1 /*
2 * Copyright (c) 1997
3 * Silicon Graphics Computer Systems, Inc.
4 *
5 * Permission to use, copy, modify, distribute and sell this software
6 * and its documentation for any purpose is hereby granted without fee,
7 * provided that the above copyright notice appear in all copies and
8 * that both that copyright notice and this permission notice appear
9 * in supporting documentation. Silicon Graphics makes no
10 * representations about the suitability of this software for any
11 * purpose. It is provided "as is" without express or implied warranty.
12 */
13
14 /* NOTE: This is an internal header file, included by other STL headers.
15 * You should not attempt to use it directly.
16 */
17
18 // rope<_CharT,_Alloc> is a sequence of _CharT.
19 // Ropes appear to be mutable, but update operations
20 // really copy enough of the data structure to leave the original
21 // valid. Thus ropes can be logically copied by just copying
22 // a pointer value.
23
24 #ifndef __SGI_STL_INTERNAL_ROPE_H
25 # define __SGI_STL_INTERNAL_ROPE_H
26
27 # ifdef __GC
28 # define __GC_CONST const
29 # else
30 # define __GC_CONST // constant except for deallocation
31 # endif
32 # ifdef __STL_SGI_THREADS
33 # include <mutex.h>
34 # endif
35
36 __STL_BEGIN_NAMESPACE
37
38 #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
39 #pragma set woff 1174
40 #endif
41
42 // The _S_eos function is used for those functions that
43 // convert to/from C-like strings to detect the end of the string.
44
45 // The end-of-C-string character.
46 // This is what the draft standard says it should be.
47 template <class _CharT>
_S_eos(_CharT *)48 inline _CharT _S_eos(_CharT*) { return _CharT(); }
49
50 // Test for basic character types.
51 // For basic character types leaves having a trailing eos.
52 template <class _CharT>
_S_is_basic_char_type(_CharT *)53 inline bool _S_is_basic_char_type(_CharT*) { return false; }
54 template <class _CharT>
_S_is_one_byte_char_type(_CharT *)55 inline bool _S_is_one_byte_char_type(_CharT*) { return false; }
56
_S_is_basic_char_type(char *)57 inline bool _S_is_basic_char_type(char*) { return true; }
_S_is_one_byte_char_type(char *)58 inline bool _S_is_one_byte_char_type(char*) { return true; }
_S_is_basic_char_type(wchar_t *)59 inline bool _S_is_basic_char_type(wchar_t*) { return true; }
60
61 // Store an eos iff _CharT is a basic character type.
62 // Do not reference _S_eos if it isn't.
63 template <class _CharT>
_S_cond_store_eos(_CharT &)64 inline void _S_cond_store_eos(_CharT&) {}
65
_S_cond_store_eos(char & __c)66 inline void _S_cond_store_eos(char& __c) { __c = 0; }
_S_cond_store_eos(wchar_t & __c)67 inline void _S_cond_store_eos(wchar_t& __c) { __c = 0; }
68
69 // char_producers are logically functions that generate a section of
70 // a string. These can be convereted to ropes. The resulting rope
71 // invokes the char_producer on demand. This allows, for example,
72 // files to be viewed as ropes without reading the entire file.
73 template <class _CharT>
74 class char_producer {
75 public:
~char_producer()76 virtual ~char_producer() {};
77 virtual void operator()(size_t __start_pos, size_t __len,
78 _CharT* __buffer) = 0;
79 // Buffer should really be an arbitrary output iterator.
80 // That way we could flatten directly into an ostream, etc.
81 // This is thoroughly impossible, since iterator types don't
82 // have runtime descriptions.
83 };
84
85 // Sequence buffers:
86 //
87 // Sequence must provide an append operation that appends an
88 // array to the sequence. Sequence buffers are useful only if
89 // appending an entire array is cheaper than appending element by element.
90 // This is true for many string representations.
91 // This should perhaps inherit from ostream<sequence::value_type>
92 // and be implemented correspondingly, so that they can be used
93 // for formatted. For the sake of portability, we don't do this yet.
94 //
95 // For now, sequence buffers behave as output iterators. But they also
96 // behave a little like basic_ostringstream<sequence::value_type> and a
97 // little like containers.
98
99 template<class _Sequence, size_t _Buf_sz = 100
100 # if defined(__sgi) && !defined(__GNUC__)
101 # define __TYPEDEF_WORKAROUND
102 ,class _V = typename _Sequence::value_type
103 # endif
104 >
105 // The 3rd parameter works around a common compiler bug.
106 class sequence_buffer : public output_iterator {
107 public:
108 # ifndef __TYPEDEF_WORKAROUND
109 typedef typename _Sequence::value_type value_type;
110 # else
111 typedef _V value_type;
112 # endif
113 protected:
114 _Sequence* _M_prefix;
115 value_type _M_buffer[_Buf_sz];
116 size_t _M_buf_count;
117 public:
flush()118 void flush() {
119 _M_prefix->append(_M_buffer, _M_buffer + _M_buf_count);
120 _M_buf_count = 0;
121 }
~sequence_buffer()122 ~sequence_buffer() { flush(); }
sequence_buffer()123 sequence_buffer() : _M_prefix(0), _M_buf_count(0) {}
sequence_buffer(const sequence_buffer & __x)124 sequence_buffer(const sequence_buffer& __x) {
125 _M_prefix = __x._M_prefix;
126 _M_buf_count = __x._M_buf_count;
127 copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer);
128 }
sequence_buffer(sequence_buffer & __x)129 sequence_buffer(sequence_buffer& __x) {
130 __x.flush();
131 _M_prefix = __x._M_prefix;
132 _M_buf_count = 0;
133 }
sequence_buffer(_Sequence & __s)134 sequence_buffer(_Sequence& __s) : _M_prefix(&__s), _M_buf_count(0) {}
135 sequence_buffer& operator= (sequence_buffer& __x) {
136 __x.flush();
137 _M_prefix = __x._M_prefix;
138 _M_buf_count = 0;
139 return *this;
140 }
141 sequence_buffer& operator= (const sequence_buffer& __x) {
142 _M_prefix = __x._M_prefix;
143 _M_buf_count = __x._M_buf_count;
144 copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer);
145 return *this;
146 }
push_back(value_type __x)147 void push_back(value_type __x)
148 {
149 if (_M_buf_count < _Buf_sz) {
150 _M_buffer[_M_buf_count] = __x;
151 ++_M_buf_count;
152 } else {
153 flush();
154 _M_buffer[0] = __x;
155 _M_buf_count = 1;
156 }
157 }
append(value_type * __s,size_t __len)158 void append(value_type* __s, size_t __len)
159 {
160 if (__len + _M_buf_count <= _Buf_sz) {
161 size_t __i = _M_buf_count;
162 size_t __j = 0;
163 for (; __j < __len; __i++, __j++) {
164 _M_buffer[__i] = __s[__j];
165 }
166 _M_buf_count += __len;
167 } else if (0 == _M_buf_count) {
168 _M_prefix->append(__s, __s + __len);
169 } else {
170 flush();
171 append(__s, __len);
172 }
173 }
write(value_type * __s,size_t __len)174 sequence_buffer& write(value_type* __s, size_t __len)
175 {
176 append(__s, __len);
177 return *this;
178 }
put(value_type __x)179 sequence_buffer& put(value_type __x)
180 {
181 push_back(__x);
182 return *this;
183 }
184 sequence_buffer& operator=(const value_type& __rhs)
185 {
186 push_back(__rhs);
187 return *this;
188 }
189 sequence_buffer& operator*() { return *this; }
190 sequence_buffer& operator++() { return *this; }
191 sequence_buffer& operator++(int) { return *this; }
192 };
193
194 // The following should be treated as private, at least for now.
195 template<class _CharT>
196 class _Rope_char_consumer {
197 public:
198 // If we had member templates, these should not be virtual.
199 // For now we need to use run-time parametrization where
200 // compile-time would do. _Hence this should all be private
201 // for now.
202 // The symmetry with char_producer is accidental and temporary.
~_Rope_char_consumer()203 virtual ~_Rope_char_consumer() {};
204 virtual bool operator()(const _CharT* __buffer, size_t __len) = 0;
205 };
206
207 //
208 // What follows should really be local to rope. Unfortunately,
209 // that doesn't work, since it makes it impossible to define generic
210 // equality on rope iterators. According to the draft standard, the
211 // template parameters for such an equality operator cannot be inferred
212 // from the occurence of a member class as a parameter.
213 // (SGI compilers in fact allow this, but the __result wouldn't be
214 // portable.)
215 // Similarly, some of the static member functions are member functions
216 // only to avoid polluting the global namespace, and to circumvent
217 // restrictions on type inference for template functions.
218 //
219
220 template<class _CharT, class _Alloc=__STL_DEFAULT_ALLOCATOR(_CharT)> class rope;
221 template<class _CharT, class _Alloc> struct _Rope_RopeConcatenation;
222 template<class _CharT, class _Alloc> struct _Rope_RopeLeaf;
223 template<class _CharT, class _Alloc> struct _Rope_RopeFunction;
224 template<class _CharT, class _Alloc> struct _Rope_RopeSubstring;
225 template<class _CharT, class _Alloc> class _Rope_iterator;
226 template<class _CharT, class _Alloc> class _Rope_const_iterator;
227 template<class _CharT, class _Alloc> class _Rope_char_ref_proxy;
228 template<class _CharT, class _Alloc> class _Rope_char_ptr_proxy;
229
230 //
231 // The internal data structure for representing a rope. This is
232 // private to the implementation. A rope is really just a pointer
233 // to one of these.
234 //
235 // A few basic functions for manipulating this data structure
236 // are members of _RopeRep. Most of the more complex algorithms
237 // are implemented as rope members.
238 //
239 // Some of the static member functions of _RopeRep have identically
240 // named functions in rope that simply invoke the _RopeRep versions.
241 //
242 // A macro to introduce various allocation and deallocation functions
243 // These need to be defined differently depending on whether or not
244 // we are using standard conforming allocators, and whether the allocator
245 // instances have real state. Thus this macro is invoked repeatedly
246 // with different definitions of __ROPE_DEFINE_ALLOC.
247 // __ROPE_DEFINE_ALLOC(type,name) defines
248 // type * name_allocate(size_t) and
249 // void name_deallocate(tipe *, size_t)
250 // Both functions may or may not be static.
251
252 #define __ROPE_DEFINE_ALLOCS(__a) \
253 __ROPE_DEFINE_ALLOC(_CharT,_Data) /* character data */ \
254 typedef _Rope_RopeConcatenation<_CharT,__a> __C; \
255 __ROPE_DEFINE_ALLOC(__C,_C) \
256 typedef _Rope_RopeLeaf<_CharT,__a> __L; \
257 __ROPE_DEFINE_ALLOC(__L,_L) \
258 typedef _Rope_RopeFunction<_CharT,__a> __F; \
259 __ROPE_DEFINE_ALLOC(__F,_F) \
260 typedef _Rope_RopeSubstring<_CharT,__a> __S; \
261 __ROPE_DEFINE_ALLOC(__S,_S)
262
263 // Internal rope nodes potentially store a copy of the allocator
264 // instance used to allocate them. This is mostly redundant.
265 // But the alternative would be to pass allocator instances around
266 // in some form to nearly all internal functions, since any pointer
267 // assignment may result in a zero reference count and thus require
268 // deallocation.
269 // The _Rope_rep_base class encapsulates
270 // the differences between SGI-style allocators and standard-conforming
271 // allocators.
272
273 #ifdef __STL_USE_STD_ALLOCATORS
274
275 #define __STATIC_IF_SGI_ALLOC /* not static */
276
277 // Base class for ordinary allocators.
278 template <class _CharT, class _Allocator, bool _IsStatic>
279 class _Rope_rep_alloc_base {
280 public:
281 typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
282 allocator_type;
get_allocator()283 allocator_type get_allocator() const { return _M_data_allocator; }
_Rope_rep_alloc_base(size_t __size,const allocator_type & __a)284 _Rope_rep_alloc_base(size_t __size, const allocator_type& __a)
285 : _M_size(__size), _M_data_allocator(__a) {}
286 size_t _M_size; // This is here only to avoid wasting space
287 // for an otherwise empty base class.
288
289
290 protected:
291 allocator_type _M_data_allocator;
292
293 # define __ROPE_DEFINE_ALLOC(_Tp, __name) \
294 typedef typename \
295 _Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
296 /*static*/ _Tp * __name##_allocate(size_t __n) \
297 { return __name##Allocator(_M_data_allocator).allocate(__n); } \
298 void __name##_deallocate(_Tp* __p, size_t __n) \
299 { __name##Allocator(_M_data_allocator).deallocate(__p, __n); }
300 __ROPE_DEFINE_ALLOCS(_Allocator);
301 # undef __ROPE_DEFINE_ALLOC
302 };
303
304 // Specialization for allocators that have the property that we don't
305 // actually have to store an allocator object.
306 template <class _CharT, class _Allocator>
307 class _Rope_rep_alloc_base<_CharT,_Allocator,true> {
308 public:
309 typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
310 allocator_type;
get_allocator()311 allocator_type get_allocator() const { return allocator_type(); }
_Rope_rep_alloc_base(size_t __size,const allocator_type &)312 _Rope_rep_alloc_base(size_t __size, const allocator_type&)
313 : _M_size(__size) {}
314 size_t _M_size;
315
316 protected:
317
318 # define __ROPE_DEFINE_ALLOC(_Tp, __name) \
319 typedef typename \
320 _Alloc_traits<_Tp,_Allocator>::_Alloc_type __name##Alloc; \
321 typedef typename \
322 _Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
323 static _Tp* __name##_allocate(size_t __n) \
324 { return __name##Alloc::allocate(__n); } \
325 void __name##_deallocate(_Tp *__p, size_t __n) \
326 { __name##Alloc::deallocate(__p, __n); }
327 __ROPE_DEFINE_ALLOCS(_Allocator);
328 # undef __ROPE_DEFINE_ALLOC
329 };
330
331 template <class _CharT, class _Alloc>
332 struct _Rope_rep_base
333 : public _Rope_rep_alloc_base<_CharT,_Alloc,
334 _Alloc_traits<_CharT,_Alloc>::_S_instanceless>
335 {
336 typedef _Rope_rep_alloc_base<_CharT,_Alloc,
337 _Alloc_traits<_CharT,_Alloc>::_S_instanceless>
338 _Base;
339 typedef typename _Base::allocator_type allocator_type;
_Rope_rep_base_Rope_rep_base340 _Rope_rep_base(size_t __size, const allocator_type& __a)
341 : _Base(__size, __a) {}
342 };
343
344 #else /* !__STL_USE_STD_ALLOCATORS */
345
346 #define __STATIC_IF_SGI_ALLOC static
347
348 template <class _CharT, class _Alloc>
349 class _Rope_rep_base {
350 public:
351 typedef _Alloc allocator_type;
get_allocator()352 static allocator_type get_allocator() { return allocator_type(); }
_Rope_rep_base(size_t __size,const allocator_type &)353 _Rope_rep_base(size_t __size, const allocator_type&) : _M_size(__size) {}
354 size_t _M_size;
355
356 protected:
357
358 # define __ROPE_DEFINE_ALLOC(_Tp, __name) \
359 typedef simple_alloc<_Tp, _Alloc> __name##Alloc; \
360 static _Tp* __name##_allocate(size_t __n) \
361 { return __name##Alloc::allocate(__n); } \
362 static void __name##_deallocate(_Tp* __p, size_t __n) \
363 { __name##Alloc::deallocate(__p, __n); }
364 __ROPE_DEFINE_ALLOCS(_Alloc);
365 # undef __ROPE_DEFINE_ALLOC
366 };
367
368 #endif /* __STL_USE_STD_ALLOCATORS */
369
370
371 template<class _CharT, class _Alloc>
372 struct _Rope_RopeRep : public _Rope_rep_base<_CharT,_Alloc> {
373 public:
374 enum { _S_max_rope_depth = 45 };
375 enum _Tag {_S_leaf, _S_concat, _S_substringfn, _S_function};
376 _Tag _M_tag:8;
377 bool _M_is_balanced:8;
378 unsigned char _M_depth;
379 __GC_CONST _CharT* _M_c_string;
380 /* Flattened version of string, if needed. */
381 /* typically 0. */
382 /* If it's not 0, then the memory is owned */
383 /* by this node. */
384 /* In the case of a leaf, this may point to */
385 /* the same memory as the data field. */
386 typedef _Rope_rep_base<_CharT,_Alloc>::allocator_type allocator_type;
_Rope_RopeRep_Rope_RopeRep387 _Rope_RopeRep(_Tag __t, int __d, bool __b, size_t __size,
388 allocator_type __a)
389 : _Rope_rep_base<_CharT,_Alloc>(__size, __a),
390 _M_tag(__t), _M_depth(__d), _M_is_balanced(__b), _M_c_string(0)
391 {
392 # ifndef __GC
393 _M_refcount = 1;
394 _M_init_refcount_lock();
395 # endif
396 }
397 # ifndef __GC
398 # if defined(__STL_WIN32THREADS)
399 long _M_refcount; // InterlockedIncrement wants a long *
400 # else
401 size_t _M_refcount;
402 # endif
403 // We count references from rope instances
404 // and references from other rope nodes. We
405 // do not count const_iterator references.
406 // Iterator references are counted so that rope modifications
407 // can be detected after the fact.
408 // Generally function results are counted, i.__e.
409 // a pointer returned by a function is included at the
410 // point at which the pointer is returned.
411 // The recipient should decrement the count if the
412 // __result is not needed.
413 // Generally function arguments are not reflected
414 // in the reference count. The callee should increment
415 // the count before saving the argument someplace that
416 // will outlive the call.
417 # endif
418 # ifndef __GC
419 # ifdef __STL_SGI_THREADS
420 // Reference counting with multiple threads and no
421 // hardware or thread package support is pretty awful.
422 // Mutexes are normally too expensive.
423 // We'll assume a COMPARE_AND_SWAP(destp, __old, new)
424 // operation, which might be cheaper.
425 # if __mips < 3 || !(defined (_ABIN32) || defined(_ABI64))
426 # define __add_and_fetch(l,v) add_then_test((unsigned long*)l,v)
427 # endif
_M_init_refcount_lock_Rope_RopeRep428 void _M_init_refcount_lock() {}
_M_incr_refcount_Rope_RopeRep429 void _M_incr_refcount ()
430 {
431 __add_and_fetch(&_M_refcount, 1);
432 }
_M_decr_refcount_Rope_RopeRep433 size_t _M_decr_refcount ()
434 {
435 return __add_and_fetch(&_M_refcount, (size_t)(-1));
436 }
437 # elif defined(__STL_WIN32THREADS)
_M_init_refcount_lock_Rope_RopeRep438 void _M_init_refcount_lock() {}
_M_incr_refcount_Rope_RopeRep439 void _M_incr_refcount ()
440 {
441 InterlockedIncrement(&_M_refcount);
442 }
_M_decr_refcount_Rope_RopeRep443 size_t _M_decr_refcount ()
444 {
445 return InterlockedDecrement(&_M_refcount);
446 }
447 # elif defined(__STL_PTHREADS)
448 // This should be portable, but performance is expected
449 // to be quite awful. This really needs platform specific
450 // code.
451 pthread_mutex_t _M_refcount_lock;
_M_init_refcount_lock_Rope_RopeRep452 void _M_init_refcount_lock() {
453 pthread_mutex_init(&_M_refcount_lock, 0);
454 }
_M_incr_refcount_Rope_RopeRep455 void _M_incr_refcount ()
456 {
457 pthread_mutex_lock(&_M_refcount_lock);
458 ++_M_refcount;
459 pthread_mutex_unlock(&_M_refcount_lock);
460 }
_M_decr_refcount_Rope_RopeRep461 size_t _M_decr_refcount ()
462 {
463 size_t __result;
464 pthread_mutex_lock(&_M_refcount_lock);
465 __result = --_M_refcount;
466 pthread_mutex_unlock(&_M_refcount_lock);
467 return __result;
468 }
469 # else
_M_init_refcount_lock_Rope_RopeRep470 void _M_init_refcount_lock() {}
_M_incr_refcount_Rope_RopeRep471 void _M_incr_refcount ()
472 {
473 ++_M_refcount;
474 }
_M_decr_refcount_Rope_RopeRep475 size_t _M_decr_refcount ()
476 {
477 --_M_refcount;
478 return _M_refcount;
479 }
480 # endif
481 # else
_M_incr_refcount_Rope_RopeRep482 void _M_incr_refcount () {}
483 # endif
484 # ifdef __STL_USE_STD_ALLOCATORS
485 static void _S_free_string(__GC_CONST _CharT*, size_t __len,
486 allocator_type __a);
487 # define __STL_FREE_STRING(__s, __l, __a) _S_free_string(__s, __l, __a);
488 # else
489 static void _S_free_string(__GC_CONST _CharT*, size_t __len);
490 # define __STL_FREE_STRING(__s, __l, __a) _S_free_string(__s, __l);
491 # endif
492 // Deallocate data section of a leaf.
493 // This shouldn't be a member function.
494 // But its hard to do anything else at the
495 // moment, because it's templatized w.r.t.
496 // an allocator.
497 // Does nothing if __GC is defined.
498 # ifndef __GC
499 void _M_free_c_string();
500 void _M_free_tree();
501 // Deallocate t. Assumes t is not 0.
_M_unref_nonnil_Rope_RopeRep502 void _M_unref_nonnil()
503 {
504 if (0 == _M_decr_refcount()) _M_free_tree();
505 }
_M_ref_nonnil_Rope_RopeRep506 void _M_ref_nonnil()
507 {
508 _M_incr_refcount();
509 }
_S_unref_Rope_RopeRep510 static void _S_unref(_Rope_RopeRep* __t)
511 {
512 if (0 != __t) {
513 __t->_M_unref_nonnil();
514 }
515 }
_S_ref_Rope_RopeRep516 static void _S_ref(_Rope_RopeRep* __t)
517 {
518 if (0 != __t) __t->_M_incr_refcount();
519 }
_S_free_if_unref_Rope_RopeRep520 static void _S_free_if_unref(_Rope_RopeRep* __t)
521 {
522 if (0 != __t && 0 == __t->_M_refcount) __t->_M_free_tree();
523 }
524 # else /* __GC */
_M_unref_nonnil_Rope_RopeRep525 void _M_unref_nonnil() {}
_M_ref_nonnil_Rope_RopeRep526 void _M_ref_nonnil() {}
_S_unref_Rope_RopeRep527 static void _S_unref(_Rope_RopeRep*) {}
_S_ref_Rope_RopeRep528 static void _S_ref(_Rope_RopeRep*) {}
_S_free_if_unref_Rope_RopeRep529 static void _S_free_if_unref(_Rope_RopeRep*) {}
530 # endif
531
532 };
533
534 template<class _CharT, class _Alloc>
535 struct _Rope_RopeLeaf : public _Rope_RopeRep<_CharT,_Alloc> {
536 public:
537 // Apparently needed by VC++
538 // The data fields of leaves are allocated with some
539 // extra space, to accomodate future growth and for basic
540 // character types, to hold a trailing eos character.
541 enum { _S_alloc_granularity = 8 };
_S_rounded_up_size_Rope_RopeLeaf542 static size_t _S_rounded_up_size(size_t __n) {
543 size_t __size_with_eos;
544
545 if (_S_is_basic_char_type((_CharT*)0)) {
546 __size_with_eos = __n + 1;
547 } else {
548 __size_with_eos = __n;
549 }
550 # ifdef __GC
551 return __size_with_eos;
552 # else
553 // Allow slop for in-place expansion.
554 return (__size_with_eos + _S_alloc_granularity-1)
555 &~ (_S_alloc_granularity-1);
556 # endif
557 }
558 __GC_CONST _CharT* _M_data; /* Not necessarily 0 terminated. */
559 /* The allocated size is */
560 /* _S_rounded_up_size(size), except */
561 /* in the GC case, in which it */
562 /* doesn't matter. */
563 typedef _Rope_rep_base<_CharT,_Alloc>::allocator_type allocator_type;
_Rope_RopeLeaf_Rope_RopeLeaf564 _Rope_RopeLeaf(__GC_CONST _CharT* __d, size_t __size, allocator_type __a)
565 : _Rope_RopeRep<_CharT,_Alloc>(_S_leaf, 0, true, __size, __a),
566 _M_data(__d)
567 {
568 __stl_assert(__size > 0);
569 if (_S_is_basic_char_type((_CharT *)0)) {
570 // already eos terminated.
571 _M_c_string = __d;
572 }
573 }
574 // The constructor assumes that d has been allocated with
575 // the proper allocator and the properly padded size.
576 // In contrast, the destructor deallocates the data:
577 # ifndef __GC
~_Rope_RopeLeaf_Rope_RopeLeaf578 ~_Rope_RopeLeaf() {
579 if (_M_data != _M_c_string) {
580 _M_free_c_string();
581 }
582 __STL_FREE_STRING(_M_data, _M_size, get_allocator());
583 }
584 # endif
585 };
586
587 template<class _CharT, class _Alloc>
588 struct _Rope_RopeConcatenation : public _Rope_RopeRep<_CharT,_Alloc> {
589 public:
590 _Rope_RopeRep<_CharT,_Alloc>* _M_left;
591 _Rope_RopeRep<_CharT,_Alloc>* _M_right;
592 typedef _Rope_rep_base<_CharT,_Alloc>::allocator_type allocator_type;
_Rope_RopeConcatenation_Rope_RopeConcatenation593 _Rope_RopeConcatenation(_Rope_RopeRep<_CharT,_Alloc>* __l,
594 _Rope_RopeRep<_CharT,_Alloc>* __r,
595 allocator_type __a)
596 : _Rope_RopeRep<_CharT,_Alloc>(
597 _S_concat, max(__l->_M_depth, __r->_M_depth) + 1, false,
598 __l->_M_size + __r->_M_size, __a),
599 _M_left(__l), _M_right(__r)
600 {}
601 # ifndef __GC
~_Rope_RopeConcatenation_Rope_RopeConcatenation602 ~_Rope_RopeConcatenation() {
603 _M_free_c_string();
604 _M_left->_M_unref_nonnil();
605 _M_right->_M_unref_nonnil();
606 }
607 # endif
608 };
609
610 template<class _CharT, class _Alloc>
611 struct _Rope_RopeFunction : public _Rope_RopeRep<_CharT,_Alloc> {
612 public:
613 char_producer<_CharT>* _M_fn;
614 # ifndef __GC
615 bool _M_delete_when_done; // Char_producer is owned by the
616 // rope and should be explicitly
617 // deleted when the rope becomes
618 // inaccessible.
619 # else
620 // In the GC case, we either register the rope for
621 // finalization, or not. Thus the field is unnecessary;
622 // the information is stored in the collector data structures.
623 // We do need a finalization procedure to be invoked by the
624 // collector.
_S_fn_finalization_proc_Rope_RopeFunction625 static void _S_fn_finalization_proc(void * __tree, void *) {
626 delete ((_Rope_RopeFunction *)__tree) -> _M_fn;
627 }
628 # endif
629 typedef _Rope_rep_base<_CharT,_Alloc>::allocator_type allocator_type;
_Rope_RopeFunction_Rope_RopeFunction630 _Rope_RopeFunction(char_producer<_CharT>* __f, size_t __size,
631 bool __d, allocator_type __a)
632 :_Rope_RopeRep<_CharT,_Alloc>(_S_function, 0, true, __size, __a),
633 _M_fn(__f)
634 # ifndef __GC
635 , _M_delete_when_done(__d)
636 # endif
637 {
638 __stl_assert(__size > 0);
639 # ifdef __GC
640 if (__d) {
641 GC_REGISTER_FINALIZER(
642 this, _Rope_RopeFunction::_S_fn_finalization_proc, 0, 0, 0);
643 }
644 # endif
645 }
646 # ifndef __GC
~_Rope_RopeFunction_Rope_RopeFunction647 ~_Rope_RopeFunction() {
648 _M_free_c_string();
649 if (_M_delete_when_done) {
650 delete _M_fn;
651 }
652 }
653 # endif
654 };
655 // Substring results are usually represented using just
656 // concatenation nodes. But in the case of very long flat ropes
657 // or ropes with a functional representation that isn't practical.
658 // In that case, we represent the __result as a special case of
659 // RopeFunction, whose char_producer points back to the rope itself.
660 // In all cases except repeated substring operations and
661 // deallocation, we treat the __result as a RopeFunction.
662 template<class _CharT, class _Alloc>
663 struct _Rope_RopeSubstring : public _Rope_RopeFunction<_CharT,_Alloc>,
664 public char_producer<_CharT> {
665 public:
666 // XXX this whole class should be rewritten.
667 _Rope_RopeRep<_CharT,_Alloc>* _M_base; // not 0
668 size_t _M_start;
operator_Rope_RopeSubstring669 virtual void operator()(size_t __start_pos, size_t __req_len,
670 _CharT* __buffer) {
671 switch(_M_base->_M_tag) {
672 case _S_function:
673 case _S_substringfn:
674 {
675 char_producer<_CharT>* __fn =
676 ((_Rope_RopeFunction<_CharT,_Alloc>*)_M_base)->_M_fn;
677 __stl_assert(__start_pos + __req_len <= _M_size);
678 __stl_assert(_M_start + _M_size <= _M_base->_M_size);
679 (*__fn)(__start_pos + _M_start, __req_len, __buffer);
680 }
681 break;
682 case _S_leaf:
683 {
684 __GC_CONST _CharT* __s =
685 ((_Rope_RopeLeaf<_CharT,_Alloc>*)_M_base)->_M_data;
686 uninitialized_copy_n(__s + __start_pos + _M_start, __req_len,
687 __buffer);
688 }
689 break;
690 default:
691 __stl_assert(false);
692 }
693 }
694 typedef _Rope_rep_base<_CharT,_Alloc>::allocator_type allocator_type;
_Rope_RopeSubstring_Rope_RopeSubstring695 _Rope_RopeSubstring(_Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s,
696 size_t __l, allocator_type __a)
697 : _Rope_RopeFunction<_CharT,_Alloc>(this, __l, false, __a), _M_base(__b)
698 , _M_start(__s)
699 {
700 __stl_assert(__l > 0);
701 __stl_assert(__s + __l <= __b->_M_size);
702 # ifndef __GC
703 _M_base->_M_ref_nonnil();
704 # endif
705 _M_tag = _S_substringfn;
706 }
~_Rope_RopeSubstring_Rope_RopeSubstring707 virtual ~_Rope_RopeSubstring()
708 {
709 # ifndef __GC
710 _M_base->_M_unref_nonnil();
711 // _M_free_c_string(); -- done by parent class
712 # endif
713 }
714 };
715
716
717 // Self-destructing pointers to Rope_rep.
718 // These are not conventional smart pointers. Their
719 // only purpose in life is to ensure that unref is called
720 // on the pointer either at normal exit or if an exception
721 // is raised. It is the caller's responsibility to
722 // adjust reference counts when these pointers are initialized
723 // or assigned to. (This convention significantly reduces
724 // the number of potentially expensive reference count
725 // updates.)
726 #ifndef __GC
727 template<class _CharT, class _Alloc>
728 struct _Rope_self_destruct_ptr {
729 _Rope_RopeRep<_CharT,_Alloc>* _M_ptr;
~_Rope_self_destruct_ptr_Rope_self_destruct_ptr730 ~_Rope_self_destruct_ptr()
731 { _Rope_RopeRep<_CharT,_Alloc>::_S_unref(_M_ptr); }
732 # ifdef __STL_USE_EXCEPTIONS
_Rope_self_destruct_ptr_Rope_self_destruct_ptr733 _Rope_self_destruct_ptr() : _M_ptr(0) {};
734 # else
_Rope_self_destruct_ptr_Rope_self_destruct_ptr735 _Rope_self_destruct_ptr() {};
736 # endif
_Rope_self_destruct_ptr_Rope_self_destruct_ptr737 _Rope_self_destruct_ptr(_Rope_RopeRep<_CharT,_Alloc>* __p) : _M_ptr(__p) {}
738 _Rope_RopeRep<_CharT,_Alloc>& operator*() { return *_M_ptr; }
739 _Rope_RopeRep<_CharT,_Alloc>* operator->() { return _M_ptr; }
740 operator _Rope_RopeRep<_CharT,_Alloc>*() { return _M_ptr; }
741 _Rope_self_destruct_ptr& operator= (_Rope_RopeRep<_CharT,_Alloc>* __x)
742 { _M_ptr = __x; return *this; }
743 };
744 #endif
745
746 // Dereferencing a nonconst iterator has to return something
747 // that behaves almost like a reference. It's not possible to
748 // return an actual reference since assignment requires extra
749 // work. And we would get into the same problems as with the
750 // CD2 version of basic_string.
751 template<class _CharT, class _Alloc>
752 class _Rope_char_ref_proxy {
753 friend class rope<_CharT,_Alloc>;
754 friend class _Rope_iterator<_CharT,_Alloc>;
755 friend class _Rope_char_ptr_proxy<_CharT,_Alloc>;
756 # ifdef __GC
757 typedef _Rope_RopeRep<_CharT,_Alloc>* _Self_destruct_ptr;
758 # else
759 typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr;
760 # endif
761 typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
762 typedef rope<_CharT,_Alloc> _My_rope;
763 size_t _M_pos;
764 _CharT _M_current;
765 bool _M_current_valid;
766 _My_rope* _M_root; // The whole rope.
767 public:
_Rope_char_ref_proxy(_My_rope * __r,size_t __p)768 _Rope_char_ref_proxy(_My_rope* __r, size_t __p) :
769 _M_pos(__p), _M_current_valid(false), _M_root(__r) {}
_Rope_char_ref_proxy(const _Rope_char_ref_proxy & __x)770 _Rope_char_ref_proxy(const _Rope_char_ref_proxy& __x) :
771 _M_pos(__x._M_pos), _M_current_valid(false), _M_root(__x._M_root) {}
772 // Don't preserve cache if the reference can outlive the
773 // expression. We claim that's not possible without calling
774 // a copy constructor or generating reference to a proxy
775 // reference. We declare the latter to have undefined semantics.
_Rope_char_ref_proxy(_My_rope * __r,size_t __p,_CharT __c)776 _Rope_char_ref_proxy(_My_rope* __r, size_t __p,
777 _CharT __c) :
778 _M_pos(__p), _M_current(__c), _M_current_valid(true), _M_root(__r) {}
779 inline operator _CharT () const;
780 _Rope_char_ref_proxy& operator= (_CharT __c);
781 _Rope_char_ptr_proxy<_CharT,_Alloc> operator& () const;
782 _Rope_char_ref_proxy& operator= (const _Rope_char_ref_proxy& __c) {
783 return operator=((_CharT)__c);
784 }
785 };
786
787 #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
788 template<class _CharT, class __Alloc>
swap(_Rope_char_ref_proxy<_CharT,__Alloc> __a,_Rope_char_ref_proxy<_CharT,__Alloc> __b)789 inline void swap(_Rope_char_ref_proxy <_CharT, __Alloc > __a,
790 _Rope_char_ref_proxy <_CharT, __Alloc > __b) {
791 _CharT __tmp = __a;
792 __a = __b;
793 __b = __tmp;
794 }
795 #else
796 // There is no really acceptable way to handle this. The default
797 // definition of swap doesn't work for proxy references.
798 // It can't really be made to work, even with ugly hacks, since
799 // the only unusual operation it uses is the copy constructor, which
800 // is needed for other purposes. We provide a macro for
801 // full specializations, and instantiate the most common case.
802 # define _ROPE_SWAP_SPECIALIZATION(_CharT, __Alloc) \
803 inline void swap(_Rope_char_ref_proxy <_CharT, __Alloc > __a, \
804 _Rope_char_ref_proxy <_CharT, __Alloc > __b) { \
805 _CharT __tmp = __a; \
806 __a = __b; \
807 __b = __tmp; \
808 }
809
_ROPE_SWAP_SPECIALIZATION(char,__STL_DEFAULT_ALLOCATOR (char))810 _ROPE_SWAP_SPECIALIZATION(char,__STL_DEFAULT_ALLOCATOR(char))
811
812 #endif /* !__STL_FUNCTION_TMPL_PARTIAL_ORDER */
813
814 template<class _CharT, class _Alloc>
815 class _Rope_char_ptr_proxy {
816 // XXX this class should be rewritten.
817 friend class _Rope_char_ref_proxy<_CharT,_Alloc>;
818 size_t _M_pos;
819 rope<_CharT,_Alloc>* _M_root; // The whole rope.
820 public:
821 _Rope_char_ptr_proxy(const _Rope_char_ref_proxy<_CharT,_Alloc>& __x)
822 : _M_pos(__x._M_pos), _M_root(__x._M_root) {}
823 _Rope_char_ptr_proxy(const _Rope_char_ptr_proxy& __x)
824 : _M_pos(__x._M_pos), _M_root(__x._M_root) {}
825 _Rope_char_ptr_proxy() {}
826 _Rope_char_ptr_proxy(_CharT* __x) : _M_root(0), _M_pos(0) {
827 __stl_assert(0 == __x);
828 }
829 _Rope_char_ptr_proxy&
830 operator= (const _Rope_char_ptr_proxy& __x) {
831 _M_pos = __x._M_pos;
832 _M_root = __x._M_root;
833 return *this;
834 }
835 friend bool operator== __STL_NULL_TMPL_ARGS
836 (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
837 const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y);
838
839 _Rope_char_ref_proxy<_CharT,_Alloc> operator*() const {
840 return _Rope_char_ref_proxy<_CharT,_Alloc>(_M_root, _M_pos);
841 }
842 };
843
844
845 // Rope iterators:
846 // Unlike in the C version, we cache only part of the stack
847 // for rope iterators, since they must be efficiently copyable.
848 // When we run out of cache, we have to reconstruct the iterator
849 // value.
850 // Pointers from iterators are not included in reference counts.
851 // Iterators are assumed to be thread private. Ropes can
852 // be shared.
853
854 #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
855 #pragma set woff 1375
856 #endif
857
858 template<class _CharT, class _Alloc>
859 class _Rope_iterator_base
860 : public random_access_iterator<_CharT, ptrdiff_t> {
861 friend class rope<_CharT,_Alloc>;
862 public:
863 typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
864 // Borland doesnt want this to be protected.
865 protected:
866 enum { _S_path_cache_len = 4 }; // Must be <= 9.
867 enum { _S_iterator_buf_len = 15 };
868 size_t _M_current_pos;
869 _RopeRep* _M_root; // The whole rope.
870 size_t _M_leaf_pos; // Starting position for current leaf
871 __GC_CONST _CharT* _M_buf_start;
872 // Buffer possibly
873 // containing current char.
874 __GC_CONST _CharT* _M_buf_ptr;
875 // Pointer to current char in buffer.
876 // != 0 ==> buffer valid.
877 __GC_CONST _CharT* _M_buf_end;
878 // One past __last valid char in buffer.
879 // What follows is the path cache. We go out of our
880 // way to make this compact.
881 // Path_end contains the bottom section of the path from
882 // the root to the current leaf.
883 const _RopeRep* _M_path_end[_S_path_cache_len];
884 int _M_leaf_index; // Last valid __pos in path_end;
885 // _M_path_end[0] ... _M_path_end[leaf_index-1]
886 // point to concatenation nodes.
887 unsigned char _M_path_directions;
888 // (path_directions >> __i) & 1 is 1
889 // iff we got from _M_path_end[leaf_index - __i - 1]
890 // to _M_path_end[leaf_index - __i] by going to the
891 // __right. Assumes path_cache_len <= 9.
892 _CharT _M_tmp_buf[_S_iterator_buf_len];
893 // Short buffer for surrounding chars.
894 // This is useful primarily for
895 // RopeFunctions. We put the buffer
896 // here to avoid locking in the
897 // multithreaded case.
898 // The cached path is generally assumed to be valid
899 // only if the buffer is valid.
900 static void _S_setbuf(_Rope_iterator_base& __x);
901 // Set buffer contents given
902 // path cache.
903 static void _S_setcache(_Rope_iterator_base& __x);
904 // Set buffer contents and
905 // path cache.
906 static void _S_setcache_for_incr(_Rope_iterator_base& __x);
907 // As above, but assumes path
908 // cache is valid for previous posn.
_Rope_iterator_base()909 _Rope_iterator_base() {}
_Rope_iterator_base(_RopeRep * __root,size_t __pos)910 _Rope_iterator_base(_RopeRep* __root, size_t __pos)
911 : _M_root(__root), _M_current_pos(__pos), _M_buf_ptr(0) {}
912 void _M_incr(size_t __n);
913 void _M_decr(size_t __n);
914 public:
index()915 size_t index() const { return _M_current_pos; }
_Rope_iterator_base(const _Rope_iterator_base & __x)916 _Rope_iterator_base(const _Rope_iterator_base& __x) {
917 if (0 != __x._M_buf_ptr) {
918 *this = __x;
919 } else {
920 _M_current_pos = __x._M_current_pos;
921 _M_root = __x._M_root;
922 _M_buf_ptr = 0;
923 }
924 }
925 };
926
927 template<class _CharT, class _Alloc> class _Rope_iterator;
928
929 template<class _CharT, class _Alloc>
930 class _Rope_const_iterator : public _Rope_iterator_base<_CharT,_Alloc> {
931 friend class rope<_CharT,_Alloc>;
932 protected:
_Rope_const_iterator(const _RopeRep * __root,size_t __pos)933 _Rope_const_iterator(const _RopeRep* __root, size_t __pos):
934 _Rope_iterator_base<_CharT,_Alloc>(
935 const_cast<_RopeRep*>(__root), __pos)
936 // Only nonconst iterators modify root ref count
937 {}
938 public:
939 typedef _CharT reference; // Really a value. Returning a reference
940 // Would be a mess, since it would have
941 // to be included in refcount.
942 typedef const _CharT* pointer;
943
944 public:
_Rope_const_iterator()945 _Rope_const_iterator() {};
_Rope_const_iterator(const _Rope_const_iterator & __x)946 _Rope_const_iterator(const _Rope_const_iterator& __x) :
947 _Rope_iterator_base<_CharT,_Alloc>(__x) { }
948 _Rope_const_iterator(const _Rope_iterator<_CharT,_Alloc>& __x);
_Rope_const_iterator(const rope<_CharT,_Alloc> & __r,size_t __pos)949 _Rope_const_iterator(const rope<_CharT,_Alloc>& __r, size_t __pos) :
950 _Rope_iterator_base<_CharT,_Alloc>(__r._M_tree_ptr, __pos) {}
951 _Rope_const_iterator& operator= (const _Rope_const_iterator& __x) {
952 if (0 != __x._M_buf_ptr) {
953 *(static_cast<_Rope_iterator_base<_CharT,_Alloc>*>(this)) = __x;
954 } else {
955 _M_current_pos = __x._M_current_pos;
956 _M_root = __x._M_root;
957 _M_buf_ptr = 0;
958 }
959 return(*this);
960 }
961 reference operator*() {
962 if (0 == _M_buf_ptr) _S_setcache(*this);
963 return *_M_buf_ptr;
964 }
965 _Rope_const_iterator& operator++() {
966 __GC_CONST _CharT* __next;
967 if (0 != _M_buf_ptr && (__next = _M_buf_ptr + 1) < _M_buf_end) {
968 _M_buf_ptr = __next;
969 ++_M_current_pos;
970 } else {
971 _M_incr(1);
972 }
973 return *this;
974 }
975 _Rope_const_iterator& operator+=(ptrdiff_t __n) {
976 if (__n >= 0) {
977 _M_incr(__n);
978 } else {
979 _M_decr(-__n);
980 }
981 return *this;
982 }
983 _Rope_const_iterator& operator--() {
984 _M_decr(1);
985 return *this;
986 }
987 _Rope_const_iterator& operator-=(ptrdiff_t __n) {
988 if (__n >= 0) {
989 _M_decr(__n);
990 } else {
991 _M_incr(-__n);
992 }
993 return *this;
994 }
995 _Rope_const_iterator operator++(int) {
996 size_t __old_pos = _M_current_pos;
997 _M_incr(1);
998 return _Rope_const_iterator<_CharT,_Alloc>(_M_root, __old_pos);
999 // This makes a subsequent dereference expensive.
1000 // Perhaps we should instead copy the iterator
1001 // if it has a valid cache?
1002 }
1003 _Rope_const_iterator operator--(int) {
1004 size_t __old_pos = _M_current_pos;
1005 _M_decr(1);
1006 return _Rope_const_iterator<_CharT,_Alloc>(_M_root, __old_pos);
1007 }
1008 friend _Rope_const_iterator<_CharT,_Alloc> operator- __STL_NULL_TMPL_ARGS
1009 (const _Rope_const_iterator<_CharT,_Alloc>& __x,
1010 ptrdiff_t __n);
1011 friend _Rope_const_iterator<_CharT,_Alloc> operator+ __STL_NULL_TMPL_ARGS
1012 (const _Rope_const_iterator<_CharT,_Alloc>& __x,
1013 ptrdiff_t __n);
1014 friend _Rope_const_iterator<_CharT,_Alloc> operator+ __STL_NULL_TMPL_ARGS
1015 (ptrdiff_t __n,
1016 const _Rope_const_iterator<_CharT,_Alloc>& __x);
1017 reference operator[](size_t __n) {
1018 return rope<_CharT,_Alloc>::_S_fetch(_M_root, _M_current_pos + __n);
1019 }
1020 friend bool operator== __STL_NULL_TMPL_ARGS
1021 (const _Rope_const_iterator<_CharT,_Alloc>& __x,
1022 const _Rope_const_iterator<_CharT,_Alloc>& __y);
1023 friend bool operator< __STL_NULL_TMPL_ARGS
1024 (const _Rope_const_iterator<_CharT,_Alloc>& __x,
1025 const _Rope_const_iterator<_CharT,_Alloc>& __y);
1026 friend ptrdiff_t operator- __STL_NULL_TMPL_ARGS
1027 (const _Rope_const_iterator<_CharT,_Alloc>& __x,
1028 const _Rope_const_iterator<_CharT,_Alloc>& __y);
1029 };
1030
1031 template<class _CharT, class _Alloc>
1032 class _Rope_iterator : public _Rope_iterator_base<_CharT,_Alloc> {
1033 friend class rope<_CharT,_Alloc>;
1034 protected:
1035 rope<_CharT,_Alloc>* _M_root_rope;
1036 // root is treated as a cached version of this,
1037 // and is used to detect changes to the underlying
1038 // rope.
1039 // Root is included in the reference count.
1040 // This is necessary so that we can detect changes reliably.
1041 // Unfortunately, it requires careful bookkeeping for the
1042 // nonGC case.
_Rope_iterator(rope<_CharT,_Alloc> * __r,size_t __pos)1043 _Rope_iterator(rope<_CharT,_Alloc>* __r, size_t __pos)
1044 : _Rope_iterator_base<_CharT,_Alloc>(__r->_M_tree_ptr, __pos),
1045 _M_root_rope(__r)
1046 { _RopeRep::_S_ref(_M_root); }
1047
1048 void _M_check();
1049 public:
1050 typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference;
1051 typedef _Rope_char_ref_proxy<_CharT,_Alloc>* pointer;
1052
1053 public:
container()1054 rope<_CharT,_Alloc>& container() { return *_M_root_rope; }
_Rope_iterator()1055 _Rope_iterator() {
1056 _M_root = 0; // Needed for reference counting.
1057 };
_Rope_iterator(const _Rope_iterator & __x)1058 _Rope_iterator(const _Rope_iterator& __x) :
1059 _Rope_iterator_base<_CharT,_Alloc>(__x) {
1060 _M_root_rope = __x._M_root_rope;
1061 _RopeRep::_S_ref(_M_root);
1062 }
1063 _Rope_iterator(rope<_CharT,_Alloc>& __r, size_t __pos);
~_Rope_iterator()1064 ~_Rope_iterator() {
1065 _RopeRep::_S_unref(_M_root);
1066 }
1067 _Rope_iterator& operator= (const _Rope_iterator& __x) {
1068 _RopeRep* __old = _M_root;
1069
1070 _RopeRep::_S_ref(__x._M_root);
1071 if (0 != __x._M_buf_ptr) {
1072 _M_root_rope = __x._M_root_rope;
1073 *(static_cast<_Rope_iterator_base<_CharT,_Alloc>*>(this)) = __x;
1074 } else {
1075 _M_current_pos = __x._M_current_pos;
1076 _M_root = __x._M_root;
1077 _M_root_rope = __x._M_root_rope;
1078 _M_buf_ptr = 0;
1079 }
1080 _RopeRep::_S_unref(__old);
1081 return(*this);
1082 }
1083 reference operator*() {
1084 _M_check();
1085 if (0 == _M_buf_ptr) {
1086 return _Rope_char_ref_proxy<_CharT,_Alloc>(
1087 _M_root_rope, _M_current_pos);
1088 } else {
1089 return _Rope_char_ref_proxy<_CharT,_Alloc>(
1090 _M_root_rope, _M_current_pos, *_M_buf_ptr);
1091 }
1092 }
1093 _Rope_iterator& operator++() {
1094 _M_incr(1);
1095 return *this;
1096 }
1097 _Rope_iterator& operator+=(difference_type __n) {
1098 if (__n >= 0) {
1099 _M_incr(__n);
1100 } else {
1101 _M_decr(-__n);
1102 }
1103 return *this;
1104 }
1105 _Rope_iterator& operator--() {
1106 _M_decr(1);
1107 return *this;
1108 }
1109 _Rope_iterator& operator-=(difference_type __n) {
1110 if (__n >= 0) {
1111 _M_decr(__n);
1112 } else {
1113 _M_incr(-__n);
1114 }
1115 return *this;
1116 }
1117 _Rope_iterator operator++(int) {
1118 size_t __old_pos = _M_current_pos;
1119 _M_incr(1);
1120 return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos);
1121 }
1122 _Rope_iterator operator--(int) {
1123 size_t __old_pos = _M_current_pos;
1124 _M_decr(1);
1125 return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos);
1126 }
1127 reference operator[](ptrdiff_t __n) {
1128 return _Rope_char_ref_proxy<_CharT,_Alloc>(
1129 _M_root_rope, _M_current_pos + __n);
1130 }
1131 friend bool operator== __STL_NULL_TMPL_ARGS
1132 (const _Rope_iterator<_CharT,_Alloc>& __x,
1133 const _Rope_iterator<_CharT,_Alloc>& __y);
1134 friend bool operator< __STL_NULL_TMPL_ARGS
1135 (const _Rope_iterator<_CharT,_Alloc>& __x,
1136 const _Rope_iterator<_CharT,_Alloc>& __y);
1137 friend ptrdiff_t operator- __STL_NULL_TMPL_ARGS
1138 (const _Rope_iterator<_CharT,_Alloc>& __x,
1139 const _Rope_iterator<_CharT,_Alloc>& __y);
1140 friend _Rope_iterator<_CharT,_Alloc> operator- __STL_NULL_TMPL_ARGS
1141 (const _Rope_iterator<_CharT,_Alloc>& __x,
1142 ptrdiff_t __n);
1143 friend _Rope_iterator<_CharT,_Alloc> operator+ __STL_NULL_TMPL_ARGS
1144 (const _Rope_iterator<_CharT,_Alloc>& __x,
1145 ptrdiff_t __n);
1146 friend _Rope_iterator<_CharT,_Alloc> operator+ __STL_NULL_TMPL_ARGS
1147 (ptrdiff_t __n,
1148 const _Rope_iterator<_CharT,_Alloc>& __x);
1149
1150 };
1151
1152 #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
1153 #pragma reset woff 1375
1154 #endif
1155
1156 // The rope base class encapsulates
1157 // the differences between SGI-style allocators and standard-conforming
1158 // allocators.
1159
1160 #ifdef __STL_USE_STD_ALLOCATORS
1161
1162 // Base class for ordinary allocators.
1163 template <class _CharT, class _Allocator, bool _IsStatic>
1164 class _Rope_alloc_base {
1165 public:
1166 typedef _Rope_RopeRep<_CharT,_Allocator> _RopeRep;
1167 typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
1168 allocator_type;
get_allocator()1169 allocator_type get_allocator() const { return _M_data_allocator; }
_Rope_alloc_base(_RopeRep * __t,const allocator_type & __a)1170 _Rope_alloc_base(_RopeRep *__t, const allocator_type& __a)
1171 : _M_tree_ptr(__t), _M_data_allocator(__a) {}
_Rope_alloc_base(const allocator_type & __a)1172 _Rope_alloc_base(const allocator_type& __a)
1173 : _M_data_allocator(__a) {}
1174
1175 protected:
1176 // The only data members of a rope:
1177 allocator_type _M_data_allocator;
1178 _RopeRep* _M_tree_ptr;
1179
1180 # define __ROPE_DEFINE_ALLOC(_Tp, __name) \
1181 typedef typename \
1182 _Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
1183 _Tp* __name##_allocate(size_t __n) const \
1184 { return __name##Allocator(_M_data_allocator).allocate(__n); } \
1185 void __name##_deallocate(_Tp *__p, size_t __n) const \
1186 { __name##Allocator(_M_data_allocator).deallocate(__p, __n); }
1187 __ROPE_DEFINE_ALLOCS(_Allocator)
1188 # undef __ROPE_DEFINE_ALLOC
1189 };
1190
1191 // Specialization for allocators that have the property that we don't
1192 // actually have to store an allocator object.
1193 template <class _CharT, class _Allocator>
1194 class _Rope_alloc_base<_CharT,_Allocator,true> {
1195 public:
1196 typedef _Rope_RopeRep<_CharT,_Allocator> _RopeRep;
1197 typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
1198 allocator_type;
get_allocator()1199 allocator_type get_allocator() const { return allocator_type(); }
_Rope_alloc_base(_RopeRep * __t,const allocator_type &)1200 _Rope_alloc_base(_RopeRep *__t, const allocator_type&)
1201 : _M_tree_ptr(__t) {}
_Rope_alloc_base(const allocator_type &)1202 _Rope_alloc_base(const allocator_type&) {}
1203
1204 protected:
1205 // The only data member of a rope:
1206 _RopeRep *_M_tree_ptr;
1207
1208 # define __ROPE_DEFINE_ALLOC(_Tp, __name) \
1209 typedef typename \
1210 _Alloc_traits<_Tp,_Allocator>::_Alloc_type __name##Alloc; \
1211 typedef typename \
1212 _Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
1213 static _Tp* __name##_allocate(size_t __n) \
1214 { return __name##Alloc::allocate(__n); } \
1215 static void __name##_deallocate(_Tp *__p, size_t __n) \
1216 { __name##Alloc::deallocate(__p, __n); }
1217 __ROPE_DEFINE_ALLOCS(_Allocator)
1218 # undef __ROPE_DEFINE_ALLOC
1219 };
1220
1221 template <class _CharT, class _Alloc>
1222 struct _Rope_base
1223 : public _Rope_alloc_base<_CharT,_Alloc,
1224 _Alloc_traits<_CharT,_Alloc>::_S_instanceless>
1225 {
1226 typedef _Rope_alloc_base<_CharT,_Alloc,
1227 _Alloc_traits<_CharT,_Alloc>::_S_instanceless>
1228 _Base;
1229 typedef typename _Base::allocator_type allocator_type;
_Rope_base_Rope_base1230 _Rope_base(_RopeRep* __t, const allocator_type& __a) : _Base(__t, __a) {}
_Rope_base_Rope_base1231 _Rope_base(const allocator_type& __a) : _Base(__a) {}
1232 };
1233
1234 #else /* !__STL_USE_STD_ALLOCATORS */
1235
1236 template <class _CharT, class _Alloc>
1237 class _Rope_base {
1238 public:
1239 typedef _Rope_RopeRep<_CharT, _Alloc> _RopeRep;
1240 typedef _Alloc allocator_type;
get_allocator()1241 static allocator_type get_allocator() { return allocator_type(); }
_Rope_base(_RopeRep * __t,const allocator_type &)1242 _Rope_base(_RopeRep * __t, const allocator_type&) : _M_tree_ptr(__t) {}
_Rope_base(const allocator_type &)1243 _Rope_base(const allocator_type&) {}
1244
1245 protected:
1246 // The only data member of a rope:
1247 _RopeRep* _M_tree_ptr;
1248
1249 # define __ROPE_DEFINE_ALLOC(_Tp, __name) \
1250 typedef simple_alloc<_Tp, _Alloc> __name##Alloc; \
1251 static _Tp* __name##_allocate(size_t __n) \
1252 { return __name##Alloc::allocate(__n); } \
1253 static void __name##_deallocate(_Tp *__p, size_t __n) \
1254 { __name##Alloc::deallocate(__p, __n); }
1255 __ROPE_DEFINE_ALLOCS(_Alloc)
1256 # undef __ROPE_DEFINE_ALLOC
1257 };
1258
1259 #endif /* __STL_USE_STD_ALLOCATORS */
1260
1261
1262 template <class _CharT, class _Alloc>
1263 class rope : public _Rope_base<_CharT,_Alloc> {
1264 public:
1265 typedef _CharT value_type;
1266 typedef ptrdiff_t difference_type;
1267 typedef size_t size_type;
1268 typedef _CharT const_reference;
1269 typedef const _CharT* const_pointer;
1270 typedef _Rope_iterator<_CharT,_Alloc> iterator;
1271 typedef _Rope_const_iterator<_CharT,_Alloc> const_iterator;
1272 typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference;
1273 typedef _Rope_char_ptr_proxy<_CharT,_Alloc> pointer;
1274
1275 friend class _Rope_iterator<_CharT,_Alloc>;
1276 friend class _Rope_const_iterator<_CharT,_Alloc>;
1277 friend struct _Rope_RopeRep<_CharT,_Alloc>;
1278 friend class _Rope_iterator_base<_CharT,_Alloc>;
1279 friend class _Rope_char_ptr_proxy<_CharT,_Alloc>;
1280 friend class _Rope_char_ref_proxy<_CharT,_Alloc>;
1281 friend struct _Rope_RopeSubstring<_CharT,_Alloc>;
1282
1283 protected:
1284 typedef _Rope_base<_CharT,_Alloc> _Base;
1285 typedef typename _Base::allocator_type allocator_type;
1286 # ifdef __STL_USE_NAMESPACES
1287 using _Base::_M_tree_ptr;
1288 # endif
1289 typedef __GC_CONST _CharT* _Cstrptr;
1290 # ifdef __STL_SGI_THREADS
1291 static _Cstrptr _S_atomic_swap(_Cstrptr* __p, _Cstrptr __q) {
1292 # if __mips < 3 || !(defined (_ABIN32) || defined(_ABI64))
1293 return (_Cstrptr) test_and_set((unsigned long*)__p,
1294 (unsigned long)__q);
1295 # else
1296 return (_Cstrptr) __test_and_set((unsigned long*)__p,
1297 (unsigned long)__q);
1298 # endif
1299 }
1300 # elif defined(__STL_WIN32THREADS)
1301 static _Cstrptr _S_atomic_swap(_Cstrptr* __p, _Cstrptr __q) {
1302 return (_Cstrptr) InterlockedExchange(
1303 (LPLONG)__p, (LONG)__q);
1304 }
1305 # elif defined(__STL_PTHREADS)
1306 // This should be portable, but performance is expected
1307 // to be quite awful. This really needs platform specific
1308 // code.
1309 static pthread_mutex_t _S_swap_lock;
1310 static _Cstrptr _S_atomic_swap(_Cstrptr* __p, _Cstrptr __q) {
1311 pthread_mutex_lock(&_S_swap_lock);
1312 _Cstrptr __result = *__p;
1313 *__p = __q;
1314 pthread_mutex_unlock(&_S_swap_lock);
1315 return __result;
1316 }
1317 # else
1318 static _Cstrptr _S_atomic_swap(_Cstrptr* __p, _Cstrptr __q) {
1319 _Cstrptr __result = *__p;
1320 *__p = __q;
1321 return __result;
1322 }
1323 # endif
1324
1325 static _CharT _S_empty_c_str[1];
1326
1327 static bool _S_is0(_CharT __c) { return __c == _S_eos((_CharT*)0); }
1328 enum { _S_copy_max = 23 };
1329 // For strings shorter than _S_copy_max, we copy to
1330 // concatenate.
1331
1332 typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
1333 typedef _Rope_RopeConcatenation<_CharT,_Alloc> _RopeConcatenation;
1334 typedef _Rope_RopeLeaf<_CharT,_Alloc> _RopeLeaf;
1335 typedef _Rope_RopeFunction<_CharT,_Alloc> _RopeFunction;
1336 typedef _Rope_RopeSubstring<_CharT,_Alloc> _RopeSubstring;
1337
1338 // Retrieve a character at the indicated position.
1339 static _CharT _S_fetch(_RopeRep* __r, size_type __pos);
1340
1341 # ifndef __GC
1342 // Obtain a pointer to the character at the indicated position.
1343 // The pointer can be used to change the character.
1344 // If such a pointer cannot be produced, as is frequently the
1345 // case, 0 is returned instead.
1346 // (Returns nonzero only if all nodes in the path have a refcount
1347 // of 1.)
1348 static _CharT* _S_fetch_ptr(_RopeRep* __r, size_type __pos);
1349 # endif
1350
1351 static bool _S_apply_to_pieces(
1352 // should be template parameter
1353 _Rope_char_consumer<_CharT>& __c,
1354 const _RopeRep* __r,
1355 size_t __begin, size_t __end);
1356 // begin and end are assumed to be in range.
1357
1358 # ifndef __GC
1359 static void _S_unref(_RopeRep* __t)
1360 {
1361 _RopeRep::_S_unref(__t);
1362 }
1363 static void _S_ref(_RopeRep* __t)
1364 {
1365 _RopeRep::_S_ref(__t);
1366 }
1367 # else /* __GC */
1368 static void _S_unref(_RopeRep*) {}
1369 static void _S_ref(_RopeRep*) {}
1370 # endif
1371
1372
1373 # ifdef __GC
1374 typedef _Rope_RopeRep<_CharT,_Alloc>* _Self_destruct_ptr;
1375 # else
1376 typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr;
1377 # endif
1378
1379 // _Result is counted in refcount.
1380 static _RopeRep* _S_substring(_RopeRep* __base,
1381 size_t __start, size_t __endp1);
1382
1383 static _RopeRep* _S_concat_char_iter(_RopeRep* __r,
1384 const _CharT* __iter, size_t __slen);
1385 // Concatenate rope and char ptr, copying __s.
1386 // Should really take an arbitrary iterator.
1387 // Result is counted in refcount.
1388 static _RopeRep* _S_destr_concat_char_iter(_RopeRep* __r,
1389 const _CharT* __iter, size_t __slen)
1390 // As above, but one reference to __r is about to be
1391 // destroyed. Thus the pieces may be recycled if all
1392 // relevent reference counts are 1.
1393 # ifdef __GC
1394 // We can't really do anything since refcounts are unavailable.
1395 { return _S_concat_char_iter(__r, __iter, __slen); }
1396 # else
1397 ;
1398 # endif
1399
1400 static _RopeRep* _S_concat(_RopeRep* __left, _RopeRep* __right);
1401 // General concatenation on _RopeRep. _Result
1402 // has refcount of 1. Adjusts argument refcounts.
1403
1404 public:
1405 void apply_to_pieces( size_t __begin, size_t __end,
1406 _Rope_char_consumer<_CharT>& __c) const {
1407 _S_apply_to_pieces(__c, _M_tree_ptr, __begin, __end);
1408 }
1409
1410
1411 protected:
1412
1413 static size_t _S_rounded_up_size(size_t __n) {
1414 return _RopeLeaf::_S_rounded_up_size(__n);
1415 }
1416
1417 static size_t _S_allocated_capacity(size_t __n) {
1418 if (_S_is_basic_char_type((_CharT*)0)) {
1419 return _S_rounded_up_size(__n) - 1;
1420 } else {
1421 return _S_rounded_up_size(__n);
1422 }
1423 }
1424
1425 // Allocate and construct a RopeLeaf using the supplied allocator
1426 // Takes ownership of s instead of copying.
1427 static _RopeLeaf* _S_new_RopeLeaf(__GC_CONST _CharT *__s,
1428 size_t __size, allocator_type __a)
1429 {
1430 # ifdef __STL_USE_STD_ALLOCATORS
1431 _RopeLeaf* __space = _LAllocator(__a).allocate(1);
1432 # else
1433 _RopeLeaf* __space = _L_allocate(1);
1434 # endif
1435 return new(__space) _RopeLeaf(__s, __size, __a);
1436 }
1437
1438 static _RopeConcatenation* _S_new_RopeConcatenation(
1439 _RopeRep* __left, _RopeRep* __right,
1440 allocator_type __a)
1441 {
1442 # ifdef __STL_USE_STD_ALLOCATORS
1443 _RopeConcatenation* __space = _CAllocator(__a).allocate(1);
1444 # else
1445 _RopeConcatenation* __space = _C_allocate(1);
1446 # endif
1447 return new(__space) _RopeConcatenation(__left, __right, __a);
1448 }
1449
1450 static _RopeFunction* _S_new_RopeFunction(char_producer<_CharT>* __f,
1451 size_t __size, bool __d, allocator_type __a)
1452 {
1453 # ifdef __STL_USE_STD_ALLOCATORS
1454 _RopeFunction* __space = _FAllocator(__a).allocate(1);
1455 # else
1456 _RopeFunction* __space = _F_allocate(1);
1457 # endif
1458 return new(__space) _RopeFunction(__f, __size, __d, __a);
1459 }
1460
1461 static _RopeSubstring* _S_new_RopeSubstring(
1462 _Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s,
1463 size_t __l, allocator_type __a)
1464 {
1465 # ifdef __STL_USE_STD_ALLOCATORS
1466 _RopeSubstring* __space = _SAllocator(__a).allocate(1);
1467 # else
1468 _RopeSubstring* __space = _S_allocate(1);
1469 # endif
1470 return new(__space) _RopeSubstring(__b, __s, __l, __a);
1471 }
1472
1473 # ifdef __STL_USE_STD_ALLOCATORS
1474 static
1475 _RopeLeaf* _S_RopeLeaf_from_unowned_char_ptr(const _CharT *__s,
1476 size_t __size, allocator_type __a)
1477 # define __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __size, __a) \
1478 _S_RopeLeaf_from_unowned_char_ptr(__s, __size, __a)
1479 # else
1480 static
1481 _RopeLeaf* _S_RopeLeaf_from_unowned_char_ptr2(const _CharT* __s,
1482 size_t __size)
1483 # define __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __size, __a) \
1484 _S_RopeLeaf_from_unowned_char_ptr2(__s, __size)
1485 # endif
1486 {
1487 if (0 == __size) return 0;
1488 # ifdef __STL_USE_STD_ALLOCATORS
1489 _CharT* __buf = __a.allocate(_S_rounded_up_size(__size));
1490 # else
1491 _CharT* __buf = _Data_allocate(_S_rounded_up_size(__size));
1492 allocator_type __a = allocator_type();
1493 # endif
1494
1495 uninitialized_copy_n(__s, __size, __buf);
1496 _S_cond_store_eos(__buf[__size]);
1497 __STL_TRY {
1498 return _S_new_RopeLeaf(__buf, __size, __a);
1499 }
1500 __STL_UNWIND(_RopeRep::__STL_FREE_STRING(__buf, __size, __a))
1501 }
1502
1503
1504 // Concatenation of nonempty strings.
1505 // Always builds a concatenation node.
1506 // Rebalances if the result is too deep.
1507 // Result has refcount 1.
1508 // Does not increment left and right ref counts even though
1509 // they are referenced.
1510 static _RopeRep*
1511 _S_tree_concat(_RopeRep* __left, _RopeRep* __right);
1512
1513 // Concatenation helper functions
1514 static _RopeLeaf*
1515 _S_leaf_concat_char_iter(_RopeLeaf* __r,
1516 const _CharT* __iter, size_t __slen);
1517 // Concatenate by copying leaf.
1518 // should take an arbitrary iterator
1519 // result has refcount 1.
1520 # ifndef __GC
1521 static _RopeLeaf* _S_destr_leaf_concat_char_iter
1522 (_RopeLeaf* __r, const _CharT* __iter, size_t __slen);
1523 // A version that potentially clobbers __r if __r->_M_refcount == 1.
1524 # endif
1525
1526 // A helper function for exponentiating strings.
1527 // This uses a nonstandard refcount convention.
1528 // The result has refcount 0.
1529 struct _Concat_fn
1530 : public binary_function<rope<_CharT,_Alloc>,
1531 rope<_CharT,_Alloc>,
1532 rope<_CharT,_Alloc> > {
1533 rope operator() (const rope& __x, const rope& __y) {
1534 return __x + __y;
1535 }
1536 };
1537
1538 // Needed by the call to "power" used to build ropes
1539 // consisting of n copies of a character.
1540 friend rope identity_element(_Concat_fn)
1541 { return rope<_CharT,_Alloc>(); }
1542
1543 static size_t _S_char_ptr_len(const _CharT* __s);
1544 // slightly generalized strlen
1545
1546 rope(_RopeRep* __t, const allocator_type& __a = allocator_type())
1547 : _Base(__t,__a) { }
1548
1549
1550 // Copy __r to the _CharT buffer.
1551 // Returns __buffer + __r->_M_size.
1552 // Assumes that buffer is uninitialized.
1553 static _CharT* _S_flatten(_RopeRep* __r, _CharT* __buffer);
1554
1555 // Again, with explicit starting position and length.
1556 // Assumes that buffer is uninitialized.
1557 static _CharT* _S_flatten(_RopeRep* __r,
1558 size_t __start, size_t __len,
1559 _CharT* __buffer);
1560
1561 static const unsigned long
1562 _S_min_len[_RopeRep::_S_max_rope_depth + 1];
1563
1564 static bool _S_is_balanced(_RopeRep* __r)
1565 { return (__r->_M_size >= _S_min_len[__r->_M_depth]); }
1566
1567 static bool _S_is_almost_balanced(_RopeRep* __r)
1568 { return (__r->_M_depth == 0 ||
1569 __r->_M_size >= _S_min_len[__r->_M_depth - 1]); }
1570
1571 static bool _S_is_roughly_balanced(_RopeRep* __r)
1572 { return (__r->_M_depth <= 1 ||
1573 __r->_M_size >= _S_min_len[__r->_M_depth - 2]); }
1574
1575 // Assumes the result is not empty.
1576 static _RopeRep* _S_concat_and_set_balanced(_RopeRep* __left,
1577 _RopeRep* __right)
1578 {
1579 _RopeRep* __result = _S_concat(__left, __right);
1580 if (_S_is_balanced(__result)) __result->_M_is_balanced = true;
1581 return __result;
1582 }
1583
1584 // The basic rebalancing operation. Logically copies the
1585 // rope. The result has refcount of 1. The client will
1586 // usually decrement the reference count of __r.
1587 // The result is within height 2 of balanced by the above
1588 // definition.
1589 static _RopeRep* _S_balance(_RopeRep* __r);
1590
1591 // Add all unbalanced subtrees to the forest of balanceed trees.
1592 // Used only by balance.
1593 static void _S_add_to_forest(_RopeRep*__r, _RopeRep** __forest);
1594
1595 // Add __r to forest, assuming __r is already balanced.
1596 static void _S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest);
1597
1598 // Print to stdout, exposing structure
1599 static void _S_dump(_RopeRep* __r, int __indent = 0);
1600
1601 // Return -1, 0, or 1 if __x < __y, __x == __y, or __x > __y resp.
1602 static int _S_compare(const _RopeRep* __x, const _RopeRep* __y);
1603
1604 public:
1605 bool empty() const { return 0 == _M_tree_ptr; }
1606
1607 // Comparison member function. This is public only for those
1608 // clients that need a ternary comparison. Others
1609 // should use the comparison operators below.
1610 int compare(const rope& __y) const {
1611 return _S_compare(_M_tree_ptr, __y._M_tree_ptr);
1612 }
1613
1614 rope(const _CharT* __s, const allocator_type& __a = allocator_type())
1615 : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, _S_char_ptr_len(__s),
1616 __a),__a)
1617 { }
1618
1619 rope(const _CharT* __s, size_t __len,
1620 const allocator_type& __a = allocator_type())
1621 : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __len, __a), __a)
1622 { }
1623
1624 // Should perhaps be templatized with respect to the iterator type
1625 // and use Sequence_buffer. (It should perhaps use sequence_buffer
1626 // even now.)
1627 rope(const _CharT *__s, const _CharT *__e,
1628 const allocator_type& __a = allocator_type())
1629 : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __e - __s, __a), __a)
1630 { }
1631
1632 rope(const const_iterator& __s, const const_iterator& __e,
1633 const allocator_type& __a = allocator_type())
1634 : _Base(_S_substring(__s._M_root, __s._M_current_pos,
1635 __e._M_current_pos), __a)
1636 { }
1637
1638 rope(const iterator& __s, const iterator& __e,
1639 const allocator_type& __a = allocator_type())
1640 : _Base(_S_substring(__s._M_root, __s._M_current_pos,
1641 __e._M_current_pos), __a)
1642 { }
1643
1644 rope(_CharT __c, const allocator_type& __a = allocator_type())
1645 : _Base(__a)
1646 {
1647 _CharT* __buf = _Data_allocate(_S_rounded_up_size(1));
1648
1649 construct(__buf, __c);
1650 __STL_TRY {
1651 _M_tree_ptr = _S_new_RopeLeaf(__buf, 1, __a);
1652 }
1653 __STL_UNWIND(_RopeRep::__STL_FREE_STRING(__buf, 1, __a))
1654 }
1655
1656 rope(size_t __n, _CharT __c,
1657 const allocator_type& __a = allocator_type());
1658
1659 rope(const allocator_type& __a = allocator_type())
1660 : _Base(0, __a) {}
1661
1662 // Construct a rope from a function that can compute its members
1663 rope(char_producer<_CharT> *__fn, size_t __len, bool __delete_fn,
1664 const allocator_type& __a = allocator_type())
1665 : _Base(__a)
1666 {
1667 _M_tree_ptr = (0 == __len) ?
1668 0 : _S_new_RopeFunction(__fn, __len, __delete_fn, __a);
1669 }
1670
1671 rope(const rope& __x, const allocator_type& __a = allocator_type())
1672 : _Base(__x._M_tree_ptr, __a)
1673 {
1674 _S_ref(_M_tree_ptr);
1675 }
1676
1677 ~rope()
1678 {
1679 _S_unref(_M_tree_ptr);
1680 }
1681
1682 rope& operator=(const rope& __x)
1683 {
1684 _RopeRep* __old = _M_tree_ptr;
1685 # ifdef __STL_USE_STD_ALLOCATORS
1686 __stl_assert(get_allocator() == __x.get_allocator());
1687 # endif
1688 _M_tree_ptr = __x._M_tree_ptr;
1689 _S_ref(_M_tree_ptr);
1690 _S_unref(__old);
1691 return(*this);
1692 }
1693
1694 void push_back(_CharT __x)
1695 {
1696 _RopeRep* __old = _M_tree_ptr;
1697 _M_tree_ptr = _S_concat_char_iter(_M_tree_ptr, &__x, 1);
1698 _S_unref(__old);
1699 }
1700
1701 void pop_back()
1702 {
1703 _RopeRep* __old = _M_tree_ptr;
1704 _M_tree_ptr =
1705 _S_substring(_M_tree_ptr, 0, _M_tree_ptr->_M_size - 1);
1706 _S_unref(__old);
1707 }
1708
1709 _CharT back() const
1710 {
1711 return _S_fetch(_M_tree_ptr, _M_tree_ptr->_M_size - 1);
1712 }
1713
1714 void push_front(_CharT __x)
1715 {
1716 _RopeRep* __old = _M_tree_ptr;
1717 _RopeRep* __left =
1718 __STL_ROPE_FROM_UNOWNED_CHAR_PTR(&__x, 1, get_allocator());
1719 __STL_TRY {
1720 _M_tree_ptr = _S_concat(__left, _M_tree_ptr);
1721 _S_unref(__old);
1722 _S_unref(__left);
1723 }
1724 __STL_UNWIND(_S_unref(__left))
1725 }
1726
1727 void pop_front()
1728 {
1729 _RopeRep* __old = _M_tree_ptr;
1730 _M_tree_ptr = _S_substring(_M_tree_ptr, 1, _M_tree_ptr->_M_size);
1731 _S_unref(__old);
1732 }
1733
1734 _CharT front() const
1735 {
1736 return _S_fetch(_M_tree_ptr, 0);
1737 }
1738
1739 void balance()
1740 {
1741 _RopeRep* __old = _M_tree_ptr;
1742 _M_tree_ptr = _S_balance(_M_tree_ptr);
1743 _S_unref(__old);
1744 }
1745
1746 void copy(_CharT* __buffer) const {
1747 destroy(__buffer, __buffer + size());
1748 _S_flatten(_M_tree_ptr, __buffer);
1749 }
1750
1751 // This is the copy function from the standard, but
1752 // with the arguments reordered to make it consistent with the
1753 // rest of the interface.
1754 // Note that this guaranteed not to compile if the draft standard
1755 // order is assumed.
1756 size_type copy(size_type __pos, size_type __n, _CharT* __buffer) const
1757 {
1758 size_t __size = size();
1759 size_t __len = (__pos + __n > __size? __size - __pos : __n);
1760
1761 destroy(__buffer, __buffer + __len);
1762 _S_flatten(_M_tree_ptr, __pos, __len, __buffer);
1763 return __len;
1764 }
1765
1766 // Print to stdout, exposing structure. May be useful for
1767 // performance debugging.
1768 void dump() {
1769 _S_dump(_M_tree_ptr);
1770 }
1771
1772 // Convert to 0 terminated string in new allocated memory.
1773 // Embedded 0s in the input do not terminate the copy.
1774 const _CharT* c_str() const;
1775
1776 // As above, but lso use the flattened representation as the
1777 // the new rope representation.
1778 const _CharT* replace_with_c_str();
1779
1780 // Reclaim memory for the c_str generated flattened string.
1781 // Intentionally undocumented, since it's hard to say when this
1782 // is safe for multiple threads.
1783 void delete_c_str () {
1784 if (0 == _M_tree_ptr) return;
1785 if (_RopeRep::_S_leaf == _M_tree_ptr->_M_tag &&
1786 ((_RopeLeaf*)_M_tree_ptr)->_M_data ==
1787 _M_tree_ptr->_M_c_string) {
1788 // Representation shared
1789 return;
1790 }
1791 # ifndef __GC
1792 _M_tree_ptr->_M_free_c_string();
1793 # endif
1794 _M_tree_ptr->_M_c_string = 0;
1795 }
1796
1797 _CharT operator[] (size_type __pos) const {
1798 return _S_fetch(_M_tree_ptr, __pos);
1799 }
1800
1801 _CharT at(size_type __pos) const {
1802 // if (__pos >= size()) throw out_of_range; // XXX
1803 return (*this)[__pos];
1804 }
1805
1806 const_iterator begin() const {
1807 return(const_iterator(_M_tree_ptr, 0));
1808 }
1809
1810 // An easy way to get a const iterator from a non-const container.
1811 const_iterator const_begin() const {
1812 return(const_iterator(_M_tree_ptr, 0));
1813 }
1814
1815 const_iterator end() const {
1816 return(const_iterator(_M_tree_ptr, size()));
1817 }
1818
1819 const_iterator const_end() const {
1820 return(const_iterator(_M_tree_ptr, size()));
1821 }
1822
1823 size_type size() const {
1824 return(0 == _M_tree_ptr? 0 : _M_tree_ptr->_M_size);
1825 }
1826
1827 size_type length() const {
1828 return size();
1829 }
1830
1831 size_type max_size() const {
1832 return _S_min_len[_RopeRep::_S_max_rope_depth-1] - 1;
1833 // Guarantees that the result can be sufficirntly
1834 // balanced. Longer ropes will probably still work,
1835 // but it's harder to make guarantees.
1836 }
1837
1838 # ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
1839 typedef reverse_iterator<const_iterator> const_reverse_iterator;
1840 # else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
1841 typedef reverse_iterator<const_iterator, value_type, const_reference,
1842 difference_type> const_reverse_iterator;
1843 # endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
1844
1845 const_reverse_iterator rbegin() const {
1846 return const_reverse_iterator(end());
1847 }
1848
1849 const_reverse_iterator const_rbegin() const {
1850 return const_reverse_iterator(end());
1851 }
1852
1853 const_reverse_iterator rend() const {
1854 return const_reverse_iterator(begin());
1855 }
1856
1857 const_reverse_iterator const_rend() const {
1858 return const_reverse_iterator(begin());
1859 }
1860
1861 friend rope<_CharT,_Alloc>
1862 operator+ __STL_NULL_TMPL_ARGS (const rope<_CharT,_Alloc>& __left,
1863 const rope<_CharT,_Alloc>& __right);
1864
1865 friend rope<_CharT,_Alloc>
1866 operator+ __STL_NULL_TMPL_ARGS (const rope<_CharT,_Alloc>& __left,
1867 const _CharT* __right);
1868
1869 friend rope<_CharT,_Alloc>
1870 operator+ __STL_NULL_TMPL_ARGS (const rope<_CharT,_Alloc>& __left,
1871 _CharT __right);
1872
1873 // The symmetric cases are intentionally omitted, since they're presumed
1874 // to be less common, and we don't handle them as well.
1875
1876 // The following should really be templatized.
1877 // The first argument should be an input iterator or
1878 // forward iterator with value_type _CharT.
1879 rope& append(const _CharT* __iter, size_t __n) {
1880 _RopeRep* __result =
1881 _S_destr_concat_char_iter(_M_tree_ptr, __iter, __n);
1882 _S_unref(_M_tree_ptr);
1883 _M_tree_ptr = __result;
1884 return *this;
1885 }
1886
1887 rope& append(const _CharT* __c_string) {
1888 size_t __len = _S_char_ptr_len(__c_string);
1889 append(__c_string, __len);
1890 return(*this);
1891 }
1892
1893 rope& append(const _CharT* __s, const _CharT* __e) {
1894 _RopeRep* __result =
1895 _S_destr_concat_char_iter(_M_tree_ptr, __s, __e - __s);
1896 _S_unref(_M_tree_ptr);
1897 _M_tree_ptr = __result;
1898 return *this;
1899 }
1900
1901 rope& append(const_iterator __s, const_iterator __e) {
1902 __stl_assert(__s._M_root == __e._M_root);
1903 # ifdef __STL_USE_STD_ALLOCATORS
1904 __stl_assert(get_allocator() == __s._M_root->get_allocator());
1905 # endif
1906 _Self_destruct_ptr __appendee(_S_substring(
1907 __s._M_root, __s._M_current_pos, __e._M_current_pos));
1908 _RopeRep* __result =
1909 _S_concat(_M_tree_ptr, (_RopeRep*)__appendee);
1910 _S_unref(_M_tree_ptr);
1911 _M_tree_ptr = __result;
1912 return *this;
1913 }
1914
1915 rope& append(_CharT __c) {
1916 _RopeRep* __result =
1917 _S_destr_concat_char_iter(_M_tree_ptr, &__c, 1);
1918 _S_unref(_M_tree_ptr);
1919 _M_tree_ptr = __result;
1920 return *this;
1921 }
1922
1923 rope& append() { return append(_CharT()); } // XXX why?
1924
1925 rope& append(const rope& __y) {
1926 # ifdef __STL_USE_STD_ALLOCATORS
1927 __stl_assert(__y.get_allocator() == get_allocator());
1928 # endif
1929 _RopeRep* __result = _S_concat(_M_tree_ptr, __y._M_tree_ptr);
1930 _S_unref(_M_tree_ptr);
1931 _M_tree_ptr = __result;
1932 return *this;
1933 }
1934
1935 rope& append(size_t __n, _CharT __c) {
1936 rope<_CharT,_Alloc> __last(__n, __c);
1937 return append(__last);
1938 }
1939
1940 void swap(rope& __b) {
1941 # ifdef __STL_USE_STD_ALLOCATORS
1942 __stl_assert(get_allocator() == __b.get_allocator());
1943 # endif
1944 _RopeRep* __tmp = _M_tree_ptr;
1945 _M_tree_ptr = __b._M_tree_ptr;
1946 __b._M_tree_ptr = __tmp;
1947 }
1948
1949
1950 protected:
1951 // Result is included in refcount.
1952 static _RopeRep* replace(_RopeRep* __old, size_t __pos1,
1953 size_t __pos2, _RopeRep* __r) {
1954 if (0 == __old) { _S_ref(__r); return __r; }
1955 _Self_destruct_ptr __left(
1956 _S_substring(__old, 0, __pos1));
1957 _Self_destruct_ptr __right(
1958 _S_substring(__old, __pos2, __old->_M_size));
1959 _RopeRep* __result;
1960
1961 # ifdef __STL_USE_STD_ALLOCATORS
1962 __stl_assert(__old->get_allocator() == __r->get_allocator());
1963 # endif
1964 if (0 == __r) {
1965 __result = _S_concat(__left, __right);
1966 } else {
1967 _Self_destruct_ptr __left_result(_S_concat(__left, __r));
1968 __result = _S_concat(__left_result, __right);
1969 }
1970 return __result;
1971 }
1972
1973 public:
1974 void insert(size_t __p, const rope& __r) {
1975 _RopeRep* __result =
1976 replace(_M_tree_ptr, __p, __p, __r._M_tree_ptr);
1977 # ifdef __STL_USE_STD_ALLOCATORS
1978 __stl_assert(get_allocator() == __r.get_allocator());
1979 # endif
1980 _S_unref(_M_tree_ptr);
1981 _M_tree_ptr = __result;
1982 }
1983
1984 void insert(size_t __p, size_t __n, _CharT __c) {
1985 rope<_CharT,_Alloc> __r(__n,__c);
1986 insert(__p, __r);
1987 }
1988
1989 void insert(size_t __p, const _CharT* __i, size_t __n) {
1990 _Self_destruct_ptr __left(_S_substring(_M_tree_ptr, 0, __p));
1991 _Self_destruct_ptr __right(_S_substring(_M_tree_ptr, __p, size()));
1992 _Self_destruct_ptr __left_result(
1993 _S_concat_char_iter(__left, __i, __n));
1994 _RopeRep* __result = _S_concat(__left_result, __right);
1995 _S_unref(_M_tree_ptr);
1996 _M_tree_ptr = __result;
1997 }
1998
1999 void insert(size_t __p, const _CharT* __c_string) {
2000 insert(__p, __c_string, _S_char_ptr_len(__c_string));
2001 }
2002
2003 void insert(size_t __p, _CharT __c) {
2004 insert(__p, &__c, 1);
2005 }
2006
2007 void insert(size_t __p) {
2008 _CharT __c = _CharT();
2009 insert(__p, &__c, 1);
2010 }
2011
2012 void insert(size_t __p, const _CharT* __i, const _CharT* __j) {
2013 rope __r(__i, __j);
2014 insert(__p, __r);
2015 }
2016
2017 void insert(size_t __p, const const_iterator& __i,
2018 const const_iterator& __j) {
2019 rope __r(__i, __j);
2020 insert(__p, __r);
2021 }
2022
2023 void insert(size_t __p, const iterator& __i,
2024 const iterator& __j) {
2025 rope __r(__i, __j);
2026 insert(__p, __r);
2027 }
2028
2029 // (position, length) versions of replace operations:
2030
2031 void replace(size_t __p, size_t __n, const rope& __r) {
2032 _RopeRep* __result =
2033 replace(_M_tree_ptr, __p, __p + __n, __r._M_tree_ptr);
2034 _S_unref(_M_tree_ptr);
2035 _M_tree_ptr = __result;
2036 }
2037
2038 void replace(size_t __p, size_t __n,
2039 const _CharT* __i, size_t __i_len) {
2040 rope __r(__i, __i_len);
2041 replace(__p, __n, __r);
2042 }
2043
2044 void replace(size_t __p, size_t __n, _CharT __c) {
2045 rope __r(__c);
2046 replace(__p, __n, __r);
2047 }
2048
2049 void replace(size_t __p, size_t __n, const _CharT* __c_string) {
2050 rope __r(__c_string);
2051 replace(__p, __n, __r);
2052 }
2053
2054 void replace(size_t __p, size_t __n,
2055 const _CharT* __i, const _CharT* __j) {
2056 rope __r(__i, __j);
2057 replace(__p, __n, __r);
2058 }
2059
2060 void replace(size_t __p, size_t __n,
2061 const const_iterator& __i, const const_iterator& __j) {
2062 rope __r(__i, __j);
2063 replace(__p, __n, __r);
2064 }
2065
2066 void replace(size_t __p, size_t __n,
2067 const iterator& __i, const iterator& __j) {
2068 rope __r(__i, __j);
2069 replace(__p, __n, __r);
2070 }
2071
2072 // Single character variants:
2073 void replace(size_t __p, _CharT __c) {
2074 iterator __i(this, __p);
2075 *__i = __c;
2076 }
2077
2078 void replace(size_t __p, const rope& __r) {
2079 replace(__p, 1, __r);
2080 }
2081
2082 void replace(size_t __p, const _CharT* __i, size_t __i_len) {
2083 replace(__p, 1, __i, __i_len);
2084 }
2085
2086 void replace(size_t __p, const _CharT* __c_string) {
2087 replace(__p, 1, __c_string);
2088 }
2089
2090 void replace(size_t __p, const _CharT* __i, const _CharT* __j) {
2091 replace(__p, 1, __i, __j);
2092 }
2093
2094 void replace(size_t __p, const const_iterator& __i,
2095 const const_iterator& __j) {
2096 replace(__p, 1, __i, __j);
2097 }
2098
2099 void replace(size_t __p, const iterator& __i,
2100 const iterator& __j) {
2101 replace(__p, 1, __i, __j);
2102 }
2103
2104 // Erase, (position, size) variant.
2105 void erase(size_t __p, size_t __n) {
2106 _RopeRep* __result = replace(_M_tree_ptr, __p, __p + __n, 0);
2107 _S_unref(_M_tree_ptr);
2108 _M_tree_ptr = __result;
2109 }
2110
2111 // Erase, single character
2112 void erase(size_t __p) {
2113 erase(__p, __p + 1);
2114 }
2115
2116 // Insert, iterator variants.
2117 iterator insert(const iterator& __p, const rope& __r)
2118 { insert(__p.index(), __r); return __p; }
2119 iterator insert(const iterator& __p, size_t __n, _CharT __c)
2120 { insert(__p.index(), __n, __c); return __p; }
2121 iterator insert(const iterator& __p, _CharT __c)
2122 { insert(__p.index(), __c); return __p; }
2123 iterator insert(const iterator& __p )
2124 { insert(__p.index()); return __p; }
2125 iterator insert(const iterator& __p, const _CharT* c_string)
2126 { insert(__p.index(), c_string); return __p; }
2127 iterator insert(const iterator& __p, const _CharT* __i, size_t __n)
2128 { insert(__p.index(), __i, __n); return __p; }
2129 iterator insert(const iterator& __p, const _CharT* __i,
2130 const _CharT* __j)
2131 { insert(__p.index(), __i, __j); return __p; }
2132 iterator insert(const iterator& __p,
2133 const const_iterator& __i, const const_iterator& __j)
2134 { insert(__p.index(), __i, __j); return __p; }
2135 iterator insert(const iterator& __p,
2136 const iterator& __i, const iterator& __j)
2137 { insert(__p.index(), __i, __j); return __p; }
2138
2139 // Replace, range variants.
2140 void replace(const iterator& __p, const iterator& __q,
2141 const rope& __r)
2142 { replace(__p.index(), __q.index() - __p.index(), __r); }
2143 void replace(const iterator& __p, const iterator& __q, _CharT __c)
2144 { replace(__p.index(), __q.index() - __p.index(), __c); }
2145 void replace(const iterator& __p, const iterator& __q,
2146 const _CharT* __c_string)
2147 { replace(__p.index(), __q.index() - __p.index(), __c_string); }
2148 void replace(const iterator& __p, const iterator& __q,
2149 const _CharT* __i, size_t __n)
2150 { replace(__p.index(), __q.index() - __p.index(), __i, __n); }
2151 void replace(const iterator& __p, const iterator& __q,
2152 const _CharT* __i, const _CharT* __j)
2153 { replace(__p.index(), __q.index() - __p.index(), __i, __j); }
2154 void replace(const iterator& __p, const iterator& __q,
2155 const const_iterator& __i, const const_iterator& __j)
2156 { replace(__p.index(), __q.index() - __p.index(), __i, __j); }
2157 void replace(const iterator& __p, const iterator& __q,
2158 const iterator& __i, const iterator& __j)
2159 { replace(__p.index(), __q.index() - __p.index(), __i, __j); }
2160
2161 // Replace, iterator variants.
2162 void replace(const iterator& __p, const rope& __r)
2163 { replace(__p.index(), __r); }
2164 void replace(const iterator& __p, _CharT __c)
2165 { replace(__p.index(), __c); }
2166 void replace(const iterator& __p, const _CharT* __c_string)
2167 { replace(__p.index(), __c_string); }
2168 void replace(const iterator& __p, const _CharT* __i, size_t __n)
2169 { replace(__p.index(), __i, __n); }
2170 void replace(const iterator& __p, const _CharT* __i, const _CharT* __j)
2171 { replace(__p.index(), __i, __j); }
2172 void replace(const iterator& __p, const_iterator __i,
2173 const_iterator __j)
2174 { replace(__p.index(), __i, __j); }
2175 void replace(const iterator& __p, iterator __i, iterator __j)
2176 { replace(__p.index(), __i, __j); }
2177
2178 // Iterator and range variants of erase
2179 iterator erase(const iterator& __p, const iterator& __q) {
2180 size_t __p_index = __p.index();
2181 erase(__p_index, __q.index() - __p_index);
2182 return iterator(this, __p_index);
2183 }
2184 iterator erase(const iterator& __p) {
2185 size_t __p_index = __p.index();
2186 erase(__p_index, 1);
2187 return iterator(this, __p_index);
2188 }
2189
2190 rope substr(size_t __start, size_t __len = 1) const {
2191 return rope<_CharT,_Alloc>(
2192 _S_substring(_M_tree_ptr, __start, __start + __len));
2193 }
2194
2195 rope substr(iterator __start, iterator __end) const {
2196 return rope<_CharT,_Alloc>(
2197 _S_substring(_M_tree_ptr, __start.index(), __end.index()));
2198 }
2199
2200 rope substr(iterator __start) const {
2201 size_t __pos = __start.index();
2202 return rope<_CharT,_Alloc>(
2203 _S_substring(_M_tree_ptr, __pos, __pos + 1));
2204 }
2205
2206 rope substr(const_iterator __start, const_iterator __end) const {
2207 // This might eventually take advantage of the cache in the
2208 // iterator.
2209 return rope<_CharT,_Alloc>(
2210 _S_substring(_M_tree_ptr, __start.index(), __end.index()));
2211 }
2212
2213 rope<_CharT,_Alloc> substr(const_iterator __start) {
2214 size_t __pos = __start.index();
2215 return rope<_CharT,_Alloc>(
2216 _S_substring(_M_tree_ptr, __pos, __pos + 1));
2217 }
2218
2219 static const size_type npos;
2220
2221 size_type find(_CharT __c, size_type __pos = 0) const;
2222 size_type find(_CharT* __s, size_type __pos = 0) const {
2223 size_type __result_pos;
2224 const_iterator __result = search(const_begin() + __pos, const_end(),
2225 __s, __s + _S_char_ptr_len(__s));
2226 __result_pos = __result.index();
2227 # ifndef __STL_OLD_ROPE_SEMANTICS
2228 if (__result_pos == size()) __result_pos = npos;
2229 # endif
2230 return __result_pos;
2231 }
2232
2233 iterator mutable_begin() {
2234 return(iterator(this, 0));
2235 }
2236
2237 iterator mutable_end() {
2238 return(iterator(this, size()));
2239 }
2240
2241 # ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
2242 typedef reverse_iterator<iterator> reverse_iterator;
2243 # else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
2244 typedef reverse_iterator<iterator, value_type, reference,
2245 difference_type> reverse_iterator;
2246 # endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
2247
2248 reverse_iterator mutable_rbegin() {
2249 return reverse_iterator(mutable_end());
2250 }
2251
2252 reverse_iterator mutable_rend() {
2253 return reverse_iterator(mutable_begin());
2254 }
2255
2256 reference mutable_reference_at(size_type __pos) {
2257 return reference(this, __pos);
2258 }
2259
2260 # ifdef __STD_STUFF
2261 reference operator[] (size_type __pos) {
2262 return _char_ref_proxy(this, __pos);
2263 }
2264
2265 reference at(size_type __pos) {
2266 // if (__pos >= size()) throw out_of_range; // XXX
2267 return (*this)[__pos];
2268 }
2269
2270 void resize(size_type __n, _CharT __c) {}
2271 void resize(size_type __n) {}
2272 void reserve(size_type __res_arg = 0) {}
2273 size_type capacity() const {
2274 return max_size();
2275 }
2276
2277 // Stuff below this line is dangerous because it's error prone.
2278 // I would really like to get rid of it.
2279 // copy function with funny arg ordering.
2280 size_type copy(_CharT* __buffer, size_type __n,
2281 size_type __pos = 0) const {
2282 return copy(__pos, __n, __buffer);
2283 }
2284
2285 iterator end() { return mutable_end(); }
2286
2287 iterator begin() { return mutable_begin(); }
2288
2289 reverse_iterator rend() { return mutable_rend(); }
2290
2291 reverse_iterator rbegin() { return mutable_rbegin(); }
2292
2293 # else
2294
2295 const_iterator end() { return const_end(); }
2296
2297 const_iterator begin() { return const_begin(); }
2298
2299 const_reverse_iterator rend() { return const_rend(); }
2300
2301 const_reverse_iterator rbegin() { return const_rbegin(); }
2302
2303 # endif
2304
2305 };
2306
2307 template <class _CharT, class _Alloc>
2308 const rope<_CharT, _Alloc>::size_type rope<_CharT, _Alloc>::npos =
2309 (size_type)(-1);
2310
2311 template <class _CharT, class _Alloc>
2312 inline bool operator== (const _Rope_const_iterator<_CharT,_Alloc>& __x,
2313 const _Rope_const_iterator<_CharT,_Alloc>& __y) {
2314 return (__x._M_current_pos == __y._M_current_pos &&
2315 __x._M_root == __y._M_root);
2316 }
2317
2318 template <class _CharT, class _Alloc>
2319 inline bool operator< (const _Rope_const_iterator<_CharT,_Alloc>& __x,
2320 const _Rope_const_iterator<_CharT,_Alloc>& __y) {
2321 return (__x._M_current_pos < __y._M_current_pos);
2322 }
2323
2324 template <class _CharT, class _Alloc>
2325 inline ptrdiff_t operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x,
2326 const _Rope_const_iterator<_CharT,_Alloc>& __y) {
2327 return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos;
2328 }
2329
2330 template <class _CharT, class _Alloc>
2331 inline _Rope_const_iterator<_CharT,_Alloc>
2332 operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) {
2333 return _Rope_const_iterator<_CharT,_Alloc>(
2334 __x._M_root, __x._M_current_pos - __n);
2335 }
2336
2337 template <class _CharT, class _Alloc>
2338 inline _Rope_const_iterator<_CharT,_Alloc>
2339 operator+(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) {
2340 return _Rope_const_iterator<_CharT,_Alloc>(
2341 __x._M_root, __x._M_current_pos + __n);
2342 }
2343
2344 template <class _CharT, class _Alloc>
2345 inline _Rope_const_iterator<_CharT,_Alloc>
2346 operator+(ptrdiff_t __n, const _Rope_const_iterator<_CharT,_Alloc>& __x) {
2347 return _Rope_const_iterator<_CharT,_Alloc>(
2348 __x._M_root, __x._M_current_pos + __n);
2349 }
2350
2351 template <class _CharT, class _Alloc>
2352 inline bool operator== (const _Rope_iterator<_CharT,_Alloc>& __x,
2353 const _Rope_iterator<_CharT,_Alloc>& __y) {
2354 return (__x._M_current_pos == __y._M_current_pos &&
2355 __x._M_root_rope == __y._M_root_rope);
2356 }
2357
2358 template <class _CharT, class _Alloc>
2359 inline bool operator< (const _Rope_iterator<_CharT,_Alloc>& __x,
2360 const _Rope_iterator<_CharT,_Alloc>& __y) {
2361 return (__x._M_current_pos < __y._M_current_pos);
2362 }
2363
2364 template <class _CharT, class _Alloc>
2365 inline ptrdiff_t operator-(const _Rope_iterator<_CharT,_Alloc>& __x,
2366 const _Rope_iterator<_CharT,_Alloc>& __y) {
2367 return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos;
2368 }
2369
2370 template <class _CharT, class _Alloc>
2371 inline _Rope_iterator<_CharT,_Alloc>
2372 operator-(const _Rope_iterator<_CharT,_Alloc>& __x,
2373 ptrdiff_t __n) {
2374 return _Rope_iterator<_CharT,_Alloc>(
2375 __x._M_root_rope, __x._M_current_pos - __n);
2376 }
2377
2378 template <class _CharT, class _Alloc>
2379 inline _Rope_iterator<_CharT,_Alloc>
2380 operator+(const _Rope_iterator<_CharT,_Alloc>& __x,
2381 ptrdiff_t __n) {
2382 return _Rope_iterator<_CharT,_Alloc>(
2383 __x._M_root_rope, __x._M_current_pos + __n);
2384 }
2385
2386 template <class _CharT, class _Alloc>
2387 inline _Rope_iterator<_CharT,_Alloc>
2388 operator+(ptrdiff_t __n, const _Rope_iterator<_CharT,_Alloc>& __x) {
2389 return _Rope_iterator<_CharT,_Alloc>(
2390 __x._M_root_rope, __x._M_current_pos + __n);
2391 }
2392
2393 template <class _CharT, class _Alloc>
2394 inline
2395 rope<_CharT,_Alloc>
2396 operator+ (const rope<_CharT,_Alloc>& __left,
2397 const rope<_CharT,_Alloc>& __right)
2398 {
2399 # ifdef __STL_USE_STD_ALLOCATORS
2400 __stl_assert(__left.get_allocator() == __right.get_allocator());
2401 # endif
2402 return rope<_CharT,_Alloc>(
2403 rope<_CharT,_Alloc>::_S_concat(__left._M_tree_ptr, __right._M_tree_ptr));
2404 // Inlining this should make it possible to keep __left and
2405 // __right in registers.
2406 }
2407
2408 template <class _CharT, class _Alloc>
2409 inline
2410 rope<_CharT,_Alloc>&
2411 operator+= (rope<_CharT,_Alloc>& __left,
2412 const rope<_CharT,_Alloc>& __right)
2413 {
2414 __left.append(__right);
2415 return __left;
2416 }
2417
2418 template <class _CharT, class _Alloc>
2419 inline
2420 rope<_CharT,_Alloc>
2421 operator+ (const rope<_CharT,_Alloc>& __left,
2422 const _CharT* __right) {
2423 size_t __rlen = rope<_CharT,_Alloc>::_S_char_ptr_len(__right);
2424 return rope<_CharT,_Alloc>(
2425 rope<_CharT,_Alloc>::_S_concat_char_iter(
2426 __left._M_tree_ptr, __right, __rlen));
2427 }
2428
2429 template <class _CharT, class _Alloc>
2430 inline
2431 rope<_CharT,_Alloc>&
2432 operator+= (rope<_CharT,_Alloc>& __left,
2433 const _CharT* __right) {
2434 __left.append(__right);
2435 return __left;
2436 }
2437
2438 template <class _CharT, class _Alloc>
2439 inline
2440 rope<_CharT,_Alloc>
2441 operator+ (const rope<_CharT,_Alloc>& __left, _CharT __right) {
2442 return rope<_CharT,_Alloc>(
2443 rope<_CharT,_Alloc>::_S_concat_char_iter(
2444 __left._M_tree_ptr, &__right, 1));
2445 }
2446
2447 template <class _CharT, class _Alloc>
2448 inline
2449 rope<_CharT,_Alloc>&
2450 operator+= (rope<_CharT,_Alloc>& __left, _CharT __right) {
2451 __left.append(__right);
2452 return __left;
2453 }
2454
2455 template <class _CharT, class _Alloc>
2456 bool
2457 operator< (const rope<_CharT,_Alloc>& __left,
2458 const rope<_CharT,_Alloc>& __right) {
2459 return __left.compare(__right) < 0;
2460 }
2461
2462 template <class _CharT, class _Alloc>
2463 bool
2464 operator== (const rope<_CharT,_Alloc>& __left,
2465 const rope<_CharT,_Alloc>& __right) {
2466 return __left.compare(__right) == 0;
2467 }
2468
2469 template <class _CharT, class _Alloc>
2470 inline bool operator== (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
2471 const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) {
2472 return (__x._M_pos == __y._M_pos && __x._M_root == __y._M_root);
2473 }
2474
2475 template<class _CharT, class _Alloc>
2476 ostream& operator<< (ostream& __o, const rope<_CharT,_Alloc>& __r);
2477
2478 typedef rope<char> crope;
2479 typedef rope<wchar_t> wrope;
2480
2481 inline crope::reference __mutable_reference_at(crope& __c, size_t __i)
2482 {
2483 return __c.mutable_reference_at(__i);
2484 }
2485
2486 inline wrope::reference __mutable_reference_at(wrope& __c, size_t __i)
2487 {
2488 return __c.mutable_reference_at(__i);
2489 }
2490
2491 #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
2492
2493 template <class _CharT, class _Alloc>
2494 inline void swap(rope<_CharT,_Alloc>& __x, rope<_CharT,_Alloc>& __y) {
2495 __x.swap(__y);
2496 }
2497
2498 #else
2499
2500 inline void swap(crope __x, crope __y) { __x.swap(__y); }
2501 inline void swap(wrope __x, wrope __y) { __x.swap(__y); }
2502
2503 #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
2504
2505 // Hash functions should probably be revisited later:
2506 __STL_TEMPLATE_NULL struct hash<crope>
2507 {
2508 size_t operator()(const crope& __str) const
2509 {
2510 size_t __size = __str.size();
2511
2512 if (0 == __size) return 0;
2513 return 13*__str[0] + 5*__str[__size - 1] + __size;
2514 }
2515 };
2516
2517
2518 __STL_TEMPLATE_NULL struct hash<wrope>
2519 {
2520 size_t operator()(const wrope& __str) const
2521 {
2522 size_t __size = __str.size();
2523
2524 if (0 == __size) return 0;
2525 return 13*__str[0] + 5*__str[__size - 1] + __size;
2526 }
2527 };
2528
2529 #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
2530 #pragma reset woff 1174
2531 #endif
2532
2533 __STL_END_NAMESPACE
2534
2535 # include <ropeimpl.h>
2536
2537 # endif /* __SGI_STL_INTERNAL_ROPE_H */
2538
2539 // Local Variables:
2540 // mode:C++
2541 // End:
2542