xref: /haiku/src/add-ons/kernel/drivers/network/wlan/atheroswifi/dev/ath/if_ath_tdma.c (revision 86021fd407331bcef948c739a4870ca453f5c6cd)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  *
18  * NO WARRANTY
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29  * THE POSSIBILITY OF SUCH DAMAGES.
30  */
31 
32 #include <sys/cdefs.h>
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_var.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_arp.h>
81 #include <net/ethernet.h>
82 #include <net/if_llc.h>
83 
84 #include <net80211/ieee80211_var.h>
85 #include <net80211/ieee80211_regdomain.h>
86 #ifdef IEEE80211_SUPPORT_SUPERG
87 #include <net80211/ieee80211_superg.h>
88 #endif
89 #ifdef IEEE80211_SUPPORT_TDMA
90 #include <net80211/ieee80211_tdma.h>
91 #endif
92 
93 #include <net/bpf.h>
94 
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/if_ether.h>
98 #endif
99 
100 #include <dev/ath/if_athvar.h>
101 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
102 #include <dev/ath/ath_hal/ah_diagcodes.h>
103 
104 #include <dev/ath/if_ath_debug.h>
105 #include <dev/ath/if_ath_misc.h>
106 #include <dev/ath/if_ath_tsf.h>
107 #include <dev/ath/if_ath_tx.h>
108 #include <dev/ath/if_ath_sysctl.h>
109 #include <dev/ath/if_ath_led.h>
110 #include <dev/ath/if_ath_keycache.h>
111 #include <dev/ath/if_ath_rx.h>
112 #include <dev/ath/if_ath_beacon.h>
113 #include <dev/ath/if_athdfs.h>
114 
115 #ifdef ATH_TX99_DIAG
116 #include <dev/ath/ath_tx99/ath_tx99.h>
117 #endif
118 
119 #ifdef	ATH_DEBUG_ALQ
120 #include <dev/ath/if_ath_alq.h>
121 #endif
122 
123 #ifdef IEEE80211_SUPPORT_TDMA
124 #include <dev/ath/if_ath_tdma.h>
125 
126 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
127 		    u_int32_t bintval);
128 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
129 		    const struct ieee80211_tdma_state *tdma);
130 #endif /* IEEE80211_SUPPORT_TDMA */
131 
132 #ifdef IEEE80211_SUPPORT_TDMA
133 static void
ath_tdma_settimers(struct ath_softc * sc,u_int32_t nexttbtt,u_int32_t bintval)134 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
135 {
136 	struct ath_hal *ah = sc->sc_ah;
137 	HAL_BEACON_TIMERS bt;
138 
139 	bt.bt_intval = bintval | HAL_BEACON_ENA;
140 	bt.bt_nexttbtt = nexttbtt;
141 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
142 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
143 	bt.bt_nextatim = nexttbtt+1;
144 	/* Enables TBTT, DBA, SWBA timers by default */
145 	bt.bt_flags = 0;
146 #if 0
147 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
148 	    "%s: intval=%d (0x%08x) nexttbtt=%u (0x%08x), nextdba=%u (0x%08x), nextswba=%u (0x%08x),nextatim=%u (0x%08x)\n",
149 	    __func__,
150 	    bt.bt_intval,
151 	    bt.bt_intval,
152 	    bt.bt_nexttbtt,
153 	    bt.bt_nexttbtt,
154 	    bt.bt_nextdba,
155 	    bt.bt_nextdba,
156 	    bt.bt_nextswba,
157 	    bt.bt_nextswba,
158 	    bt.bt_nextatim,
159 	    bt.bt_nextatim);
160 #endif
161 
162 #ifdef	ATH_DEBUG_ALQ
163 	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_TDMA_TIMER_SET)) {
164 		struct if_ath_alq_tdma_timer_set t;
165 		t.bt_intval = htobe32(bt.bt_intval);
166 		t.bt_nexttbtt = htobe32(bt.bt_nexttbtt);
167 		t.bt_nextdba = htobe32(bt.bt_nextdba);
168 		t.bt_nextswba = htobe32(bt.bt_nextswba);
169 		t.bt_nextatim = htobe32(bt.bt_nextatim);
170 		t.bt_flags = htobe32(bt.bt_flags);
171 		t.sc_tdmadbaprep = htobe32(sc->sc_tdmadbaprep);
172 		t.sc_tdmaswbaprep = htobe32(sc->sc_tdmaswbaprep);
173 		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_TIMER_SET,
174 		    sizeof(t), (char *) &t);
175 	}
176 #endif
177 
178 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
179 	    "%s: nexttbtt=%u (0x%08x), nexttbtt tsf=%lld (0x%08llx)\n",
180 	    __func__,
181 	    bt.bt_nexttbtt,
182 	    bt.bt_nexttbtt,
183 	    (long long) ( ((u_int64_t) (bt.bt_nexttbtt)) << 10),
184 	    (long long) ( ((u_int64_t) (bt.bt_nexttbtt)) << 10));
185 	ath_hal_beaconsettimers(ah, &bt);
186 }
187 
188 /*
189  * Calculate the beacon interval.  This is periodic in the
190  * superframe for the bss.  We assume each station is configured
191  * identically wrt transmit rate so the guard time we calculate
192  * above will be the same on all stations.  Note we need to
193  * factor in the xmit time because the hardware will schedule
194  * a frame for transmit if the start of the frame is within
195  * the burst time.  When we get hardware that properly kills
196  * frames in the PCU we can reduce/eliminate the guard time.
197  *
198  * Roundup to 1024 is so we have 1 TU buffer in the guard time
199  * to deal with the granularity of the nexttbtt timer.  11n MAC's
200  * with 1us timer granularity should allow us to reduce/eliminate
201  * this.
202  */
203 static void
ath_tdma_bintvalsetup(struct ath_softc * sc,const struct ieee80211_tdma_state * tdma)204 ath_tdma_bintvalsetup(struct ath_softc *sc,
205 	const struct ieee80211_tdma_state *tdma)
206 {
207 	/* copy from vap state (XXX check all vaps have same value?) */
208 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
209 
210 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
211 		tdma->tdma_slotcnt, 1024);
212 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
213 	if (sc->sc_tdmabintval & 1)
214 		sc->sc_tdmabintval++;
215 
216 	if (tdma->tdma_slot == 0) {
217 		/*
218 		 * Only slot 0 beacons; other slots respond.
219 		 */
220 		sc->sc_imask |= HAL_INT_SWBA;
221 		sc->sc_tdmaswba = 0;		/* beacon immediately */
222 	} else {
223 		/* XXX all vaps must be slot 0 or slot !0 */
224 		sc->sc_imask &= ~HAL_INT_SWBA;
225 	}
226 }
227 
228 /*
229  * Max 802.11 overhead.  This assumes no 4-address frames and
230  * the encapsulation done by ieee80211_encap (llc).  We also
231  * include potential crypto overhead.
232  */
233 #define	IEEE80211_MAXOVERHEAD \
234 	(sizeof(struct ieee80211_qosframe) \
235 	 + sizeof(struct llc) \
236 	 + IEEE80211_ADDR_LEN \
237 	 + IEEE80211_WEP_IVLEN \
238 	 + IEEE80211_WEP_KIDLEN \
239 	 + IEEE80211_WEP_CRCLEN \
240 	 + IEEE80211_WEP_MICLEN \
241 	 + IEEE80211_CRC_LEN)
242 
243 /*
244  * Setup initially for tdma operation.  Start the beacon
245  * timers and enable SWBA if we are slot 0.  Otherwise
246  * we wait for slot 0 to arrive so we can sync up before
247  * starting to transmit.
248  */
249 void
ath_tdma_config(struct ath_softc * sc,struct ieee80211vap * vap)250 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
251 {
252 	struct ath_hal *ah = sc->sc_ah;
253 	struct ieee80211com *ic = &sc->sc_ic;
254 	const struct ieee80211_txparam *tp;
255 	const struct ieee80211_tdma_state *tdma = NULL;
256 	int rix;
257 
258 	if (vap == NULL) {
259 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
260 		if (vap == NULL) {
261 			device_printf(sc->sc_dev, "%s: no vaps?\n", __func__);
262 			return;
263 		}
264 	}
265 	/* XXX should take a locked ref to iv_bss */
266 	tp = vap->iv_bss->ni_txparms;
267 	/*
268 	 * Calculate the guard time for each slot.  This is the
269 	 * time to send a maximal-size frame according to the
270 	 * fixed/lowest transmit rate.  Note that the interface
271 	 * mtu does not include the 802.11 overhead so we must
272 	 * tack that on (ath_hal_computetxtime includes the
273 	 * preamble and plcp in its calculation).
274 	 */
275 	tdma = vap->iv_tdma;
276 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
277 		rix = ath_tx_findrix(sc, tp->ucastrate);
278 	else
279 		rix = ath_tx_findrix(sc, tp->mcastrate);
280 
281 	/*
282 	 * If the chip supports enforcing TxOP on transmission,
283 	 * we can just delete the guard window.  It isn't at all required.
284 	 */
285 	if (sc->sc_hasenforcetxop) {
286 		sc->sc_tdmaguard = 0;
287 	} else {
288 		/* XXX short preamble assumed */
289 		/* XXX non-11n rate assumed */
290 		sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
291 		    if_getmtu(vap->iv_ifp) + IEEE80211_MAXOVERHEAD, rix, AH_TRUE,
292 		    AH_TRUE);
293 	}
294 
295 	ath_hal_intrset(ah, 0);
296 
297 	ath_beaconq_config(sc);			/* setup h/w beacon q */
298 	if (sc->sc_setcca)
299 		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
300 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
301 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
302 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
303 	sc->sc_syncbeacon = 0;
304 
305 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
306 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
307 
308 	ath_hal_intrset(ah, sc->sc_imask);
309 
310 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
311 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
312 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
313 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
314 	    sc->sc_tdmadbaprep);
315 
316 #ifdef	ATH_DEBUG_ALQ
317 	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_TDMA_TIMER_CONFIG)) {
318 		struct if_ath_alq_tdma_timer_config t;
319 
320 		t.tdma_slot = htobe32(tdma->tdma_slot);
321 		t.tdma_slotlen = htobe32(tdma->tdma_slotlen);
322 		t.tdma_slotcnt = htobe32(tdma->tdma_slotcnt);
323 		t.tdma_bintval = htobe32(tdma->tdma_bintval);
324 		t.tdma_guard = htobe32(sc->sc_tdmaguard);
325 		t.tdma_scbintval = htobe32(sc->sc_tdmabintval);
326 		t.tdma_dbaprep = htobe32(sc->sc_tdmadbaprep);
327 
328 		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_TIMER_CONFIG,
329 		    sizeof(t), (char *) &t);
330 	}
331 #endif	/* ATH_DEBUG_ALQ */
332 }
333 
334 /*
335  * Update tdma operation.  Called from the 802.11 layer
336  * when a beacon is received from the TDMA station operating
337  * in the slot immediately preceding us in the bss.  Use
338  * the rx timestamp for the beacon frame to update our
339  * beacon timers so we follow their schedule.  Note that
340  * by using the rx timestamp we implicitly include the
341  * propagation delay in our schedule.
342  *
343  * XXX TODO: since the changes for the AR5416 and later chips
344  * involved changing the TSF/TU calculations, we need to make
345  * sure that various calculations wrap consistently.
346  *
347  * A lot of the problems stemmed from the calculations wrapping
348  * at 65,535 TU.  Since a lot of the math is still being done in
349  * TU, please audit it to ensure that when the TU values programmed
350  * into the timers wrap at (2^31)-1 TSF, all the various terms
351  * wrap consistently.
352  */
353 void
ath_tdma_update(struct ieee80211_node * ni,const struct ieee80211_tdma_param * tdma,int changed)354 ath_tdma_update(struct ieee80211_node *ni,
355 	const struct ieee80211_tdma_param *tdma, int changed)
356 {
357 #define	TSF_TO_TU(_h,_l) \
358 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
359 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
360 	struct ieee80211vap *vap = ni->ni_vap;
361 	struct ieee80211com *ic = ni->ni_ic;
362 	struct ath_softc *sc = ic->ic_softc;
363 	struct ath_hal *ah = sc->sc_ah;
364 	const HAL_RATE_TABLE *rt = sc->sc_currates;
365 	u_int64_t tsf, rstamp, nextslot, nexttbtt, nexttbtt_full;
366 	u_int32_t txtime, nextslottu;
367 	int32_t tudelta, tsfdelta;
368 	const struct ath_rx_status *rs;
369 	int rix;
370 
371 	sc->sc_stats.ast_tdma_update++;
372 
373 	/*
374 	 * Check for and adopt configuration changes.
375 	 */
376 	if (changed != 0) {
377 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
378 
379 		ath_tdma_bintvalsetup(sc, ts);
380 		if (changed & TDMA_UPDATE_SLOTLEN)
381 			ath_wme_update(ic);
382 
383 		DPRINTF(sc, ATH_DEBUG_TDMA,
384 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
385 		    "bintval %u TU\n", __func__,
386 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
387 		    sc->sc_tdmabintval);
388 
389 		/* XXX right? */
390 		ath_hal_intrset(ah, sc->sc_imask);
391 		/* NB: beacon timers programmed below */
392 	}
393 
394 	/* extend rx timestamp to 64 bits */
395 	rs = sc->sc_lastrs;
396 	tsf = ath_hal_gettsf64(ah);
397 	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
398 	/*
399 	 * The rx timestamp is set by the hardware on completing
400 	 * reception (at the point where the rx descriptor is DMA'd
401 	 * to the host).  To find the start of our next slot we
402 	 * must adjust this time by the time required to send
403 	 * the packet just received.
404 	 */
405 	rix = rt->rateCodeToIndex[rs->rs_rate];
406 
407 	/*
408 	 * To calculate the packet duration for legacy rates, we
409 	 * only need the rix and preamble.
410 	 *
411 	 * For 11n non-aggregate frames, we also need the channel
412 	 * width and short/long guard interval.
413 	 *
414 	 * For 11n aggregate frames, the required hacks are a little
415 	 * more subtle.  You need to figure out the frame duration
416 	 * for each frame, including the delimiters.  However, when
417 	 * a frame isn't received successfully, we won't hear it
418 	 * (unless you enable reception of CRC errored frames), so
419 	 * your duration calculation is going to be off.
420 	 *
421 	 * However, we can assume that the beacon frames won't be
422 	 * transmitted as aggregate frames, so we should be okay.
423 	 * Just add a check to ensure that we aren't handed something
424 	 * bad.
425 	 *
426 	 * For ath_hal_pkt_txtime() - for 11n rates, shortPreamble is
427 	 * actually short guard interval. For legacy rates,
428 	 * it's short preamble.
429 	 */
430 	txtime = ath_hal_pkt_txtime(ah, rt, rs->rs_datalen,
431 	    rix,
432 	    !! (rs->rs_flags & HAL_RX_2040),
433 	    (rix & 0x80) ?
434 	      (! (rs->rs_flags & HAL_RX_GI)) : rt->info[rix].shortPreamble,
435 	    AH_TRUE);
436 	/* NB: << 9 is to cvt to TU and /2 */
437 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
438 
439 	/*
440 	 * For 802.11n chips: nextslottu needs to be the full TSF space,
441 	 * not just 0..65535 TU.
442 	 */
443 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot);
444 	/*
445 	 * Retrieve the hardware NextTBTT in usecs
446 	 * and calculate the difference between what the
447 	 * other station thinks and what we have programmed.  This
448 	 * lets us figure how to adjust our timers to match.  The
449 	 * adjustments are done by pulling the TSF forward and possibly
450 	 * rewriting the beacon timers.
451 	 */
452 	/*
453 	 * The logic here assumes the nexttbtt counter is in TSF
454 	 * but the prr-11n NICs are in TU.  The HAL shifts them
455 	 * to TSF but there's two important differences:
456 	 *
457 	 * + The TU->TSF values have 0's for the low 9 bits, and
458 	 * + The counter wraps at TU_TO_TSF(HAL_BEACON_PERIOD + 1) for
459 	 *   the pre-11n NICs, but not for the 11n NICs.
460 	 *
461 	 * So for now, just make sure the nexttbtt value we get
462 	 * matches the second issue or once nexttbtt exceeds this
463 	 * value, tsfdelta ends up becoming very negative and all
464 	 * of the adjustments get very messed up.
465 	 */
466 
467 	/*
468 	 * We need to track the full nexttbtt rather than having it
469 	 * truncated at HAL_BEACON_PERIOD, as programming the
470 	 * nexttbtt (and related) registers for the 11n chips is
471 	 * actually going to take the full 32 bit space, rather than
472 	 * just 0..65535 TU.
473 	 */
474 	nexttbtt_full = ath_hal_getnexttbtt(ah);
475 	nexttbtt = nexttbtt_full % (TU_TO_TSF(HAL_BEACON_PERIOD + 1));
476 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt);
477 
478 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
479 	    "rs->rstamp %llu rstamp %llu tsf %llu txtime %d, nextslot %llu, "
480 	    "nextslottu %d, nextslottume %d\n",
481 	    (unsigned long long) rs->rs_tstamp,
482 	    (unsigned long long) rstamp,
483 	    (unsigned long long) tsf, txtime,
484 	    (unsigned long long) nextslot,
485 	    nextslottu, TSF_TO_TU(nextslot >> 32, nextslot));
486 	DPRINTF(sc, ATH_DEBUG_TDMA,
487 	    "  beacon tstamp: %llu (0x%016llx)\n",
488 	    (unsigned long long) le64toh(ni->ni_tstamp.tsf),
489 	    (unsigned long long) le64toh(ni->ni_tstamp.tsf));
490 
491 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
492 	    "nexttbtt %llu (0x%08llx) tsfdelta %d avg +%d/-%d\n",
493 	    (unsigned long long) nexttbtt,
494 	    (long long) nexttbtt,
495 	    tsfdelta,
496 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
497 
498 	if (tsfdelta < 0) {
499 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
500 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
501 		tsfdelta = -tsfdelta % 1024;
502 		nextslottu++;
503 	} else if (tsfdelta > 0) {
504 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
505 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
506 		tsfdelta = 1024 - (tsfdelta % 1024);
507 		nextslottu++;
508 	} else {
509 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
510 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
511 	}
512 	tudelta = nextslottu - TSF_TO_TU(nexttbtt_full >> 32, nexttbtt_full);
513 
514 #ifdef	ATH_DEBUG_ALQ
515 	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_TDMA_BEACON_STATE)) {
516 		struct if_ath_alq_tdma_beacon_state t;
517 		t.rx_tsf = htobe64(rstamp);
518 		t.beacon_tsf = htobe64(le64toh(ni->ni_tstamp.tsf));
519 		t.tsf64 = htobe64(tsf);
520 		t.nextslot_tsf = htobe64(nextslot);
521 		t.nextslot_tu = htobe32(nextslottu);
522 		t.txtime = htobe32(txtime);
523 		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_BEACON_STATE,
524 		    sizeof(t), (char *) &t);
525 	}
526 
527 	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_TDMA_SLOT_CALC)) {
528 		struct if_ath_alq_tdma_slot_calc t;
529 
530 		t.nexttbtt = htobe64(nexttbtt_full);
531 		t.next_slot = htobe64(nextslot);
532 		t.tsfdelta = htobe32(tsfdelta);
533 		t.avg_plus = htobe32(TDMA_AVG(sc->sc_avgtsfdeltap));
534 		t.avg_minus = htobe32(TDMA_AVG(sc->sc_avgtsfdeltam));
535 
536 		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_SLOT_CALC,
537 		    sizeof(t), (char *) &t);
538 	}
539 #endif
540 
541 	/*
542 	 * Copy sender's timetstamp into tdma ie so they can
543 	 * calculate roundtrip time.  We submit a beacon frame
544 	 * below after any timer adjustment.  The frame goes out
545 	 * at the next TBTT so the sender can calculate the
546 	 * roundtrip by inspecting the tdma ie in our beacon frame.
547 	 *
548 	 * NB: This tstamp is subtlely preserved when
549 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
550 	 *     slot position changes) because ieee80211_add_tdma
551 	 *     skips over the data.
552 	 */
553 	memcpy(vap->iv_bcn_off.bo_tdma +
554 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
555 		&ni->ni_tstamp.data, 8);
556 #if 0
557 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
558 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n",
559 	    (unsigned long long) tsf, (unsigned long long) nextslot,
560 	    (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta);
561 #endif
562 	/*
563 	 * Adjust the beacon timers only when pulling them forward
564 	 * or when going back by less than the beacon interval.
565 	 * Negative jumps larger than the beacon interval seem to
566 	 * cause the timers to stop and generally cause instability.
567 	 * This basically filters out jumps due to missed beacons.
568 	 */
569 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
570 		DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
571 		    "%s: calling ath_tdma_settimers; nextslottu=%d, bintval=%d\n",
572 		    __func__,
573 		    nextslottu,
574 		    sc->sc_tdmabintval);
575 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
576 		sc->sc_stats.ast_tdma_timers++;
577 	}
578 	if (tsfdelta > 0) {
579 		uint64_t tsf;
580 
581 		/* XXX should just teach ath_hal_adjusttsf() to do this */
582 		tsf = ath_hal_gettsf64(ah);
583 		ath_hal_settsf64(ah, tsf + tsfdelta);
584 		DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
585 		    "%s: calling ath_hal_adjusttsf: TSF=%llu, tsfdelta=%d\n",
586 		    __func__,
587 		    (unsigned long long) tsf,
588 		    tsfdelta);
589 
590 #ifdef	ATH_DEBUG_ALQ
591 		if (if_ath_alq_checkdebug(&sc->sc_alq,
592 		    ATH_ALQ_TDMA_TSF_ADJUST)) {
593 			struct if_ath_alq_tdma_tsf_adjust t;
594 
595 			t.tsfdelta = htobe32(tsfdelta);
596 			t.tsf64_old = htobe64(tsf);
597 			t.tsf64_new = htobe64(tsf + tsfdelta);
598 			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_TSF_ADJUST,
599 			    sizeof(t), (char *) &t);
600 		}
601 #endif	/* ATH_DEBUG_ALQ */
602 		sc->sc_stats.ast_tdma_tsf++;
603 	}
604 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
605 #undef TU_TO_TSF
606 #undef TSF_TO_TU
607 }
608 
609 /*
610  * Transmit a beacon frame at SWBA.  Dynamic updates
611  * to the frame contents are done as needed.
612  */
613 void
ath_tdma_beacon_send(struct ath_softc * sc,struct ieee80211vap * vap)614 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
615 {
616 	struct ath_hal *ah = sc->sc_ah;
617 	struct ath_buf *bf;
618 	int otherant;
619 
620 	/*
621 	 * Check if the previous beacon has gone out.  If
622 	 * not don't try to post another, skip this period
623 	 * and wait for the next.  Missed beacons indicate
624 	 * a problem and should not occur.  If we miss too
625 	 * many consecutive beacons reset the device.
626 	 */
627 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
628 		sc->sc_bmisscount++;
629 		DPRINTF(sc, ATH_DEBUG_BEACON,
630 			"%s: missed %u consecutive beacons\n",
631 			__func__, sc->sc_bmisscount);
632 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
633 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
634 		return;
635 	}
636 	if (sc->sc_bmisscount != 0) {
637 		DPRINTF(sc, ATH_DEBUG_BEACON,
638 			"%s: resume beacon xmit after %u misses\n",
639 			__func__, sc->sc_bmisscount);
640 		sc->sc_bmisscount = 0;
641 	}
642 
643 	/*
644 	 * Check recent per-antenna transmit statistics and flip
645 	 * the default antenna if noticeably more frames went out
646 	 * on the non-default antenna.
647 	 * XXX assumes 2 anntenae
648 	 */
649 	if (!sc->sc_diversity) {
650 		otherant = sc->sc_defant & 1 ? 2 : 1;
651 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
652 			ath_setdefantenna(sc, otherant);
653 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
654 	}
655 
656 	bf = ath_beacon_generate(sc, vap);
657 	/* XXX We don't do cabq traffic, but just for completeness .. */
658 	ATH_TXQ_LOCK(sc->sc_cabq);
659 	ath_beacon_cabq_start(sc);
660 	ATH_TXQ_UNLOCK(sc->sc_cabq);
661 
662 	if (bf != NULL) {
663 		/*
664 		 * Stop any current dma and put the new frame on the queue.
665 		 * This should never fail since we check above that no frames
666 		 * are still pending on the queue.
667 		 */
668 		if ((! sc->sc_isedma) &&
669 		    (! ath_hal_stoptxdma(ah, sc->sc_bhalq))) {
670 			DPRINTF(sc, ATH_DEBUG_ANY,
671 				"%s: beacon queue %u did not stop?\n",
672 				__func__, sc->sc_bhalq);
673 			/* NB: the HAL still stops DMA, so proceed */
674 		}
675 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
676 		ath_hal_txstart(ah, sc->sc_bhalq);
677 
678 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
679 
680 		/*
681 		 * Record local TSF for our last send for use
682 		 * in arbitrating slot collisions.
683 		 */
684 		/* XXX should take a locked ref to iv_bss */
685 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
686 	}
687 }
688 #endif /* IEEE80211_SUPPORT_TDMA */
689