1 /*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * This is almost the same as ar5416_reset.c but uses the v4k EEPROM and
22 * supports only 2Ghz operation.
23 */
24
25 #include "opt_ah.h"
26
27 #include "ah.h"
28 #include "ah_internal.h"
29 #include "ah_devid.h"
30
31 #include "ah_eeprom_v14.h"
32 #include "ah_eeprom_v4k.h"
33
34 #include "ar9002/ar9285.h"
35 #include "ar5416/ar5416.h"
36 #include "ar5416/ar5416reg.h"
37 #include "ar5416/ar5416phy.h"
38 #include "ar9002/ar9002phy.h"
39 #include "ar9002/ar9285phy.h"
40 #include "ar9002/ar9285an.h"
41 #include "ar9002/ar9285_diversity.h"
42
43 /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
44 #define EEP_MINOR(_ah) \
45 (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
46 #define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
47 #define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
48
49 /* Additional Time delay to wait after activiting the Base band */
50 #define BASE_ACTIVATE_DELAY 100 /* 100 usec */
51 #define PLL_SETTLE_DELAY 300 /* 300 usec */
52 #define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */
53
54 static HAL_BOOL ar9285SetPowerPerRateTable(struct ath_hal *ah,
55 struct ar5416eeprom_4k *pEepData,
56 const struct ieee80211_channel *chan, int16_t *ratesArray,
57 uint16_t cfgCtl, uint16_t AntennaReduction,
58 uint16_t twiceMaxRegulatoryPower,
59 uint16_t powerLimit);
60 static HAL_BOOL ar9285SetPowerCalTable(struct ath_hal *ah,
61 struct ar5416eeprom_4k *pEepData,
62 const struct ieee80211_channel *chan,
63 int16_t *pTxPowerIndexOffset);
64 static void ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
65 const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ_4K *pRawDataSet,
66 uint8_t * bChans, uint16_t availPiers,
67 uint16_t tPdGainOverlap, int16_t *pMinCalPower,
68 uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
69 uint16_t numXpdGains);
70
71 HAL_BOOL
ar9285SetTransmitPower(struct ath_hal * ah,const struct ieee80211_channel * chan,uint16_t * rfXpdGain)72 ar9285SetTransmitPower(struct ath_hal *ah,
73 const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
74 {
75 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
76 #define N(a) (sizeof (a) / sizeof (a[0]))
77
78 MODAL_EEP4K_HEADER *pModal;
79 struct ath_hal_5212 *ahp = AH5212(ah);
80 int16_t txPowerIndexOffset = 0;
81 int i;
82
83 uint16_t cfgCtl;
84 uint16_t powerLimit;
85 uint16_t twiceAntennaReduction;
86 uint16_t twiceMaxRegulatoryPower;
87 int16_t maxPower;
88 HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
89 struct ar5416eeprom_4k *pEepData = &ee->ee_base;
90
91 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
92
93 AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
94
95 /* Setup info for the actual eeprom */
96 OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
97 cfgCtl = ath_hal_getctl(ah, chan);
98 powerLimit = chan->ic_maxregpower * 2;
99 twiceAntennaReduction = chan->ic_maxantgain;
100 twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
101 pModal = &pEepData->modalHeader;
102 HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
103 __func__,chan->ic_freq, cfgCtl );
104
105 if (IS_EEP_MINOR_V2(ah)) {
106 AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
107 }
108
109 if (!ar9285SetPowerPerRateTable(ah, pEepData, chan,
110 &AH5416(ah)->ah_ratesArray[0],cfgCtl,
111 twiceAntennaReduction,
112 twiceMaxRegulatoryPower, powerLimit)) {
113 HALDEBUG(ah, HAL_DEBUG_ANY,
114 "%s: unable to set tx power per rate table\n", __func__);
115 return AH_FALSE;
116 }
117
118 if (!ar9285SetPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) {
119 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
120 __func__);
121 return AH_FALSE;
122 }
123
124 maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
125 AH5416(ah)->ah_ratesArray[rateHt20_0]);
126 maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
127
128 if (IEEE80211_IS_CHAN_HT40(chan)) {
129 maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
130 }
131
132 ahp->ah_tx6PowerInHalfDbm = maxPower;
133 AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
134 ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
135
136 /*
137 * txPowerIndexOffset is set by the SetPowerTable() call -
138 * adjust the rate table (0 offset if rates EEPROM not loaded)
139 */
140 for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
141 AH5416(ah)->ah_ratesArray[i] = (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
142 /* -5 dBm offset for Merlin and later; this includes Kite */
143 AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
144 if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
145 AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
146 if (AH5416(ah)->ah_ratesArray[i] < 0)
147 AH5416(ah)->ah_ratesArray[i] = 0;
148 }
149
150 #ifdef AH_EEPROM_DUMP
151 ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
152 #endif
153
154 /*
155 * Adjust the HT40 power to meet the correct target TX power
156 * for 40MHz mode, based on TX power curves that are established
157 * for 20MHz mode.
158 *
159 * XXX handle overflow/too high power level?
160 */
161 if (IEEE80211_IS_CHAN_HT40(chan)) {
162 AH5416(ah)->ah_ratesArray[rateHt40_0] +=
163 AH5416(ah)->ah_ht40PowerIncForPdadc;
164 AH5416(ah)->ah_ratesArray[rateHt40_1] +=
165 AH5416(ah)->ah_ht40PowerIncForPdadc;
166 AH5416(ah)->ah_ratesArray[rateHt40_2] +=
167 AH5416(ah)->ah_ht40PowerIncForPdadc;
168 AH5416(ah)->ah_ratesArray[rateHt40_3] +=
169 AH5416(ah)->ah_ht40PowerIncForPdadc;
170 AH5416(ah)->ah_ratesArray[rateHt40_4] +=
171 AH5416(ah)->ah_ht40PowerIncForPdadc;
172 AH5416(ah)->ah_ratesArray[rateHt40_5] +=
173 AH5416(ah)->ah_ht40PowerIncForPdadc;
174 AH5416(ah)->ah_ratesArray[rateHt40_6] +=
175 AH5416(ah)->ah_ht40PowerIncForPdadc;
176 AH5416(ah)->ah_ratesArray[rateHt40_7] +=
177 AH5416(ah)->ah_ht40PowerIncForPdadc;
178 }
179
180 /* Write the TX power rate registers */
181 ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
182
183 return AH_TRUE;
184 #undef POW_SM
185 #undef N
186 }
187
188 static void
ar9285SetBoardGain(struct ath_hal * ah,const MODAL_EEP4K_HEADER * pModal,const struct ar5416eeprom_4k * eep,uint8_t txRxAttenLocal)189 ar9285SetBoardGain(struct ath_hal *ah, const MODAL_EEP4K_HEADER *pModal,
190 const struct ar5416eeprom_4k *eep, uint8_t txRxAttenLocal)
191 {
192 OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
193 pModal->antCtrlChain[0]);
194
195 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0),
196 (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)) &
197 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
198 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
199 SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
200 SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
201
202 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
203 AR5416_EEP_MINOR_VER_3) {
204 txRxAttenLocal = pModal->txRxAttenCh[0];
205
206 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
207 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
208 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
209 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
210 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
211 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]);
212 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
213 AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
214
215 /* Set the block 1 value to block 0 value */
216 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
217 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
218 pModal->bswMargin[0]);
219 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
220 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
221 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
222 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
223 pModal->xatten2Margin[0]);
224 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
225 AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
226 }
227
228 OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
229 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
230 OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
231 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
232
233 OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
234 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
235 OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
236 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
237 }
238
239 /*
240 * Read EEPROM header info and program the device for correct operation
241 * given the channel value.
242 */
243 HAL_BOOL
ar9285SetBoardValues(struct ath_hal * ah,const struct ieee80211_channel * chan)244 ar9285SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
245 {
246 const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
247 const struct ar5416eeprom_4k *eep = &ee->ee_base;
248 const MODAL_EEP4K_HEADER *pModal;
249 uint8_t txRxAttenLocal;
250 uint8_t ob[5], db1[5], db2[5];
251
252 pModal = &eep->modalHeader;
253 txRxAttenLocal = 23;
254
255 OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
256
257 /* Single chain for 4K EEPROM*/
258 ar9285SetBoardGain(ah, pModal, eep, txRxAttenLocal);
259
260 /* Initialize Ant Diversity settings if supported */
261 (void) ar9285SetAntennaSwitch(ah, AH5212(ah)->ah_antControl);
262
263 /* Configure TX power calibration */
264 if (pModal->version >= 2) {
265 ob[0] = pModal->ob_0;
266 ob[1] = pModal->ob_1;
267 ob[2] = pModal->ob_2;
268 ob[3] = pModal->ob_3;
269 ob[4] = pModal->ob_4;
270
271 db1[0] = pModal->db1_0;
272 db1[1] = pModal->db1_1;
273 db1[2] = pModal->db1_2;
274 db1[3] = pModal->db1_3;
275 db1[4] = pModal->db1_4;
276
277 db2[0] = pModal->db2_0;
278 db2[1] = pModal->db2_1;
279 db2[2] = pModal->db2_2;
280 db2[3] = pModal->db2_3;
281 db2[4] = pModal->db2_4;
282 } else if (pModal->version == 1) {
283 ob[0] = pModal->ob_0;
284 ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
285 db1[0] = pModal->db1_0;
286 db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
287 db2[0] = pModal->db2_0;
288 db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
289 } else {
290 int i;
291
292 for (i = 0; i < 5; i++) {
293 ob[i] = pModal->ob_0;
294 db1[i] = pModal->db1_0;
295 db2[i] = pModal->db1_0;
296 }
297 }
298
299 OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_0, ob[0]);
300 OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_1, ob[1]);
301 OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_2, ob[2]);
302 OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_3, ob[3]);
303 OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_4, ob[4]);
304
305 OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_0, db1[0]);
306 OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_1, db1[1]);
307 OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_2, db1[2]);
308 OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_3, db1[3]);
309 OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_4, db1[4]);
310
311 OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_0, db2[0]);
312 OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_1, db2[1]);
313 OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_2, db2[2]);
314 OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_3, db2[3]);
315 OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_4, db2[4]);
316
317 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
318 pModal->switchSettling);
319 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
320 pModal->adcDesiredSize);
321
322 OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
323 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
324 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
325 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
326 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
327
328 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
329 pModal->txEndToRxOn);
330
331 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
332 pModal->thresh62);
333 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
334 pModal->thresh62);
335
336 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
337 AR5416_EEP_MINOR_VER_2) {
338 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
339 pModal->txFrameToDataStart);
340 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
341 pModal->txFrameToPaOn);
342 }
343
344 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
345 AR5416_EEP_MINOR_VER_3) {
346 if (IEEE80211_IS_CHAN_HT40(chan))
347 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
348 AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
349 }
350
351 /*
352 * Program the CCK TX gain factor appropriately if needed.
353 * The AR9285/AR9271 has a non-constant PA tx gain behaviour
354 * for CCK versus OFDM rates; other chips deal with this
355 * differently.
356 *
357 * The mask/shift/multiply hackery is done so place the same
358 * value (bb_desired_scale) into multiple 5-bit fields.
359 * For example, AR_PHY_TX_PWRCTRL9 has bb_desired_scale written
360 * to three fields: (0..4), (5..9) and (10..14).
361 */
362 if (AR_SREV_9271(ah) || AR_SREV_KITE(ah)) {
363 uint8_t bb_desired_scale = (pModal->bb_scale_smrt_antenna & EEP_4K_BB_DESIRED_SCALE_MASK);
364 if ((eep->baseEepHeader.txGainType == 0) && (bb_desired_scale != 0)) {
365 ath_hal_printf(ah, "[ath]: adjusting cck tx gain factor\n");
366 uint32_t pwrctrl, mask, clr;
367
368 mask = (1<<0) | (1<<5) | (1<<10) | (1<<15) | (1<<20) | (1<<25);
369 pwrctrl = mask * bb_desired_scale;
370 clr = mask * 0x1f;
371 OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
372 OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
373 OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
374
375 mask = (1<<0) | (1<<5) | (1<<15);
376 pwrctrl = mask * bb_desired_scale;
377 clr = mask * 0x1f;
378 OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
379
380 mask = (1<<0) | (1<<5);
381 pwrctrl = mask * bb_desired_scale;
382 clr = mask * 0x1f;
383 OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
384 OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
385 }
386 }
387
388 return AH_TRUE;
389 }
390
391 /*
392 * Helper functions common for AP/CB/XB
393 */
394
395 static HAL_BOOL
ar9285SetPowerPerRateTable(struct ath_hal * ah,struct ar5416eeprom_4k * pEepData,const struct ieee80211_channel * chan,int16_t * ratesArray,uint16_t cfgCtl,uint16_t AntennaReduction,uint16_t twiceMaxRegulatoryPower,uint16_t powerLimit)396 ar9285SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
397 const struct ieee80211_channel *chan,
398 int16_t *ratesArray, uint16_t cfgCtl,
399 uint16_t AntennaReduction,
400 uint16_t twiceMaxRegulatoryPower,
401 uint16_t powerLimit)
402 {
403 #define N(a) (sizeof(a)/sizeof(a[0]))
404 /* Local defines to distinguish between extension and control CTL's */
405 #define EXT_ADDITIVE (0x8000)
406 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
407 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
408
409 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
410 int i;
411 int16_t twiceLargestAntenna;
412 CAL_CTL_DATA_4K *rep;
413 CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
414 CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
415 CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
416 int16_t scaledPower, minCtlPower;
417
418 #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
419 static const uint16_t ctlModesFor11g[] = {
420 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
421 };
422 const uint16_t *pCtlMode;
423 uint16_t numCtlModes, ctlMode, freq;
424 CHAN_CENTERS centers;
425
426 ar5416GetChannelCenters(ah, chan, ¢ers);
427
428 /* Compute TxPower reduction due to Antenna Gain */
429
430 twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
431 twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
432
433 /* XXX setup for 5212 use (really used?) */
434 ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
435
436 /*
437 * scaledPower is the minimum of the user input power level and
438 * the regulatory allowed power level
439 */
440 scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
441
442 /* Get target powers from EEPROM - our baseline for TX Power */
443 /* Setup for CTL modes */
444 numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
445 pCtlMode = ctlModesFor11g;
446
447 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
448 AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
449 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
450 AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
451 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
452 AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
453
454 if (IEEE80211_IS_CHAN_HT40(chan)) {
455 numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
456
457 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
458 AR5416_4K_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
459 /* Get target powers for extension channels */
460 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
461 AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
462 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
463 AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
464 }
465
466 /*
467 * For MIMO, need to apply regulatory caps individually across dynamically
468 * running modes: CCK, OFDM, HT20, HT40
469 *
470 * The outer loop walks through each possible applicable runtime mode.
471 * The inner loop walks through each ctlIndex entry in EEPROM.
472 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
473 *
474 */
475 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
476 HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
477 (pCtlMode[ctlMode] == CTL_2GHT40);
478 if (isHt40CtlMode) {
479 freq = centers.ctl_center;
480 } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
481 freq = centers.ext_center;
482 } else {
483 freq = centers.ctl_center;
484 }
485
486 /* walk through each CTL index stored in EEPROM */
487 for (i = 0; (i < AR5416_4K_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
488 uint16_t twiceMinEdgePower;
489
490 /* compare test group from regulatory channel list with test mode from pCtlMode list */
491 if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
492 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
493 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
494 rep = &(pEepData->ctlData[i]);
495 twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
496 rep->ctlEdges[
497 owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1], AH_TRUE);
498 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
499 /* Find the minimum of all CTL edge powers that apply to this channel */
500 twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
501 } else {
502 /* specific */
503 twiceMaxEdgePower = twiceMinEdgePower;
504 break;
505 }
506 }
507 }
508 minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
509 /* Apply ctl mode to correct target power set */
510 switch(pCtlMode[ctlMode]) {
511 case CTL_11B:
512 for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
513 targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
514 }
515 break;
516 case CTL_11A:
517 case CTL_11G:
518 for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
519 targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
520 }
521 break;
522 case CTL_5GHT20:
523 case CTL_2GHT20:
524 for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
525 targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
526 }
527 break;
528 case CTL_11B_EXT:
529 targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
530 break;
531 case CTL_11G_EXT:
532 targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
533 break;
534 case CTL_5GHT40:
535 case CTL_2GHT40:
536 for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
537 targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
538 }
539 break;
540 default:
541 return AH_FALSE;
542 break;
543 }
544 } /* end ctl mode checking */
545
546 /* Set rates Array from collected data */
547 ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
548 &targetPowerCck,
549 &targetPowerCckExt,
550 &targetPowerOfdm,
551 &targetPowerOfdmExt,
552 &targetPowerHt20,
553 &targetPowerHt40);
554
555 return AH_TRUE;
556 #undef EXT_ADDITIVE
557 #undef CTL_11G_EXT
558 #undef CTL_11B_EXT
559 #undef SUB_NUM_CTL_MODES_AT_2G_40
560 #undef N
561 }
562
563 static HAL_BOOL
ar9285SetPowerCalTable(struct ath_hal * ah,struct ar5416eeprom_4k * pEepData,const struct ieee80211_channel * chan,int16_t * pTxPowerIndexOffset)564 ar9285SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
565 const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
566 {
567 CAL_DATA_PER_FREQ_4K *pRawDataset;
568 uint8_t *pCalBChans = AH_NULL;
569 uint16_t pdGainOverlap_t2;
570 static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
571 uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
572 uint16_t numPiers, i;
573 int16_t tMinCalPower;
574 uint16_t numXpdGain, xpdMask;
575 uint16_t xpdGainValues[4]; /* v4k eeprom has 2; the other two stay 0 */
576 uint32_t regChainOffset;
577
578 OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
579
580 xpdMask = pEepData->modalHeader.xpdGain;
581
582 if (IS_EEP_MINOR_V2(ah)) {
583 pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
584 } else {
585 pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
586 }
587
588 pCalBChans = pEepData->calFreqPier2G;
589 numPiers = AR5416_4K_NUM_2G_CAL_PIERS;
590 numXpdGain = 0;
591
592 /* Calculate the value of xpdgains from the xpdGain Mask */
593 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
594 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
595 if (numXpdGain >= AR5416_4K_NUM_PD_GAINS) {
596 HALASSERT(0);
597 break;
598 }
599 xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
600 numXpdGain++;
601 }
602 }
603
604 /* Write the detector gain biases and their number */
605 ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
606
607 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
608 regChainOffset = ar5416GetRegChainOffset(ah, i);
609 if (pEepData->baseEepHeader.txMask & (1 << i)) {
610 pRawDataset = pEepData->calPierData2G[i];
611
612 ar9285GetGainBoundariesAndPdadcs(ah, chan, pRawDataset,
613 pCalBChans, numPiers,
614 pdGainOverlap_t2,
615 &tMinCalPower, gainBoundaries,
616 pdadcValues, numXpdGain);
617
618 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
619 /*
620 * Note the pdadc table may not start at 0 dBm power, could be
621 * negative or greater than 0. Need to offset the power
622 * values by the amount of minPower for griffin
623 */
624 ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, gainBoundaries);
625 }
626
627 /* Write the power values into the baseband power table */
628 ar5416WritePdadcValues(ah, i, pdadcValues);
629 }
630 }
631 *pTxPowerIndexOffset = 0;
632
633 return AH_TRUE;
634 }
635
636 static void
ar9285GetGainBoundariesAndPdadcs(struct ath_hal * ah,const struct ieee80211_channel * chan,CAL_DATA_PER_FREQ_4K * pRawDataSet,uint8_t * bChans,uint16_t availPiers,uint16_t tPdGainOverlap,int16_t * pMinCalPower,uint16_t * pPdGainBoundaries,uint8_t * pPDADCValues,uint16_t numXpdGains)637 ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
638 const struct ieee80211_channel *chan,
639 CAL_DATA_PER_FREQ_4K *pRawDataSet,
640 uint8_t * bChans, uint16_t availPiers,
641 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
642 uint8_t * pPDADCValues, uint16_t numXpdGains)
643 {
644
645 int i, j, k;
646 int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */
647 uint16_t idxL, idxR, numPiers; /* Pier indexes */
648
649 /* filled out Vpd table for all pdGains (chanL) */
650 static uint8_t vpdTableL[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
651
652 /* filled out Vpd table for all pdGains (chanR) */
653 static uint8_t vpdTableR[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
654
655 /* filled out Vpd table for all pdGains (interpolated) */
656 static uint8_t vpdTableI[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
657
658 uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
659 uint8_t minPwrT4[AR5416_4K_NUM_PD_GAINS];
660 uint8_t maxPwrT4[AR5416_4K_NUM_PD_GAINS];
661 int16_t vpdStep;
662 int16_t tmpVal;
663 uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
664 HAL_BOOL match;
665 int16_t minDelta = 0;
666 CHAN_CENTERS centers;
667
668 ar5416GetChannelCenters(ah, chan, ¢ers);
669
670 /* Trim numPiers for the number of populated channel Piers */
671 for (numPiers = 0; numPiers < availPiers; numPiers++) {
672 if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
673 break;
674 }
675 }
676
677 /* Find pier indexes around the current channel */
678 match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
679 IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
680
681 if (match) {
682 /* Directly fill both vpd tables from the matching index */
683 for (i = 0; i < numXpdGains; i++) {
684 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
685 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
686 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i],
687 pRawDataSet[idxL].pwrPdg[i],
688 pRawDataSet[idxL].vpdPdg[i],
689 AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
690 }
691 } else {
692 for (i = 0; i < numXpdGains; i++) {
693 pVpdL = pRawDataSet[idxL].vpdPdg[i];
694 pPwrL = pRawDataSet[idxL].pwrPdg[i];
695 pVpdR = pRawDataSet[idxR].vpdPdg[i];
696 pPwrR = pRawDataSet[idxR].pwrPdg[i];
697
698 /* Start Vpd interpolation from the max of the minimum powers */
699 minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
700
701 /* End Vpd interpolation from the min of the max powers */
702 maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
703 HALASSERT(maxPwrT4[i] > minPwrT4[i]);
704
705 /* Fill pier Vpds */
706 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL,
707 AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
708 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR,
709 AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
710
711 /* Interpolate the final vpd */
712 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
713 vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
714 IEEE80211_IS_CHAN_2GHZ(chan)),
715 bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
716 }
717 }
718 }
719 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
720
721 k = 0; /* index for the final table */
722 for (i = 0; i < numXpdGains; i++) {
723 if (i == (numXpdGains - 1)) {
724 pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
725 } else {
726 pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
727 }
728
729 pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
730
731 /* NB: only applies to owl 1.0 */
732 if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
733 /*
734 * fix the gain delta, but get a delta that can be applied to min to
735 * keep the upper power values accurate, don't think max needs to
736 * be adjusted because should not be at that area of the table?
737 */
738 minDelta = pPdGainBoundaries[0] - 23;
739 pPdGainBoundaries[0] = 23;
740 }
741 else {
742 minDelta = 0;
743 }
744
745 /* Find starting index for this pdGain */
746 if (i == 0) {
747 if (AR_SREV_MERLIN_20_OR_LATER(ah))
748 ss = (int16_t)(0 - (minPwrT4[i] / 2));
749 else
750 ss = 0; /* for the first pdGain, start from index 0 */
751 } else {
752 /* need overlap entries extrapolated below. */
753 ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
754 }
755 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
756 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
757 /*
758 *-ve ss indicates need to extrapolate data below for this pdGain
759 */
760 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
761 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
762 pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
763 ss++;
764 }
765
766 sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
767 tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
768 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
769
770 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
771 pPDADCValues[k++] = vpdTableI[i][ss++];
772 }
773
774 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
775 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
776 /*
777 * for last gain, pdGainBoundary == Pmax_t2, so will
778 * have to extrapolate
779 */
780 if (tgtIndex >= maxIndex) { /* need to extrapolate above */
781 while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
782 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
783 (ss - maxIndex +1) * vpdStep));
784 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
785 ss++;
786 }
787 } /* extrapolated above */
788 } /* for all pdGainUsed */
789
790 /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
791 while (i < AR5416_PD_GAINS_IN_MASK) {
792 pPdGainBoundaries[i] = AR5416_4K_EEP_PD_GAIN_BOUNDARY_DEFAULT;
793 i++;
794 }
795
796 while (k < AR5416_NUM_PDADC_VALUES) {
797 pPDADCValues[k] = pPDADCValues[k-1];
798 k++;
799 }
800 return;
801 }
802