1 //---------------------------------------------------------------------------- 2 // Anti-Grain Geometry - Version 2.4 3 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com) 4 // 5 // Permission to copy, use, modify, sell and distribute this software 6 // is granted provided this copyright notice appears in all copies. 7 // This software is provided "as is" without express or implied 8 // warranty, and with no claim as to its suitability for any purpose. 9 // 10 //---------------------------------------------------------------------------- 11 // Contact: mcseem@antigrain.com 12 // mcseemagg@yahoo.com 13 // http://www.antigrain.com 14 //---------------------------------------------------------------------------- 15 // 16 // Stroke math 17 // 18 //---------------------------------------------------------------------------- 19 20 #ifndef AGG_STROKE_MATH_INCLUDED 21 #define AGG_STROKE_MATH_INCLUDED 22 23 #include "agg_math.h" 24 #include "agg_vertex_sequence.h" 25 26 namespace agg 27 { 28 //-------------------------------------------------------------line_cap_e 29 enum line_cap_e 30 { 31 butt_cap, 32 square_cap, 33 round_cap 34 }; 35 36 //------------------------------------------------------------line_join_e 37 enum line_join_e 38 { 39 miter_join = 0, 40 miter_join_revert = 1, 41 round_join = 2, 42 bevel_join = 3, 43 miter_join_round = 4 44 }; 45 46 47 //-----------------------------------------------------------inner_join_e 48 enum inner_join_e 49 { 50 inner_bevel, 51 inner_miter, 52 inner_jag, 53 inner_round 54 }; 55 56 //------------------------------------------------------------math_stroke 57 template<class VertexConsumer> class math_stroke 58 { 59 public: 60 typedef typename VertexConsumer::value_type coord_type; 61 62 math_stroke(); 63 line_cap(line_cap_e lc)64 void line_cap(line_cap_e lc) { m_line_cap = lc; } line_join(line_join_e lj)65 void line_join(line_join_e lj) { m_line_join = lj; } inner_join(inner_join_e ij)66 void inner_join(inner_join_e ij) { m_inner_join = ij; } 67 line_cap()68 line_cap_e line_cap() const { return m_line_cap; } line_join()69 line_join_e line_join() const { return m_line_join; } inner_join()70 inner_join_e inner_join() const { return m_inner_join; } 71 72 void width(double w); miter_limit(double ml)73 void miter_limit(double ml) { m_miter_limit = ml; } 74 void miter_limit_theta(double t); inner_miter_limit(double ml)75 void inner_miter_limit(double ml) { m_inner_miter_limit = ml; } approximation_scale(double as)76 void approximation_scale(double as) { m_approx_scale = as; } 77 width()78 double width() const { return m_width * 2.0; } miter_limit()79 double miter_limit() const { return m_miter_limit; } inner_miter_limit()80 double inner_miter_limit() const { return m_inner_miter_limit; } approximation_scale()81 double approximation_scale() const { return m_approx_scale; } 82 83 void calc_cap(VertexConsumer& out_vertices, 84 const vertex_dist& v0, 85 const vertex_dist& v1, 86 double len); 87 88 void calc_join(VertexConsumer& out_vertices, 89 const vertex_dist& v0, 90 const vertex_dist& v1, 91 const vertex_dist& v2, 92 double len1, 93 double len2); 94 95 private: 96 void calc_arc(VertexConsumer& out_vertices, 97 double x, double y, 98 double dx1, double dy1, 99 double dx2, double dy2); 100 101 void calc_miter(VertexConsumer& out_vertices, 102 const vertex_dist& v0, 103 const vertex_dist& v1, 104 const vertex_dist& v2, 105 double dx1, double dy1, 106 double dx2, double dy2, 107 line_join_e lj, 108 double ml); 109 110 double m_width; 111 double m_width_abs; 112 int m_width_sign; 113 double m_miter_limit; 114 double m_inner_miter_limit; 115 double m_approx_scale; 116 line_cap_e m_line_cap; 117 line_join_e m_line_join; 118 inner_join_e m_inner_join; 119 }; 120 121 //----------------------------------------------------------------------- math_stroke()122 template<class VC> math_stroke<VC>::math_stroke() : 123 m_width(0.5), 124 m_width_abs(0.5), 125 m_width_sign(1), 126 m_miter_limit(4.0), 127 m_inner_miter_limit(1.01), 128 m_approx_scale(1.0), 129 m_line_cap(butt_cap), 130 m_line_join(miter_join), 131 m_inner_join(inner_miter) 132 { 133 } 134 135 //----------------------------------------------------------------------- width(double w)136 template<class VC> void math_stroke<VC>::width(double w) 137 { 138 m_width = w * 0.5; 139 if(m_width < 0) 140 { 141 m_width_abs = -m_width; 142 m_width_sign = -1; 143 } 144 else 145 { 146 m_width_abs = m_width; 147 m_width_sign = 1; 148 } 149 } 150 151 //----------------------------------------------------------------------- miter_limit_theta(double t)152 template<class VC> void math_stroke<VC>::miter_limit_theta(double t) 153 { 154 m_miter_limit = 1.0 / sin(t * 0.5) ; 155 } 156 157 //----------------------------------------------------------------------- 158 template<class VC> calc_arc(VC & out_vertices,double x,double y,double dx1,double dy1,double dx2,double dy2)159 void math_stroke<VC>::calc_arc(VC& out_vertices, 160 double x, double y, 161 double dx1, double dy1, 162 double dx2, double dy2) 163 { 164 double a1 = atan2(dy1 * m_width_sign, dx1 * m_width_sign); 165 double a2 = atan2(dy2 * m_width_sign, dx2 * m_width_sign); 166 double da = acos(m_width_abs / (m_width_abs + 0.125 / m_approx_scale)) * 2; 167 int i, n; 168 169 170 out_vertices.add(coord_type(x + dx1, y + dy1)); 171 if(m_width_sign > 0) 172 { 173 if(a1 > a2) a2 += 2 * pi; 174 n = int((a2 - a1) / da); 175 da = (a2 - a1) / (n + 1); 176 a1 += da; 177 for(i = 0; i < n; i++) 178 { 179 out_vertices.add(coord_type(x + cos(a1) * m_width, 180 y + sin(a1) * m_width)); 181 a1 += da; 182 } 183 } 184 else 185 { 186 if(a1 < a2) a2 -= 2 * pi; 187 n = int((a1 - a2) / da); 188 da = (a1 - a2) / (n + 1); 189 a1 -= da; 190 for(i = 0; i < n; i++) 191 { 192 out_vertices.add(coord_type(x + cos(a1) * m_width, 193 y + sin(a1) * m_width)); 194 a1 -= da; 195 } 196 } 197 out_vertices.add(coord_type(x + dx2, y + dy2)); 198 } 199 200 //----------------------------------------------------------------------- 201 template<class VC> calc_miter(VC & out_vertices,const vertex_dist & v0,const vertex_dist & v1,const vertex_dist & v2,double dx1,double dy1,double dx2,double dy2,line_join_e lj,double ml)202 void math_stroke<VC>::calc_miter(VC& out_vertices, 203 const vertex_dist& v0, 204 const vertex_dist& v1, 205 const vertex_dist& v2, 206 double dx1, double dy1, 207 double dx2, double dy2, 208 line_join_e lj, 209 double ml) 210 { 211 double xi = v1.x; 212 double yi = v1.y; 213 bool miter_limit_exceeded = true; // Assume the worst 214 215 if(calc_intersection(v0.x + dx1, v0.y - dy1, 216 v1.x + dx1, v1.y - dy1, 217 v1.x + dx2, v1.y - dy2, 218 v2.x + dx2, v2.y - dy2, 219 &xi, &yi)) 220 { 221 // Calculation of the intersection succeeded 222 //--------------------- 223 double d1 = calc_distance(v1.x, v1.y, xi, yi); 224 double lim = m_width_abs * ml; 225 if(d1 <= lim) 226 { 227 // Inside the miter limit 228 //--------------------- 229 out_vertices.add(coord_type(xi, yi)); 230 miter_limit_exceeded = false; 231 } 232 } 233 else 234 { 235 // Calculation of the intersection failed, most probably 236 // the three points lie one straight line. 237 // First check if v0 and v2 lie on the opposite sides of vector: 238 // (v1.x, v1.y) -> (v1.x+dx1, v1.y-dy1), that is, the perpendicular 239 // to the line determined by vertices v0 and v1. 240 // This condition determines whether the next line segments continues 241 // the previous one or goes back. 242 //---------------- 243 double x2 = v1.x + dx1; 244 double y2 = v1.y - dy1; 245 if(((x2 - v0.x)*dy1 - (v0.y - y2)*dx1 < 0.0) != 246 ((x2 - v2.x)*dy1 - (v2.y - y2)*dx1 < 0.0)) 247 { 248 // This case means that the next segment continues 249 // the previous one (straight line) 250 //----------------- 251 out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1)); 252 miter_limit_exceeded = false; 253 } 254 } 255 256 if(miter_limit_exceeded) 257 { 258 // Miter limit exceeded 259 //------------------------ 260 switch(lj) 261 { 262 case miter_join_revert: 263 // For the compatibility with SVG, PDF, etc, 264 // we use a simple bevel join instead of 265 // "smart" bevel 266 //------------------- 267 out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1)); 268 out_vertices.add(coord_type(v1.x + dx2, v1.y - dy2)); 269 break; 270 271 case miter_join_round: 272 calc_arc(out_vertices, v1.x, v1.y, dx1, -dy1, dx2, -dy2); 273 break; 274 275 default: 276 // If no miter-revert, calculate new dx1, dy1, dx2, dy2 277 //---------------- 278 ml *= m_width_sign; 279 out_vertices.add(coord_type(v1.x + dx1 + dy1 * ml, 280 v1.y - dy1 + dx1 * ml)); 281 out_vertices.add(coord_type(v1.x + dx2 - dy2 * ml, 282 v1.y - dy2 - dx2 * ml)); 283 break; 284 } 285 } 286 } 287 288 //--------------------------------------------------------stroke_calc_cap 289 template<class VC> calc_cap(VC & out_vertices,const vertex_dist & v0,const vertex_dist & v1,double len)290 void math_stroke<VC>::calc_cap(VC& out_vertices, 291 const vertex_dist& v0, 292 const vertex_dist& v1, 293 double len) 294 { 295 out_vertices.remove_all(); 296 297 double dx1 = (v1.y - v0.y) / len; 298 double dy1 = (v1.x - v0.x) / len; 299 double dx2 = 0; 300 double dy2 = 0; 301 302 dx1 *= m_width; 303 dy1 *= m_width; 304 305 if(m_line_cap != round_cap) 306 { 307 if(m_line_cap == square_cap) 308 { 309 dx2 = dy1 * m_width_sign; 310 dy2 = dx1 * m_width_sign; 311 } 312 out_vertices.add(coord_type(v0.x - dx1 - dx2, v0.y + dy1 - dy2)); 313 out_vertices.add(coord_type(v0.x + dx1 - dx2, v0.y - dy1 - dy2)); 314 } 315 else 316 { 317 double da = acos(m_width_abs / (m_width_abs + 0.125 / m_approx_scale)) * 2; 318 double a1; 319 int i; 320 int n = int(pi / da); 321 322 da = pi / (n + 1); 323 out_vertices.add(coord_type(v0.x - dx1, v0.y + dy1)); 324 if(m_width_sign > 0) 325 { 326 a1 = atan2(dy1, -dx1); 327 a1 += da; 328 for(i = 0; i < n; i++) 329 { 330 out_vertices.add(coord_type(v0.x + cos(a1) * m_width, 331 v0.y + sin(a1) * m_width)); 332 a1 += da; 333 } 334 } 335 else 336 { 337 a1 = atan2(-dy1, dx1); 338 a1 -= da; 339 for(i = 0; i < n; i++) 340 { 341 out_vertices.add(coord_type(v0.x + cos(a1) * m_width, 342 v0.y + sin(a1) * m_width)); 343 a1 -= da; 344 } 345 } 346 out_vertices.add(coord_type(v0.x + dx1, v0.y - dy1)); 347 } 348 } 349 350 //----------------------------------------------------------------------- 351 template<class VC> calc_join(VC & out_vertices,const vertex_dist & v0,const vertex_dist & v1,const vertex_dist & v2,double len1,double len2)352 void math_stroke<VC>::calc_join(VC& out_vertices, 353 const vertex_dist& v0, 354 const vertex_dist& v1, 355 const vertex_dist& v2, 356 double len1, 357 double len2) 358 { 359 double dx1, dy1, dx2, dy2; 360 double d; 361 362 dx1 = m_width * (v1.y - v0.y) / len1; 363 dy1 = m_width * (v1.x - v0.x) / len1; 364 365 dx2 = m_width * (v2.y - v1.y) / len2; 366 dy2 = m_width * (v2.x - v1.x) / len2; 367 368 out_vertices.remove_all(); 369 370 double cp = cross_product(v0.x, v0.y, v1.x, v1.y, v2.x, v2.y); 371 if(cp != 0 && (cp > 0) == (m_width > 0)) 372 { 373 // Inner join 374 //--------------- 375 double limit = ((len1 < len2) ? len1 : len2) / m_width_abs; 376 if(limit < m_inner_miter_limit) 377 { 378 limit = m_inner_miter_limit; 379 } 380 381 switch(m_inner_join) 382 { 383 default: // inner_bevel 384 out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1)); 385 out_vertices.add(coord_type(v1.x + dx2, v1.y - dy2)); 386 break; 387 388 case inner_miter: 389 calc_miter(out_vertices, 390 v0, v1, v2, dx1, dy1, dx2, dy2, 391 miter_join_revert, 392 limit); 393 break; 394 395 case inner_jag: 396 case inner_round: 397 { 398 d = (dx1-dx2) * (dx1-dx2) + (dy1-dy2) * (dy1-dy2); 399 if(d < len1 * len1 && d < len2 * len2) 400 { 401 calc_miter(out_vertices, 402 v0, v1, v2, dx1, dy1, dx2, dy2, 403 miter_join_revert, 404 limit); 405 } 406 else 407 { 408 if(m_inner_join == inner_jag) 409 { 410 out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1)); 411 out_vertices.add(coord_type(v1.x, v1.y )); 412 out_vertices.add(coord_type(v1.x + dx2, v1.y - dy2)); 413 } 414 else 415 { 416 out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1)); 417 out_vertices.add(coord_type(v1.x, v1.y )); 418 calc_arc(out_vertices, v1.x, v1.y, dx2, -dy2, dx1, -dy1); 419 out_vertices.add(coord_type(v1.x, v1.y )); 420 out_vertices.add(coord_type(v1.x + dx2, v1.y - dy2)); 421 } 422 } 423 } 424 break; 425 } 426 } 427 else 428 { 429 // Outer join 430 //--------------- 431 line_join_e lj = m_line_join; 432 if(m_line_join == round_join || m_line_join == bevel_join) 433 { 434 // This is an optimization that reduces the number of points 435 // in cases of almost collonear segments. If there's no 436 // visible difference between bevel and miter joins we'd rather 437 // use miter join because it adds only one point instead of two. 438 // 439 // Here we calculate the middle point between the bevel points 440 // and then, the distance between v1 and this middle point. 441 // At outer joins this distance always less than stroke width, 442 // because it's actually the height of an isosceles triangle of 443 // v1 and its two bevel points. If the difference between this 444 // width and this value is small (no visible bevel) we can switch 445 // to the miter join. 446 // 447 // The constant in the expression makes the result approximately 448 // the same as in round joins and caps. One can safely comment 449 // out this "if". 450 //------------------- 451 double dx = (dx1 + dx2) / 2; 452 double dy = (dy1 + dy2) / 2; 453 d = m_width_abs - sqrt(dx * dx + dy * dy); 454 if(d < 0.0625 / m_approx_scale) 455 { 456 lj = miter_join; 457 } 458 } 459 460 switch(lj) 461 { 462 case miter_join: 463 case miter_join_revert: 464 case miter_join_round: 465 calc_miter(out_vertices, 466 v0, v1, v2, dx1, dy1, dx2, dy2, 467 lj, 468 m_miter_limit); 469 break; 470 471 case round_join: 472 calc_arc(out_vertices, v1.x, v1.y, dx1, -dy1, dx2, -dy2); 473 break; 474 475 default: // Bevel join 476 out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1)); 477 out_vertices.add(coord_type(v1.x + dx2, v1.y - dy2)); 478 break; 479 } 480 } 481 } 482 483 484 485 486 } 487 488 #endif 489