xref: /haiku/headers/libs/agg/agg_math_stroke.h (revision 434c34711184eaccfd716afb0187d642e2208ce9)
1 //----------------------------------------------------------------------------
2 // Anti-Grain Geometry - Version 2.4
3 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
4 //
5 // Permission to copy, use, modify, sell and distribute this software
6 // is granted provided this copyright notice appears in all copies.
7 // This software is provided "as is" without express or implied
8 // warranty, and with no claim as to its suitability for any purpose.
9 //
10 //----------------------------------------------------------------------------
11 // Contact: mcseem@antigrain.com
12 //          mcseemagg@yahoo.com
13 //          http://www.antigrain.com
14 //----------------------------------------------------------------------------
15 //
16 // Stroke math
17 //
18 //----------------------------------------------------------------------------
19 
20 #ifndef AGG_STROKE_MATH_INCLUDED
21 #define AGG_STROKE_MATH_INCLUDED
22 
23 #include "agg_math.h"
24 #include "agg_vertex_sequence.h"
25 
26 namespace agg
27 {
28     //-------------------------------------------------------------line_cap_e
29     enum line_cap_e
30     {
31         butt_cap,
32         square_cap,
33         round_cap
34     };
35 
36     //------------------------------------------------------------line_join_e
37     enum line_join_e
38     {
39         miter_join         = 0,
40         miter_join_revert  = 1,
41         round_join         = 2,
42         bevel_join         = 3,
43         miter_join_round   = 4
44     };
45 
46 
47     //-----------------------------------------------------------inner_join_e
48     enum inner_join_e
49     {
50         inner_bevel,
51         inner_miter,
52         inner_jag,
53         inner_round
54     };
55 
56     //------------------------------------------------------------math_stroke
57     template<class VertexConsumer> class math_stroke
58     {
59     public:
60         typedef typename VertexConsumer::value_type coord_type;
61 
62         math_stroke();
63 
line_cap(line_cap_e lc)64         void line_cap(line_cap_e lc)     { m_line_cap = lc; }
line_join(line_join_e lj)65         void line_join(line_join_e lj)   { m_line_join = lj; }
inner_join(inner_join_e ij)66         void inner_join(inner_join_e ij) { m_inner_join = ij; }
67 
line_cap()68         line_cap_e   line_cap()   const { return m_line_cap; }
line_join()69         line_join_e  line_join()  const { return m_line_join; }
inner_join()70         inner_join_e inner_join() const { return m_inner_join; }
71 
72         void width(double w);
miter_limit(double ml)73         void miter_limit(double ml) { m_miter_limit = ml; }
74         void miter_limit_theta(double t);
inner_miter_limit(double ml)75         void inner_miter_limit(double ml) { m_inner_miter_limit = ml; }
approximation_scale(double as)76         void approximation_scale(double as) { m_approx_scale = as; }
77 
width()78         double width() const { return m_width * 2.0; }
miter_limit()79         double miter_limit() const { return m_miter_limit; }
inner_miter_limit()80         double inner_miter_limit() const { return m_inner_miter_limit; }
approximation_scale()81         double approximation_scale() const { return m_approx_scale; }
82 
83         void calc_cap(VertexConsumer& out_vertices,
84                       const vertex_dist& v0,
85                       const vertex_dist& v1,
86                       double len);
87 
88         void calc_join(VertexConsumer& out_vertices,
89                        const vertex_dist& v0,
90                        const vertex_dist& v1,
91                        const vertex_dist& v2,
92                        double len1,
93                        double len2);
94 
95     private:
96         void calc_arc(VertexConsumer& out_vertices,
97                       double x,   double y,
98                       double dx1, double dy1,
99                       double dx2, double dy2);
100 
101         void calc_miter(VertexConsumer& out_vertices,
102                         const vertex_dist& v0,
103                         const vertex_dist& v1,
104                         const vertex_dist& v2,
105                         double dx1, double dy1,
106                         double dx2, double dy2,
107                         line_join_e lj,
108                         double ml);
109 
110         double       m_width;
111         double       m_width_abs;
112         int          m_width_sign;
113         double       m_miter_limit;
114         double       m_inner_miter_limit;
115         double       m_approx_scale;
116         line_cap_e   m_line_cap;
117         line_join_e  m_line_join;
118         inner_join_e m_inner_join;
119     };
120 
121     //-----------------------------------------------------------------------
math_stroke()122     template<class VC> math_stroke<VC>::math_stroke() :
123         m_width(0.5),
124         m_width_abs(0.5),
125         m_width_sign(1),
126         m_miter_limit(4.0),
127         m_inner_miter_limit(1.01),
128         m_approx_scale(1.0),
129         m_line_cap(butt_cap),
130         m_line_join(miter_join),
131         m_inner_join(inner_miter)
132     {
133     }
134 
135     //-----------------------------------------------------------------------
width(double w)136     template<class VC> void math_stroke<VC>::width(double w)
137     {
138         m_width = w * 0.5;
139         if(m_width < 0)
140         {
141             m_width_abs  = -m_width;
142             m_width_sign = -1;
143         }
144         else
145         {
146             m_width_abs  = m_width;
147             m_width_sign = 1;
148         }
149     }
150 
151     //-----------------------------------------------------------------------
miter_limit_theta(double t)152     template<class VC> void math_stroke<VC>::miter_limit_theta(double t)
153     {
154         m_miter_limit = 1.0 / sin(t * 0.5) ;
155     }
156 
157     //-----------------------------------------------------------------------
158     template<class VC>
calc_arc(VC & out_vertices,double x,double y,double dx1,double dy1,double dx2,double dy2)159     void math_stroke<VC>::calc_arc(VC& out_vertices,
160                                    double x,   double y,
161                                    double dx1, double dy1,
162                                    double dx2, double dy2)
163     {
164         double a1 = atan2(dy1 * m_width_sign, dx1 * m_width_sign);
165         double a2 = atan2(dy2 * m_width_sign, dx2 * m_width_sign);
166         double da = acos(m_width_abs / (m_width_abs + 0.125 / m_approx_scale)) * 2;
167         int i, n;
168 
169 
170         out_vertices.add(coord_type(x + dx1, y + dy1));
171         if(m_width_sign > 0)
172         {
173             if(a1 > a2) a2 += 2 * pi;
174             n = int((a2 - a1) / da);
175             da = (a2 - a1) / (n + 1);
176             a1 += da;
177             for(i = 0; i < n; i++)
178             {
179                 out_vertices.add(coord_type(x + cos(a1) * m_width,
180                                             y + sin(a1) * m_width));
181                 a1 += da;
182             }
183         }
184         else
185         {
186             if(a1 < a2) a2 -= 2 * pi;
187             n = int((a1 - a2) / da);
188             da = (a1 - a2) / (n + 1);
189             a1 -= da;
190             for(i = 0; i < n; i++)
191             {
192                 out_vertices.add(coord_type(x + cos(a1) * m_width,
193                                             y + sin(a1) * m_width));
194                 a1 -= da;
195             }
196         }
197         out_vertices.add(coord_type(x + dx2, y + dy2));
198     }
199 
200     //-----------------------------------------------------------------------
201     template<class VC>
calc_miter(VC & out_vertices,const vertex_dist & v0,const vertex_dist & v1,const vertex_dist & v2,double dx1,double dy1,double dx2,double dy2,line_join_e lj,double ml)202     void math_stroke<VC>::calc_miter(VC& out_vertices,
203                                      const vertex_dist& v0,
204                                      const vertex_dist& v1,
205                                      const vertex_dist& v2,
206                                      double dx1, double dy1,
207                                      double dx2, double dy2,
208                                      line_join_e lj,
209                                      double ml)
210     {
211         double xi = v1.x;
212         double yi = v1.y;
213         bool miter_limit_exceeded = true; // Assume the worst
214 
215         if(calc_intersection(v0.x + dx1, v0.y - dy1,
216                              v1.x + dx1, v1.y - dy1,
217                              v1.x + dx2, v1.y - dy2,
218                              v2.x + dx2, v2.y - dy2,
219                              &xi, &yi))
220         {
221             // Calculation of the intersection succeeded
222             //---------------------
223             double d1 = calc_distance(v1.x, v1.y, xi, yi);
224             double lim = m_width_abs * ml;
225             if(d1 <= lim)
226             {
227                 // Inside the miter limit
228                 //---------------------
229                 out_vertices.add(coord_type(xi, yi));
230                 miter_limit_exceeded = false;
231             }
232         }
233         else
234         {
235             // Calculation of the intersection failed, most probably
236             // the three points lie one straight line.
237             // First check if v0 and v2 lie on the opposite sides of vector:
238             // (v1.x, v1.y) -> (v1.x+dx1, v1.y-dy1), that is, the perpendicular
239             // to the line determined by vertices v0 and v1.
240             // This condition determines whether the next line segments continues
241             // the previous one or goes back.
242             //----------------
243             double x2 = v1.x + dx1;
244             double y2 = v1.y - dy1;
245             if(((x2 - v0.x)*dy1 - (v0.y - y2)*dx1 < 0.0) !=
246                ((x2 - v2.x)*dy1 - (v2.y - y2)*dx1 < 0.0))
247             {
248                 // This case means that the next segment continues
249                 // the previous one (straight line)
250                 //-----------------
251                 out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1));
252                 miter_limit_exceeded = false;
253             }
254         }
255 
256         if(miter_limit_exceeded)
257         {
258             // Miter limit exceeded
259             //------------------------
260             switch(lj)
261             {
262             case miter_join_revert:
263                 // For the compatibility with SVG, PDF, etc,
264                 // we use a simple bevel join instead of
265                 // "smart" bevel
266                 //-------------------
267                 out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1));
268                 out_vertices.add(coord_type(v1.x + dx2, v1.y - dy2));
269                 break;
270 
271             case miter_join_round:
272                 calc_arc(out_vertices, v1.x, v1.y, dx1, -dy1, dx2, -dy2);
273                 break;
274 
275             default:
276                 // If no miter-revert, calculate new dx1, dy1, dx2, dy2
277                 //----------------
278                 ml *= m_width_sign;
279                 out_vertices.add(coord_type(v1.x + dx1 + dy1 * ml,
280                                             v1.y - dy1 + dx1 * ml));
281                 out_vertices.add(coord_type(v1.x + dx2 - dy2 * ml,
282                                             v1.y - dy2 - dx2 * ml));
283                 break;
284             }
285         }
286     }
287 
288     //--------------------------------------------------------stroke_calc_cap
289     template<class VC>
calc_cap(VC & out_vertices,const vertex_dist & v0,const vertex_dist & v1,double len)290     void math_stroke<VC>::calc_cap(VC& out_vertices,
291                                    const vertex_dist& v0,
292                                    const vertex_dist& v1,
293                                    double len)
294     {
295         out_vertices.remove_all();
296 
297         double dx1 = (v1.y - v0.y) / len;
298         double dy1 = (v1.x - v0.x) / len;
299         double dx2 = 0;
300         double dy2 = 0;
301 
302         dx1 *= m_width;
303         dy1 *= m_width;
304 
305         if(m_line_cap != round_cap)
306         {
307             if(m_line_cap == square_cap)
308             {
309                 dx2 = dy1 * m_width_sign;
310                 dy2 = dx1 * m_width_sign;
311             }
312             out_vertices.add(coord_type(v0.x - dx1 - dx2, v0.y + dy1 - dy2));
313             out_vertices.add(coord_type(v0.x + dx1 - dx2, v0.y - dy1 - dy2));
314         }
315         else
316         {
317             double da = acos(m_width_abs / (m_width_abs + 0.125 / m_approx_scale)) * 2;
318             double a1;
319             int i;
320             int n = int(pi / da);
321 
322             da = pi / (n + 1);
323             out_vertices.add(coord_type(v0.x - dx1, v0.y + dy1));
324             if(m_width_sign > 0)
325             {
326                 a1 = atan2(dy1, -dx1);
327                 a1 += da;
328                 for(i = 0; i < n; i++)
329                 {
330                     out_vertices.add(coord_type(v0.x + cos(a1) * m_width,
331                                                 v0.y + sin(a1) * m_width));
332                     a1 += da;
333                 }
334             }
335             else
336             {
337                 a1 = atan2(-dy1, dx1);
338                 a1 -= da;
339                 for(i = 0; i < n; i++)
340                 {
341                     out_vertices.add(coord_type(v0.x + cos(a1) * m_width,
342                                                 v0.y + sin(a1) * m_width));
343                     a1 -= da;
344                 }
345             }
346             out_vertices.add(coord_type(v0.x + dx1, v0.y - dy1));
347         }
348     }
349 
350     //-----------------------------------------------------------------------
351     template<class VC>
calc_join(VC & out_vertices,const vertex_dist & v0,const vertex_dist & v1,const vertex_dist & v2,double len1,double len2)352     void math_stroke<VC>::calc_join(VC& out_vertices,
353                                     const vertex_dist& v0,
354                                     const vertex_dist& v1,
355                                     const vertex_dist& v2,
356                                     double len1,
357                                     double len2)
358     {
359         double dx1, dy1, dx2, dy2;
360         double d;
361 
362         dx1 = m_width * (v1.y - v0.y) / len1;
363         dy1 = m_width * (v1.x - v0.x) / len1;
364 
365         dx2 = m_width * (v2.y - v1.y) / len2;
366         dy2 = m_width * (v2.x - v1.x) / len2;
367 
368         out_vertices.remove_all();
369 
370         double cp = cross_product(v0.x, v0.y, v1.x, v1.y, v2.x, v2.y);
371         if(cp != 0 && (cp > 0) == (m_width > 0))
372         {
373             // Inner join
374             //---------------
375             double limit = ((len1 < len2) ? len1 : len2) / m_width_abs;
376             if(limit < m_inner_miter_limit)
377             {
378                 limit = m_inner_miter_limit;
379             }
380 
381             switch(m_inner_join)
382             {
383             default: // inner_bevel
384                 out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1));
385                 out_vertices.add(coord_type(v1.x + dx2, v1.y - dy2));
386                 break;
387 
388             case inner_miter:
389                 calc_miter(out_vertices,
390                            v0, v1, v2, dx1, dy1, dx2, dy2,
391                            miter_join_revert,
392                            limit);
393                 break;
394 
395             case inner_jag:
396             case inner_round:
397                 {
398                     d = (dx1-dx2) * (dx1-dx2) + (dy1-dy2) * (dy1-dy2);
399                     if(d < len1 * len1 && d < len2 * len2)
400                     {
401                         calc_miter(out_vertices,
402                                    v0, v1, v2, dx1, dy1, dx2, dy2,
403                                    miter_join_revert,
404                                    limit);
405                     }
406                     else
407                     {
408                         if(m_inner_join == inner_jag)
409                         {
410                             out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1));
411                             out_vertices.add(coord_type(v1.x,       v1.y      ));
412                             out_vertices.add(coord_type(v1.x + dx2, v1.y - dy2));
413                         }
414                         else
415                         {
416                             out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1));
417                             out_vertices.add(coord_type(v1.x,       v1.y      ));
418                             calc_arc(out_vertices, v1.x, v1.y, dx2, -dy2, dx1, -dy1);
419                             out_vertices.add(coord_type(v1.x,       v1.y      ));
420                             out_vertices.add(coord_type(v1.x + dx2, v1.y - dy2));
421                         }
422                     }
423                 }
424                 break;
425             }
426         }
427         else
428         {
429             // Outer join
430             //---------------
431             line_join_e lj = m_line_join;
432             if(m_line_join == round_join || m_line_join == bevel_join)
433             {
434                 // This is an optimization that reduces the number of points
435                 // in cases of almost collonear segments. If there's no
436                 // visible difference between bevel and miter joins we'd rather
437                 // use miter join because it adds only one point instead of two.
438                 //
439                 // Here we calculate the middle point between the bevel points
440                 // and then, the distance between v1 and this middle point.
441                 // At outer joins this distance always less than stroke width,
442                 // because it's actually the height of an isosceles triangle of
443                 // v1 and its two bevel points. If the difference between this
444                 // width and this value is small (no visible bevel) we can switch
445                 // to the miter join.
446                 //
447                 // The constant in the expression makes the result approximately
448                 // the same as in round joins and caps. One can safely comment
449                 // out this "if".
450                 //-------------------
451                 double dx = (dx1 + dx2) / 2;
452                 double dy = (dy1 + dy2) / 2;
453                 d = m_width_abs - sqrt(dx * dx + dy * dy);
454                 if(d < 0.0625 / m_approx_scale)
455                 {
456                     lj = miter_join;
457                 }
458             }
459 
460             switch(lj)
461             {
462             case miter_join:
463             case miter_join_revert:
464             case miter_join_round:
465                 calc_miter(out_vertices,
466                            v0, v1, v2, dx1, dy1, dx2, dy2,
467                            lj,
468                            m_miter_limit);
469                 break;
470 
471             case round_join:
472                 calc_arc(out_vertices, v1.x, v1.y, dx1, -dy1, dx2, -dy2);
473                 break;
474 
475             default: // Bevel join
476                 out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1));
477                 out_vertices.add(coord_type(v1.x + dx2, v1.y - dy2));
478                 break;
479             }
480         }
481     }
482 
483 
484 
485 
486 }
487 
488 #endif
489