xref: /haiku/src/system/libroot/posix/crypt/crypto_scrypt_smix.cpp (revision f31b1a2faf808b6d39636a02366ba98a0ae6ebb2)
1 /*-
2  * Copyright 2009 Colin Percival
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * This file was originally written by Colin Percival as part of the Tarsnap
27  * online backup system.
28  */
29 #include <stdio.h>
30 #include <stdint.h>
31 #include <string.h>
32 #include <ByteOrder.h>
33 #include "pbkdf2.h"
34 #include "crypto_scrypt_smix.h"
35 
36 static void blkcpy(void *, const void *, size_t);
37 static void blkxor(void *, const void *, size_t);
38 static void salsa20_8(uint32_t[16]);
39 static void blockmix_salsa8(const uint32_t *, uint32_t *, uint32_t *, size_t);
40 static uint64_t integerify(const void *, size_t);
41 
42 static void
blkcpy(void * dest,const void * src,size_t len)43 blkcpy(void * dest, const void * src, size_t len)
44 {
45 	size_t * D = (size_t *)dest;
46 	const size_t * S = (const size_t *)src;
47 	size_t L = len / sizeof(size_t);
48 	size_t i;
49 
50 	for (i = 0; i < L; i++)
51 		D[i] = S[i];
52 }
53 
54 static void
blkxor(void * dest,const void * src,size_t len)55 blkxor(void * dest, const void * src, size_t len)
56 {
57 	size_t * D = (size_t *)dest;
58 	const size_t * S = (const size_t *)src;
59 	size_t L = len / sizeof(size_t);
60 	size_t i;
61 
62 	for (i = 0; i < L; i++)
63 		D[i] ^= S[i];
64 }
65 
66 /**
67  * salsa20_8(B):
68  * Apply the salsa20/8 core to the provided block.
69  */
70 static void
salsa20_8(uint32_t B[16])71 salsa20_8(uint32_t B[16])
72 {
73 	uint32_t x[16];
74 	size_t i;
75 
76 	blkcpy(x, B, 64);
77 	for (i = 0; i < 8; i += 2) {
78 #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
79 		/* Operate on columns. */
80 		x[ 4] ^= R(x[ 0]+x[12], 7);  x[ 8] ^= R(x[ 4]+x[ 0], 9);
81 		x[12] ^= R(x[ 8]+x[ 4],13);  x[ 0] ^= R(x[12]+x[ 8],18);
82 
83 		x[ 9] ^= R(x[ 5]+x[ 1], 7);  x[13] ^= R(x[ 9]+x[ 5], 9);
84 		x[ 1] ^= R(x[13]+x[ 9],13);  x[ 5] ^= R(x[ 1]+x[13],18);
85 
86 		x[14] ^= R(x[10]+x[ 6], 7);  x[ 2] ^= R(x[14]+x[10], 9);
87 		x[ 6] ^= R(x[ 2]+x[14],13);  x[10] ^= R(x[ 6]+x[ 2],18);
88 
89 		x[ 3] ^= R(x[15]+x[11], 7);  x[ 7] ^= R(x[ 3]+x[15], 9);
90 		x[11] ^= R(x[ 7]+x[ 3],13);  x[15] ^= R(x[11]+x[ 7],18);
91 
92 		/* Operate on rows. */
93 		x[ 1] ^= R(x[ 0]+x[ 3], 7);  x[ 2] ^= R(x[ 1]+x[ 0], 9);
94 		x[ 3] ^= R(x[ 2]+x[ 1],13);  x[ 0] ^= R(x[ 3]+x[ 2],18);
95 
96 		x[ 6] ^= R(x[ 5]+x[ 4], 7);  x[ 7] ^= R(x[ 6]+x[ 5], 9);
97 		x[ 4] ^= R(x[ 7]+x[ 6],13);  x[ 5] ^= R(x[ 4]+x[ 7],18);
98 
99 		x[11] ^= R(x[10]+x[ 9], 7);  x[ 8] ^= R(x[11]+x[10], 9);
100 		x[ 9] ^= R(x[ 8]+x[11],13);  x[10] ^= R(x[ 9]+x[ 8],18);
101 
102 		x[12] ^= R(x[15]+x[14], 7);  x[13] ^= R(x[12]+x[15], 9);
103 		x[14] ^= R(x[13]+x[12],13);  x[15] ^= R(x[14]+x[13],18);
104 #undef R
105 	}
106 	for (i = 0; i < 16; i++)
107 		B[i] += x[i];
108 }
109 
110 /**
111  * blockmix_salsa8(Bin, Bout, X, r):
112  * Compute Bout = BlockMix_{salsa20/8, r}(Bin).  The input Bin must be 128r
113  * bytes in length; the output Bout must also be the same size.  The
114  * temporary space X must be 64 bytes.
115  */
116 static void
blockmix_salsa8(const uint32_t * Bin,uint32_t * Bout,uint32_t * X,size_t r)117 blockmix_salsa8(const uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r)
118 {
119 	size_t i;
120 
121 	/* 1: X <-- B_{2r - 1} */
122 	blkcpy(X, &Bin[(2 * r - 1) * 16], 64);
123 
124 	/* 2: for i = 0 to 2r - 1 do */
125 	for (i = 0; i < 2 * r; i += 2) {
126 		/* 3: X <-- H(X \xor B_i) */
127 		blkxor(X, &Bin[i * 16], 64);
128 		salsa20_8(X);
129 
130 		/* 4: Y_i <-- X */
131 		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
132 		blkcpy(&Bout[i * 8], X, 64);
133 
134 		/* 3: X <-- H(X \xor B_i) */
135 		blkxor(X, &Bin[i * 16 + 16], 64);
136 		salsa20_8(X);
137 
138 		/* 4: Y_i <-- X */
139 		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
140 		blkcpy(&Bout[i * 8 + r * 16], X, 64);
141 	}
142 }
143 
144 /**
145  * integerify(B, r):
146  * Return the result of parsing B_{2r-1} as a little-endian integer.
147  */
148 static uint64_t
integerify(const void * B,size_t r)149 integerify(const void * B, size_t r)
150 {
151 	const uint32_t * X = (const uint32_t *)((uintptr_t)(B) + (2 * r - 1) * 64);
152 
153 	return (((uint64_t)(X[1]) << 32) + X[0]);
154 }
155 
156 /**
157  * crypto_scrypt_smix(B, r, N, V, XY):
158  * Compute B = SMix_r(B, N).  The input B must be 128r bytes in length;
159  * the temporary storage V must be 128rN bytes in length; the temporary
160  * storage XY must be 256r + 64 bytes in length.  The value N must be a
161  * power of 2 greater than 1.  The arrays B, V, and XY must be aligned to a
162  * multiple of 64 bytes.
163  */
164 void
crypto_scrypt_smix(uint8_t * B,size_t r,uint64_t N,void * _V,void * XY)165 crypto_scrypt_smix(uint8_t * B, size_t r, uint64_t N, void * _V, void * XY)
166 {
167 	uint32_t * X = (uint32_t *)XY;
168 	uint32_t * Y = (uint32_t *)((uint8_t *)(XY) + 128 * r);
169 	uint32_t * Z = (uint32_t *)((uint8_t *)(XY) + 256 * r);
170 	uint32_t * V = (uint32_t *)_V;
171 	uint64_t i;
172 	uint64_t j;
173 	size_t k;
174 
175 	/* 1: X <-- B */
176 	for (k = 0; k < 32 * r; k++) {
177 		X[k] = B_LENDIAN_TO_HOST_INT32(((uint32_t*)B)[k]);
178 	}
179 
180 	/* 2: for i = 0 to N - 1 do */
181 	for (i = 0; i < N; i += 2) {
182 		/* 3: V_i <-- X */
183 		blkcpy(&V[i * (32 * r)], X, 128 * r);
184 
185 		/* 4: X <-- H(X) */
186 		blockmix_salsa8(X, Y, Z, r);
187 
188 		/* 3: V_i <-- X */
189 		blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r);
190 
191 		/* 4: X <-- H(X) */
192 		blockmix_salsa8(Y, X, Z, r);
193 	}
194 
195 	/* 6: for i = 0 to N - 1 do */
196 	for (i = 0; i < N; i += 2) {
197 		/* 7: j <-- Integerify(X) mod N */
198 		j = integerify(X, r) & (N - 1);
199 
200 		/* 8: X <-- H(X \xor V_j) */
201 		blkxor(X, &V[j * (32 * r)], 128 * r);
202 		blockmix_salsa8(X, Y, Z, r);
203 
204 		/* 7: j <-- Integerify(X) mod N */
205 		j = integerify(Y, r) & (N - 1);
206 
207 		/* 8: X <-- H(X \xor V_j) */
208 		blkxor(Y, &V[j * (32 * r)], 128 * r);
209 		blockmix_salsa8(Y, X, Z, r);
210 	}
211 
212 	/* 10: B' <-- X */
213 	for (k = 0; k < 32 * r; k++) {
214 		uint32_t* B32 = &(reinterpret_cast<uint32_t*>(B)[k]);
215 		*B32 = B_HOST_TO_LENDIAN_INT32(X[k]);
216 	}
217 }
218