f1;		/* operand 1 */
157 	struct	fpn fe_f2;		/* operand 2, if required */
158 	struct	fpn fe_f3;		/* available storage for result */
159 };
160 
161 /*
162  * Arithmetic functions.
163  * Each of these may modify its inputs (f1,f2) and/or the temporary.
164  * Each returns a pointer to the result and/or sets exceptions.
165  */
166 #define	__fpu_sub(fe)	(ISNAN(&(fe)->fe_f2) ? 0 : ((fe)->fe_f2.fp_sign ^= 1), \
167 			    __fpu_add(fe))
168 
169 #ifdef FPU_DEBUG
170 #define	FPE_INSN	0x1
171 #define	FPE_REG		0x2
172 extern int __fpe_debug;
173 void	__fpu_dumpfpn(struct fpn *);
174 #define	DPRINTF(x, y)	if (__fpe_debug & (x)) printf y
175 #define DUMPFPN(x, f)	if (__fpe_debug & (x)) __fpu_dumpfpn((f))
176 #else
177 #define	DPRINTF(x, y)
178 #define DUMPFPN(x, f)
179 #endif
180 
181 #endif /* !_SPARC64_FPU_FPU_EXTERN_H_ */
182