xref: /haiku/src/system/libroot/os/arch/sparc/fpu_implode.c (revision 803a4704e82749bce36c05ee56792dad62576144)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This software was developed by the Computer Systems Engineering group
6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7  * contributed to Berkeley.
8  *
9  * All advertising materials mentioning features or use of this software
10  * must display the following acknowledgement:
11  *	This product includes software developed by the University of
12  *	California, Lawrence Berkeley Laboratory.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
39  *	$NetBSD: fpu_implode.c,v 1.8 2001/08/26 05:44:46 eeh Exp $
40  */
41 
42 #include <sys/cdefs.h>
43 
44 /*
45  * FPU subroutines: `implode' internal format numbers into the machine's
46  * `packed binary' format.
47  */
48 
49 #include <sys/param.h>
50 #include <stdint.h>
51 
52 #ifdef FPU_DEBUG
53 #include <stdio.h>
54 #endif
55 
56 #include "fsr.h"
57 #include "ieee.h"
58 #include "instr.h"
59 
60 #include "fpu_arith.h"
61 #include "fpu_emu.h"
62 #include "fpu_extern.h"
63 
64 static int fpround(struct fpemu *, struct fpn *);
65 static int toinf(struct fpemu *, int);
66 
67 #ifdef _KERNEL_MODE
68 extern void panic(const char*, ...);
69 #else
70 #include <OS.h>
71 #endif
72 
73 /*
74  * Round a number (algorithm from Motorola MC68882 manual, modified for
75  * our internal format).  Set inexact exception if rounding is required.
76  * Return true iff we rounded up.
77  *
78  * After rounding, we discard the guard and round bits by shifting right
79  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
80  * This saves effort later.
81  *
82  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
83  * responsibility to fix this if necessary.
84  */
85 static int
fpround(struct fpemu * fe,struct fpn * fp)86 fpround(struct fpemu *fe, struct fpn *fp)
87 {
88 	uint32_t m0, m1, m2, m3;
89 	int gr, s;
90 
91 	m0 = fp->fp_mant[0];
92 	m1 = fp->fp_mant[1];
93 	m2 = fp->fp_mant[2];
94 	m3 = fp->fp_mant[3];
95 	gr = m3 & 3;
96 	s = fp->fp_sticky;
97 
98 	/* mant >>= FP_NG */
99 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
100 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
101 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
102 	m0 >>= FP_NG;
103 
104 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
105 		goto rounddown;
106 
107 	fe->fe_cx |= FSR_NX;	/* inexact */
108 
109 	/* Go to rounddown to round down; break to round up. */
110 	switch (FSR_GET_RD(fe->fe_fsr)) {
111 	case FSR_RD_N:
112 	default:
113 		/*
114 		 * Round only if guard is set (gr & 2).  If guard is set,
115 		 * but round & sticky both clear, then we want to round
116 		 * but have a tie, so round to even, i.e., add 1 iff odd.
117 		 */
118 		if ((gr & 2) == 0)
119 			goto rounddown;
120 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
121 			break;
122 		goto rounddown;
123 
124 	case FSR_RD_Z:
125 		/* Round towards zero, i.e., down. */
126 		goto rounddown;
127 
128 	case FSR_RD_NINF:
129 		/* Round towards -Inf: up if negative, down if positive. */
130 		if (fp->fp_sign)
131 			break;
132 		goto rounddown;
133 
134 	case FSR_RD_PINF:
135 		/* Round towards +Inf: up if positive, down otherwise. */
136 		if (!fp->fp_sign)
137 			break;
138 		goto rounddown;
139 	}
140 
141 	/* Bump low bit of mantissa, with carry. */
142 	FPU_ADDS(m3, m3, 1);
143 	FPU_ADDCS(m2, m2, 0);
144 	FPU_ADDCS(m1, m1, 0);
145 	FPU_ADDC(m0, m0, 0);
146 	fp->fp_mant[0] = m0;
147 	fp->fp_mant[1] = m1;
148 	fp->fp_mant[2] = m2;
149 	fp->fp_mant[3] = m3;
150 	return (1);
151 
152 rounddown:
153 	fp->fp_mant[0] = m0;
154 	fp->fp_mant[1] = m1;
155 	fp->fp_mant[2] = m2;
156 	fp->fp_mant[3] = m3;
157 	return (0);
158 }
159 
160 /*
161  * For overflow: return true if overflow is to go to +/-Inf, according
162  * to the sign of the overflowing result.  If false, overflow is to go
163  * to the largest magnitude value instead.
164  */
165 static int
toinf(struct fpemu * fe,int sign)166 toinf(struct fpemu *fe, int sign)
167 {
168 	int inf;
169 
170 	/* look at rounding direction */
171 	switch (FSR_GET_RD(fe->fe_fsr)) {
172 	default:
173 	case FSR_RD_N:		/* the nearest value is always Inf */
174 		inf = 1;
175 		break;
176 
177 	case FSR_RD_Z:		/* toward 0 => never towards Inf */
178 		inf = 0;
179 		break;
180 
181 	case FSR_RD_PINF:	/* toward +Inf iff positive */
182 		inf = sign == 0;
183 		break;
184 
185 	case FSR_RD_NINF:	/* toward -Inf iff negative */
186 		inf = sign;
187 		break;
188 	}
189 	return (inf);
190 }
191 
192 /*
193  * fpn -> int (int value returned as return value).
194  *
195  * N.B.: this conversion always rounds towards zero (this is a peculiarity
196  * of the SPARC instruction set).
197  */
198 uint32_t
__fpu_ftoi(fe,fp)199 __fpu_ftoi(fe, fp)
200 	struct fpemu *fe;
201 	struct fpn *fp;
202 {
203 	uint32_t i;
204 	int sign, exp;
205 
206 	sign = fp->fp_sign;
207 	switch (fp->fp_class) {
208 	case FPC_ZERO:
209 		return (0);
210 
211 	case FPC_NUM:
212 		/*
213 		 * If exp >= 2^32, overflow.  Otherwise shift value right
214 		 * into last mantissa word (this will not exceed 0xffffffff),
215 		 * shifting any guard and round bits out into the sticky
216 		 * bit.  Then ``round'' towards zero, i.e., just set an
217 		 * inexact exception if sticky is set (see round()).
218 		 * If the result is > 0x80000000, or is positive and equals
219 		 * 0x80000000, overflow; otherwise the last fraction word
220 		 * is the result.
221 		 */
222 		if ((exp = fp->fp_exp) >= 32)
223 			break;
224 		/* NB: the following includes exp < 0 cases */
225 		if (__fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
226 			fe->fe_cx |= FSR_NX;
227 		i = fp->fp_mant[3];
228 		if (i >= ((uint32_t)0x80000000 + sign))
229 			break;
230 		return (sign ? -i : i);
231 
232 	default:		/* Inf, qNaN, sNaN */
233 		break;
234 	}
235 	/* overflow: replace any inexact exception with invalid */
236 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
237 	return (0x7fffffff + sign);
238 }
239 
240 /*
241  * fpn -> extended int (high bits of int value returned as return value).
242  *
243  * N.B.: this conversion always rounds towards zero (this is a peculiarity
244  * of the SPARC instruction set).
245  */
246 uint32_t
__fpu_ftox(fe,fp,res)247 __fpu_ftox(fe, fp, res)
248 	struct fpemu *fe;
249 	struct fpn *fp;
250 	uint32_t *res;
251 {
252 	uint64_t i;
253 	int sign, exp;
254 
255 	sign = fp->fp_sign;
256 	switch (fp->fp_class) {
257 	case FPC_ZERO:
258 		i = 0;
259 		goto done;
260 
261 	case FPC_NUM:
262 		/*
263 		 * If exp >= 2^64, overflow.  Otherwise shift value
264 		 * right into last mantissa word (this will not exceed
265 		 * 0xffffffffffffffff), shifting any guard and round
266 		 * bits out into the sticky bit.  Then ``round'' towards
267 		 * zero, i.e., just set an inexact exception if sticky
268 		 * is set (see round()).
269 		 * If the result is > 0x8000000000000000, or is positive
270 		 * and equals 0x8000000000000000, overflow; otherwise
271 		 * the last fraction word is the result.
272 		 */
273 		if ((exp = fp->fp_exp) >= 64)
274 			break;
275 		/* NB: the following includes exp < 0 cases */
276 		if (__fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
277 			fe->fe_cx |= FSR_NX;
278 		i = ((uint64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
279 		if (i >= ((uint64_t)0x8000000000000000LL + sign))
280 			break;
281 		if (sign)
282 			i = -i;
283 		goto done;
284 
285 	default:		/* Inf, qNaN, sNaN */
286 		break;
287 	}
288 	/* overflow: replace any inexact exception with invalid */
289 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
290 	i = 0x7fffffffffffffffLL + sign;
291 done:
292 	res[1] = i & 0xffffffff;
293 	return (i >> 32);
294 }
295 
296 /*
297  * fpn -> single (32 bit single returned as return value).
298  * We assume <= 29 bits in a single-precision fraction (1.f part).
299  */
300 uint32_t
__fpu_ftos(fe,fp)301 __fpu_ftos(fe, fp)
302 	struct fpemu *fe;
303 	struct fpn *fp;
304 {
305 	uint32_t sign = fp->fp_sign << 31;
306 	int exp;
307 
308 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
309 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
310 
311 	/* Take care of non-numbers first. */
312 	if (ISNAN(fp)) {
313 		/*
314 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
315 		 * Note that fp->fp_mant[0] has the quiet bit set,
316 		 * even if it is classified as a signalling NaN.
317 		 */
318 		(void) __fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
319 		exp = SNG_EXP_INFNAN;
320 		goto done;
321 	}
322 	if (ISINF(fp))
323 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
324 	if (ISZERO(fp))
325 		return (sign);
326 
327 	/*
328 	 * Normals (including subnormals).  Drop all the fraction bits
329 	 * (including the explicit ``implied'' 1 bit) down into the
330 	 * single-precision range.  If the number is subnormal, move
331 	 * the ``implied'' 1 into the explicit range as well, and shift
332 	 * right to introduce leading zeroes.  Rounding then acts
333 	 * differently for normals and subnormals: the largest subnormal
334 	 * may round to the smallest normal (1.0 x 2^minexp), or may
335 	 * remain subnormal.  A number that is subnormal before rounding
336 	 * will signal an underflow if the result is inexact or if underflow
337 	 * traps are enabled.
338 	 *
339 	 * Rounding a normal, on the other hand, always produces another
340 	 * normal (although either way the result might be too big for
341 	 * single precision, and cause an overflow).  If rounding a
342 	 * normal produces 2.0 in the fraction, we need not adjust that
343 	 * fraction at all, since both 1.0 and 2.0 are zero under the
344 	 * fraction mask.
345 	 *
346 	 * Note that the guard and round bits vanish from the number after
347 	 * rounding.
348 	 */
349 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
350 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
351 		(void) __fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
352 		if (fpround(fe, fp) && fp->fp_mant[3] == SNG_EXP(1)) {
353 			fe->fe_cx |= FSR_UF;
354 			return (sign | SNG_EXP(1) | 0);
355 		}
356 		if ((fe->fe_cx & FSR_NX) ||
357 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
358 			fe->fe_cx |= FSR_UF;
359 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
360 	}
361 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
362 	(void) __fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
363 #ifdef DIAGNOSTIC
364 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
365 		__utrap_panic("fpu_ftos");
366 #endif
367 	if (fpround(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
368 		exp++;
369 	if (exp >= SNG_EXP_INFNAN) {
370 		/* overflow to inf or to max single */
371 		fe->fe_cx |= FSR_OF | FSR_NX;
372 		if (toinf(fe, sign))
373 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
374 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
375 	}
376 done:
377 	/* phew, made it */
378 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
379 }
380 
381 /*
382  * fpn -> double (32 bit high-order result returned; 32-bit low order result
383  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
384  *
385  * This code mimics fpu_ftos; see it for comments.
386  */
387 uint32_t
__fpu_ftod(fe,fp,res)388 __fpu_ftod(fe, fp, res)
389 	struct fpemu *fe;
390 	struct fpn *fp;
391 	uint32_t *res;
392 {
393 	uint32_t sign = fp->fp_sign << 31;
394 	int exp;
395 
396 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
397 #define	DBL_MASK	(DBL_EXP(1) - 1)
398 
399 	if (ISNAN(fp)) {
400 		(void) __fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
401 		exp = DBL_EXP_INFNAN;
402 		goto done;
403 	}
404 	if (ISINF(fp)) {
405 		sign |= DBL_EXP(DBL_EXP_INFNAN);
406 		goto zero;
407 	}
408 	if (ISZERO(fp)) {
409 zero:		res[1] = 0;
410 		return (sign);
411 	}
412 
413 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
414 		(void) __fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
415 		if (fpround(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
416 			fe->fe_cx |= FSR_UF;
417 			res[1] = 0;
418 			return (sign | DBL_EXP(1) | 0);
419 		}
420 		if ((fe->fe_cx & FSR_NX) ||
421 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
422 			fe->fe_cx |= FSR_UF;
423 		exp = 0;
424 		goto done;
425 	}
426 	(void) __fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
427 	if (fpround(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
428 		exp++;
429 	if (exp >= DBL_EXP_INFNAN) {
430 		fe->fe_cx |= FSR_OF | FSR_NX;
431 		if (toinf(fe, sign)) {
432 			res[1] = 0;
433 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
434 		}
435 		res[1] = ~0;
436 		return (sign | DBL_EXP(DBL_EXP_INFNAN - 1) | DBL_MASK);
437 	}
438 done:
439 	res[1] = fp->fp_mant[3];
440 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
441 }
442 
443 /*
444  * fpn -> extended (32 bit high-order result returned; low-order fraction
445  * words left in res[1]..res[3]).  Like ftod, which is like ftos ... but
446  * our internal format *is* extended precision, plus 2 bits for guard/round,
447  * so we can avoid a small bit of work.
448  */
449 uint32_t
__fpu_ftoq(fe,fp,res)450 __fpu_ftoq(fe, fp, res)
451 	struct fpemu *fe;
452 	struct fpn *fp;
453 	uint32_t *res;
454 {
455 	uint32_t sign = fp->fp_sign << 31;
456 	int exp;
457 
458 #define	EXT_EXP(e)	((e) << (EXT_FRACBITS & 31))
459 #define	EXT_MASK	(EXT_EXP(1) - 1)
460 
461 	if (ISNAN(fp)) {
462 		(void) __fpu_shr(fp, 2);	/* since we are not rounding */
463 		exp = EXT_EXP_INFNAN;
464 		goto done;
465 	}
466 	if (ISINF(fp)) {
467 		sign |= EXT_EXP(EXT_EXP_INFNAN);
468 		goto zero;
469 	}
470 	if (ISZERO(fp)) {
471 zero:		res[1] = res[2] = res[3] = 0;
472 		return (sign);
473 	}
474 
475 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
476 		(void) __fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
477 		if (fpround(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
478 			fe->fe_cx |= FSR_UF;
479 			res[1] = res[2] = res[3] = 0;
480 			return (sign | EXT_EXP(1) | 0);
481 		}
482 		if ((fe->fe_cx & FSR_NX) ||
483 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
484 			fe->fe_cx |= FSR_UF;
485 		exp = 0;
486 		goto done;
487 	}
488 	/* Since internal == extended, no need to shift here. */
489 	if (fpround(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
490 		exp++;
491 	if (exp >= EXT_EXP_INFNAN) {
492 		fe->fe_cx |= FSR_OF | FSR_NX;
493 		if (toinf(fe, sign)) {
494 			res[1] = res[2] = res[3] = 0;
495 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
496 		}
497 		res[1] = res[2] = res[3] = ~0;
498 		return (sign | EXT_EXP(EXT_EXP_INFNAN - 1) | EXT_MASK);
499 	}
500 done:
501 	res[1] = fp->fp_mant[1];
502 	res[2] = fp->fp_mant[2];
503 	res[3] = fp->fp_mant[3];
504 	return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
505 }
506 
507 /*
508  * Implode an fpn, writing the result into the given space.
509  */
510 void
__fpu_implode(fe,fp,type,space)511 __fpu_implode(fe, fp, type, space)
512 	struct fpemu *fe;
513 	struct fpn *fp;
514 	int type;
515 	uint32_t *space;
516 {
517 
518 	switch (type) {
519 	case FTYPE_LNG:
520 		space[0] = __fpu_ftox(fe, fp, space);
521 		break;
522 
523 	case FTYPE_INT:
524 		space[0] = __fpu_ftoi(fe, fp);
525 		break;
526 
527 	case FTYPE_SNG:
528 		space[0] = __fpu_ftos(fe, fp);
529 		break;
530 
531 	case FTYPE_DBL:
532 		space[0] = __fpu_ftod(fe, fp, space);
533 		break;
534 
535 	case FTYPE_EXT:
536 		/* funky rounding precision options ?? */
537 		space[0] = __fpu_ftoq(fe, fp, space);
538 		break;
539 
540 	default:
541 #ifdef _KERNEL_MODE
542 		panic("fpu_implode");
543 #else
544 		debugger("fpu_implode");
545 #endif
546 	}
547 	DPRINTF(FPE_REG, ("fpu_implode: %x %x %x %x\n",
548 		space[0], space[1], space[2], space[3]));
549 }
550