xref: /haiku/headers/libs/agg/agg_span_gouraud.h (revision e39da397f5ff79f2db9f9a3ddf1852b6710578af)
1 //----------------------------------------------------------------------------
2 // Anti-Grain Geometry - Version 2.4
3 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
4 //
5 // Permission to copy, use, modify, sell and distribute this software
6 // is granted provided this copyright notice appears in all copies.
7 // This software is provided "as is" without express or implied
8 // warranty, and with no claim as to its suitability for any purpose.
9 //
10 //----------------------------------------------------------------------------
11 // Contact: mcseem@antigrain.com
12 //          mcseemagg@yahoo.com
13 //          http://www.antigrain.com
14 //----------------------------------------------------------------------------
15 
16 #ifndef AGG_SPAN_GOURAUD_INCLUDED
17 #define AGG_SPAN_GOURAUD_INCLUDED
18 
19 #include "agg_basics.h"
20 #include "agg_math.h"
21 
22 namespace agg
23 {
24 
25     //============================================================span_gouraud
26     template<class ColorT> class span_gouraud
27     {
28     public:
29         typedef ColorT color_type;
30 
31         struct coord_type
32         {
33             double x;
34             double y;
35             color_type color;
36         };
37 
38         //--------------------------------------------------------------------
span_gouraud()39         span_gouraud() :
40             m_vertex(0)
41         {
42             m_cmd[0] = path_cmd_stop;
43         }
44 
45         //--------------------------------------------------------------------
span_gouraud(const color_type & c1,const color_type & c2,const color_type & c3,double x1,double y1,double x2,double y2,double x3,double y3,double d)46         span_gouraud(const color_type& c1,
47                      const color_type& c2,
48                      const color_type& c3,
49                      double x1, double y1,
50                      double x2, double y2,
51                      double x3, double y3,
52                      double d) :
53             m_vertex(0)
54         {
55             colors(c1, c2, c3);
56             triangle(x1, y1, x2, y2, x3, y3, d);
57         }
58 
59         //--------------------------------------------------------------------
colors(ColorT c1,ColorT c2,ColorT c3)60         void colors(ColorT c1, ColorT c2, ColorT c3)
61         {
62             m_coord[0].color = c1;
63             m_coord[1].color = c2;
64             m_coord[2].color = c3;
65         }
66 
67         //--------------------------------------------------------------------
68         // Sets the triangle and dilates it if needed.
69         // The trick here is to calculate beveled joins in the vertices of the
70         // triangle and render it as a 6-vertex polygon.
71         // It's necessary to achieve numerical stability.
72         // However, the coordinates to interpolate colors are calculated
73         // as miter joins (calc_intersection).
triangle(double x1,double y1,double x2,double y2,double x3,double y3,double d)74         void triangle(double x1, double y1,
75                       double x2, double y2,
76                       double x3, double y3,
77                       double d)
78         {
79             m_coord[0].x = m_x[0] = x1;
80             m_coord[0].y = m_y[0] = y1;
81             m_coord[1].x = m_x[1] = x2;
82             m_coord[1].y = m_y[1] = y2;
83             m_coord[2].x = m_x[2] = x3;
84             m_coord[2].y = m_y[2] = y3;
85             m_cmd[0] = path_cmd_move_to;
86             m_cmd[1] = path_cmd_line_to;
87             m_cmd[2] = path_cmd_line_to;
88             m_cmd[3] = path_cmd_stop;
89 
90             if(d != 0.0)
91             {
92                 dilate_triangle(m_coord[0].x, m_coord[0].y,
93                                 m_coord[1].x, m_coord[1].y,
94                                 m_coord[2].x, m_coord[2].y,
95                                 m_x, m_y, d);
96 
97                 calc_intersection(m_x[4], m_y[4], m_x[5], m_y[5],
98                                   m_x[0], m_y[0], m_x[1], m_y[1],
99                                   &m_coord[0].x, &m_coord[0].y);
100 
101                 calc_intersection(m_x[0], m_y[0], m_x[1], m_y[1],
102                                   m_x[2], m_y[2], m_x[3], m_y[3],
103                                   &m_coord[1].x, &m_coord[1].y);
104 
105                 calc_intersection(m_x[2], m_y[2], m_x[3], m_y[3],
106                                   m_x[4], m_y[4], m_x[5], m_y[5],
107                                   &m_coord[2].x, &m_coord[2].y);
108                 m_cmd[3] = path_cmd_line_to;
109                 m_cmd[4] = path_cmd_line_to;
110                 m_cmd[5] = path_cmd_line_to;
111                 m_cmd[6] = path_cmd_stop;
112             }
113         }
114 
115         //--------------------------------------------------------------------
116         // Vertex Source Interface to feed the coordinates to the rasterizer
rewind(unsigned)117         void rewind(unsigned)
118         {
119             m_vertex = 0;
120         }
121 
122         //--------------------------------------------------------------------
vertex(double * x,double * y)123         unsigned vertex(double* x, double* y)
124         {
125             *x = m_x[m_vertex];
126             *y = m_y[m_vertex];
127             return m_cmd[m_vertex++];
128         }
129 
130     protected:
131         //--------------------------------------------------------------------
arrange_vertices(coord_type * coord)132         void arrange_vertices(coord_type* coord) const
133         {
134             coord[0] = m_coord[0];
135             coord[1] = m_coord[1];
136             coord[2] = m_coord[2];
137 
138             if(m_coord[0].y > m_coord[2].y)
139             {
140                 coord[0] = m_coord[2];
141                 coord[2] = m_coord[0];
142             }
143 
144             coord_type tmp;
145             if(coord[0].y > coord[1].y)
146             {
147                 tmp      = coord[1];
148                 coord[1] = coord[0];
149                 coord[0] = tmp;
150             }
151 
152             if(coord[1].y > coord[2].y)
153             {
154                 tmp      = coord[2];
155                 coord[2] = coord[1];
156                 coord[1] = tmp;
157             }
158        }
159 
160     private:
161         //--------------------------------------------------------------------
162         coord_type m_coord[3];
163         double m_x[8];
164         double m_y[8];
165         unsigned m_cmd[8];
166         unsigned m_vertex;
167     };
168 
169 }
170 
171 #endif
172 
173