xref: /haiku/src/system/libroot/posix/stdlib/strtod.c (revision 372b901dfeada686207d00bbcce456f748bbda12)
1 /* [zooey]:
2  * This implementation is broken, as e.g. strtod("1.7E+064", ...) yields an
3  * incorrect (inaccurate) result.
4  * For libroot, we use the glibc version instead.
5  * This file is still used in the kernel, however, since I didn't dare
6  * introducing a glibc-based source into the kernel.
7  * So, currently we have to live with the fact that strtod() in our kernel
8  * gives somewhat inaccurate results.
9  */
10 
11 /*-
12  * Copyright (c) 1993
13  *	The Regents of the University of California.  All rights reserved.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  */
43 
44 
45 /****************************************************************
46  *
47  * The author of this software is David M. Gay.
48  *
49  * Copyright (c) 1991 by AT&T.
50  *
51  * Permission to use, copy, modify, and distribute this software for any
52  * purpose without fee is hereby granted, provided that this entire notice
53  * is included in all copies of any software which is or includes a copy
54  * or modification of this software and in all copies of the supporting
55  * documentation for such software.
56  *
57  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
58  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
59  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
60  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
61  *
62  ***************************************************************/
63 
64 /* Please send bug reports to
65 	David M. Gay
66 	AT&T Bell Laboratories, Room 2C-463
67 	600 Mountain Avenue
68 	Murray Hill, NJ 07974-2070
69 	U.S.A.
70 	dmg@research.att.com or research!dmg
71  */
72 
73 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
74  *
75  * This strtod returns a nearest machine number to the input decimal
76  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
77  * broken by the IEEE round-even rule.  Otherwise ties are broken by
78  * biased rounding (add half and chop).
79  *
80  * Inspired loosely by William D. Clinger's paper "How to Read Floating
81  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
82  *
83  * Modifications:
84  *
85  *	1. We only require IEEE, IBM, or VAX double-precision
86  *		arithmetic (not IEEE double-extended).
87  *	2. We get by with floating-point arithmetic in a case that
88  *		Clinger missed -- when we're computing d * 10^n
89  *		for a small integer d and the integer n is not too
90  *		much larger than 22 (the maximum integer k for which
91  *		we can represent 10^k exactly), we may be able to
92  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
93  *	3. Rather than a bit-at-a-time adjustment of the binary
94  *		result in the hard case, we use floating-point
95  *		arithmetic to determine the adjustment to within
96  *		one bit; only in really hard cases do we need to
97  *		compute a second residual.
98  *	4. Because of 3., we don't need a large table of powers of 10
99  *		for ten-to-e (just some small tables, e.g. of 10^k
100  *		for 0 <= k <= 22).
101  */
102 
103 /*
104  * #define Sudden_Underflow for IEEE-format machines without gradual
105  *	underflow (i.e., that flush to zero on underflow).
106  * #define IBM for IBM mainframe-style floating-point arithmetic.
107  * #define VAX for VAX-style floating-point arithmetic.
108  * #define Unsigned_Shifts if >> does treats its left operand as unsigned.
109  * #define No_leftright to omit left-right logic in fast floating-point
110  *	computation of dtoa.
111  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
112  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
113  *	that use extended-precision instructions to compute rounded
114  *	products and quotients) with IBM.
115  * #define ROUND_BIASED for IEEE-format with biased rounding.
116  * #define Inaccurate_Divide for IEEE-format with correctly rounded
117  *	products but inaccurate quotients, e.g., for Intel i860.
118  * #define Just_16 to store 16 bits per 32-bit Long when doing high-precision
119  *	integer arithmetic.  Whether this speeds things up or slows things
120  *	down depends on the machine and the number being converted.
121  * #define Bad_float_h if your system lacks a float.h or if it does not
122  *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
123  *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
124  */
125 
126 #if defined(__i386__) || defined(__ia64__) || defined(__alpha__) || \
127     defined(__sparc64__) || defined(__powerpc__) || defined(__POWERPC__) || \
128     defined(__m68k__) || defined(__M68K__) || defined(__arm__) || \
129     defined(__mipsel__) || defined(__MIPSEL__) || defined(__x86_64__) || \
130     defined(__riscv) || defined(__aarch64__) || defined(__arm64__)
131 #	include <sys/types.h>
132 #	if BYTE_ORDER == BIG_ENDIAN
133 #		define IEEE_BIG_ENDIAN
134 #	else
135 #		define IEEE_LITTLE_ENDIAN
136 #	endif
137 #endif /* defined(__i386__) ... */
138 
139 #include <inttypes.h>
140 
141 typedef	int32_t   Long;
142 typedef	u_int32_t ULong;
143 
144 #ifdef DEBUG
145 #	if	_KERNEL_MODE
146 #		include <KernelExport.h>
147 #		define Bug(x) {dprintf("%s\n", x);}
148 #	else
149 #		include <stdio.h>
150 #		define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
151 #	endif
152 #endif
153 
154 #include <locale.h>
155 #include <stdlib.h>
156 #include <string.h>
157 
158 #include <errno.h>
159 #include <ctype.h>
160 
161 #include <errno_private.h>
162 
163 #ifdef Bad_float_h
164 #undef __STDC__
165 #ifdef IEEE_BIG_ENDIAN
166 #	define IEEE_ARITHMETIC
167 #endif
168 #ifdef IEEE_LITTLE_ENDIAN
169 #	define IEEE_ARITHMETIC
170 #endif
171 #ifdef IEEE_ARITHMETIC
172 #	define DBL_DIG 15
173 #	define DBL_MAX_10_EXP 308
174 #	define DBL_MAX_EXP 1024
175 #	define FLT_RADIX 2
176 #	define FLT_ROUNDS 1
177 #	define DBL_MAX 1.7976931348623157e+308
178 #endif
179 
180 #ifdef IBM
181 #	define DBL_DIG 16
182 #	define DBL_MAX_10_EXP 75
183 #	define DBL_MAX_EXP 63
184 #	define FLT_RADIX 16
185 #	define FLT_ROUNDS 0
186 #	define DBL_MAX 7.2370055773322621e+75
187 #endif
188 
189 #ifdef VAX
190 #	define DBL_DIG 16
191 #	define DBL_MAX_10_EXP 38
192 #	define DBL_MAX_EXP 127
193 #	define FLT_RADIX 2
194 #	define FLT_ROUNDS 1
195 #	define DBL_MAX 1.7014118346046923e+38
196 #endif
197 
198 #ifndef LONG_MAX
199 #	define LONG_MAX 2147483647
200 #endif
201 #else
202 #	include "float.h"
203 #endif
204 #ifndef __MATH_H__
205 #	include "math.h"
206 #endif
207 
208 #ifdef __cplusplus
209 extern "C" {
210 #endif
211 
212 #ifdef Unsigned_Shifts
213 #	define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;
214 #else
215 #	define Sign_Extend(a,b) /*no-op*/
216 #endif
217 
218 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + \
219     defined(IBM) != 1
220 #error Only one of IEEE_LITTLE_ENDIAN, IEEE_BIG_ENDIAN, VAX, or IBM should be defined.
221 #endif
222 
223 union doubleasulongs {
224 	double x;
225 	ULong w[2];
226 };
227 
228 #ifdef IEEE_LITTLE_ENDIAN
229 #	define word0(x) (((union doubleasulongs *)&x)->w)[1]
230 #	define word1(x) (((union doubleasulongs *)&x)->w)[0]
231 #else
232 #	define word0(x) (((union doubleasulongs *)&x)->w)[0]
233 #	define word1(x) (((union doubleasulongs *)&x)->w)[1]
234 #endif
235 
236 /* The following definition of Storeinc is appropriate for MIPS processors.
237  * An alternative that might be better on some machines is
238  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
239  */
240 #if defined(IEEE_LITTLE_ENDIAN) + defined(VAX)
241 #	define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
242 		((unsigned short *)a)[0] = (unsigned short)c, a++)
243 #else
244 #	define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
245 		((unsigned short *)a)[1] = (unsigned short)c, a++)
246 #endif
247 
248 /* #define P DBL_MANT_DIG */
249 /* Ten_pmax = floor(P*log(2)/log(5)) */
250 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
251 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
252 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
253 
254 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN)
255 #define Exp_shift  20
256 #define Exp_shift1 20
257 #define Exp_msk1    0x100000
258 #define Exp_msk11   0x100000
259 #define Exp_mask  0x7ff00000
260 #define P 53
261 #define Bias 1023
262 #define IEEE_Arith
263 #define Emin (-1022)
264 #define Exp_1  0x3ff00000
265 #define Exp_11 0x3ff00000
266 #define Ebits 11
267 #define Frac_mask  0xfffff
268 #define Frac_mask1 0xfffff
269 #define Ten_pmax 22
270 #define Bletch 0x10
271 #define Bndry_mask  0xfffff
272 #define Bndry_mask1 0xfffff
273 #define LSB 1
274 #define Sign_bit 0x80000000
275 #define Log2P 1
276 #define Tiny0 0
277 #define Tiny1 1
278 #define Quick_max 14
279 #define Int_max 14
280 #define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
281 #else
282 #undef  Sudden_Underflow
283 #define Sudden_Underflow
284 #ifdef IBM
285 #define Exp_shift  24
286 #define Exp_shift1 24
287 #define Exp_msk1   0x1000000
288 #define Exp_msk11  0x1000000
289 #define Exp_mask  0x7f000000
290 #define P 14
291 #define Bias 65
292 #define Exp_1  0x41000000
293 #define Exp_11 0x41000000
294 #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
295 #define Frac_mask  0xffffff
296 #define Frac_mask1 0xffffff
297 #define Bletch 4
298 #define Ten_pmax 22
299 #define Bndry_mask  0xefffff
300 #define Bndry_mask1 0xffffff
301 #define LSB 1
302 #define Sign_bit 0x80000000
303 #define Log2P 4
304 #define Tiny0 0x100000
305 #define Tiny1 0
306 #define Quick_max 14
307 #define Int_max 15
308 #else /* VAX */
309 #define Exp_shift  23
310 #define Exp_shift1 7
311 #define Exp_msk1    0x80
312 #define Exp_msk11   0x800000
313 #define Exp_mask  0x7f80
314 #define P 56
315 #define Bias 129
316 #define Exp_1  0x40800000
317 #define Exp_11 0x4080
318 #define Ebits 8
319 #define Frac_mask  0x7fffff
320 #define Frac_mask1 0xffff007f
321 #define Ten_pmax 24
322 #define Bletch 2
323 #define Bndry_mask  0xffff007f
324 #define Bndry_mask1 0xffff007f
325 #define LSB 0x10000
326 #define Sign_bit 0x8000
327 #define Log2P 1
328 #define Tiny0 0x80
329 #define Tiny1 0
330 #define Quick_max 15
331 #define Int_max 15
332 #endif
333 #endif
334 
335 #ifndef IEEE_Arith
336 #define ROUND_BIASED
337 #endif
338 
339 #ifdef RND_PRODQUOT
340 #define rounded_product(a,b) a = rnd_prod(a, b)
341 #define rounded_quotient(a,b) a = rnd_quot(a, b)
342 extern double rnd_prod(double, double), rnd_quot(double, double);
343 #else
344 #define rounded_product(a,b) a *= b
345 #define rounded_quotient(a,b) a /= b
346 #endif
347 
348 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
349 #define Big1 0xffffffff
350 
351 #ifndef Just_16
352 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
353  * This makes some inner loops simpler and sometimes saves work
354  * during multiplications, but it often seems to make things slightly
355  * slower.  Hence the default is now to store 32 bits per Long.
356  */
357 #ifndef Pack_32
358 #define Pack_32
359 #endif
360 #endif
361 
362 #define Kmax 15
363 
364 #ifdef __cplusplus
365 extern "C" double strtod(const char *s00, char **se);
366 extern "C" char *__dtoa(double d, int mode, int ndigits,
367 			int *decpt, int *sign, char **rve, char **resultp);
368 #endif
369 
370 struct
371 Bigint {
372 	struct Bigint *next;
373 	int k, maxwds, sign, wds;
374 	ULong x[1];
375 };
376 
377 typedef struct Bigint Bigint;
378 
379 static Bigint *
Balloc(int k)380 Balloc(int k)
381 {
382 	int x;
383 	Bigint *rv;
384 
385 	x = 1 << k;
386 	rv = (Bigint *)malloc(sizeof(Bigint) + (x-1)*sizeof(Long));
387 	rv->k = k;
388 	rv->maxwds = x;
389 	rv->sign = rv->wds = 0;
390 	return rv;
391 }
392 
393 
394 static void
Bfree(Bigint * v)395 Bfree(Bigint *v)
396 {
397 	free(v);
398 }
399 
400 
401 #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
402 	y->wds*sizeof(Long) + 2*sizeof(int))
403 
404 
405 static Bigint *
multadd(Bigint * b,int m,int a)406 multadd(Bigint *b, int m, int a)	/* multiply by m and add a */
407 {
408 	int i, wds;
409 	ULong *x, y;
410 #ifdef Pack_32
411 	ULong xi, z;
412 #endif
413 	Bigint *b1;
414 
415 	wds = b->wds;
416 	x = b->x;
417 	i = 0;
418 	do {
419 #ifdef Pack_32
420 		xi = *x;
421 		y = (xi & 0xffff) * m + a;
422 		z = (xi >> 16) * m + (y >> 16);
423 		a = (int)(z >> 16);
424 		*x++ = (z << 16) + (y & 0xffff);
425 #else
426 		y = *x * m + a;
427 		a = (int)(y >> 16);
428 		*x++ = y & 0xffff;
429 #endif
430 	} while (++i < wds);
431 	if (a) {
432 		if (wds >= b->maxwds) {
433 			b1 = Balloc(b->k+1);
434 			Bcopy(b1, b);
435 			Bfree(b);
436 			b = b1;
437 			}
438 		b->x[wds++] = a;
439 		b->wds = wds;
440 	}
441 	return b;
442 }
443 
444 
445 static Bigint *
s2b(const char * s,int nd0,int nd,ULong y9)446 s2b(const char *s, int nd0, int nd, ULong y9)
447 {
448 	Bigint *b;
449 	int i, k;
450 	Long x, y;
451 
452 	x = (nd + 8) / 9;
453 	for (k = 0, y = 1; x > y; y <<= 1, k++) ;
454 #ifdef Pack_32
455 	b = Balloc(k);
456 	b->x[0] = y9;
457 	b->wds = 1;
458 #else
459 	b = Balloc(k+1);
460 	b->x[0] = y9 & 0xffff;
461 	b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
462 #endif
463 
464 	i = 9;
465 	if (9 < nd0) {
466 		s += 9;
467 		do
468 			b = multadd(b, 10, *s++ - '0');
469 		while (++i < nd0);
470 		s++;
471 	} else
472 		s += 10;
473 	for (; i < nd; i++)
474 		b = multadd(b, 10, *s++ - '0');
475 	return b;
476 }
477 
478 
479 static int
hi0bits(ULong x)480 hi0bits(ULong x)
481 {
482 	int k = 0;
483 
484 	if (!(x & 0xffff0000)) {
485 		k = 16;
486 		x <<= 16;
487 	}
488 	if (!(x & 0xff000000)) {
489 		k += 8;
490 		x <<= 8;
491 	}
492 	if (!(x & 0xf0000000)) {
493 		k += 4;
494 		x <<= 4;
495 	}
496 	if (!(x & 0xc0000000)) {
497 		k += 2;
498 		x <<= 2;
499 	}
500 	if (!(x & 0x80000000)) {
501 		k++;
502 		if (!(x & 0x40000000))
503 			return 32;
504 	}
505 	return k;
506 }
507 
508 
509 static int
lo0bits(ULong * y)510 lo0bits(ULong *y)
511 {
512 	int k;
513 	ULong x = *y;
514 
515 	if (x & 7) {
516 		if (x & 1)
517 			return 0;
518 		if (x & 2) {
519 			*y = x >> 1;
520 			return 1;
521 		}
522 		*y = x >> 2;
523 		return 2;
524 	}
525 	k = 0;
526 	if (!(x & 0xffff)) {
527 		k = 16;
528 		x >>= 16;
529 	}
530 	if (!(x & 0xff)) {
531 		k += 8;
532 		x >>= 8;
533 	}
534 	if (!(x & 0xf)) {
535 		k += 4;
536 		x >>= 4;
537 	}
538 	if (!(x & 0x3)) {
539 		k += 2;
540 		x >>= 2;
541 	}
542 	if (!(x & 1)) {
543 		k++;
544 		x >>= 1;
545 		if (!(x & 1))
546 			return 32;
547 	}
548 	*y = x;
549 	return k;
550 }
551 
552 
553 static Bigint *
i2b(int i)554 i2b(int i)
555 {
556 	Bigint *b;
557 
558 	b = Balloc(1);
559 	b->x[0] = i;
560 	b->wds = 1;
561 	return b;
562 }
563 
564 
565 static Bigint *
mult(Bigint * a,Bigint * b)566 mult(Bigint *a, Bigint *b)
567 {
568 	Bigint *c;
569 	int k, wa, wb, wc;
570 	ULong carry, y, z;
571 	ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
572 #ifdef Pack_32
573 	ULong z2;
574 #endif
575 
576 	if (a->wds < b->wds) {
577 		c = a;
578 		a = b;
579 		b = c;
580 	}
581 	k = a->k;
582 	wa = a->wds;
583 	wb = b->wds;
584 	wc = wa + wb;
585 	if (wc > a->maxwds)
586 		k++;
587 	c = Balloc(k);
588 	for (x = c->x, xa = x + wc; x < xa; x++)
589 		*x = 0;
590 	xa = a->x;
591 	xae = xa + wa;
592 	xb = b->x;
593 	xbe = xb + wb;
594 	xc0 = c->x;
595 #ifdef Pack_32
596 	for (; xb < xbe; xb++, xc0++) {
597 		if ( (y = *xb & 0xffff) ) {
598 			x = xa;
599 			xc = xc0;
600 			carry = 0;
601 			do {
602 				z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
603 				carry = z >> 16;
604 				z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
605 				carry = z2 >> 16;
606 				Storeinc(xc, z2, z);
607 			} while (x < xae);
608 			*xc = carry;
609 		}
610 		if ( (y = *xb >> 16) ) {
611 			x = xa;
612 			xc = xc0;
613 			carry = 0;
614 			z2 = *xc;
615 			do {
616 				z = (*x & 0xffff) * y + (*xc >> 16) + carry;
617 				carry = z >> 16;
618 				Storeinc(xc, z, z2);
619 				z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
620 				carry = z2 >> 16;
621 			} while (x < xae);
622 			*xc = z2;
623 		}
624 	}
625 #else
626 	for (; xb < xbe; xc0++) {
627 		if (y = *xb++) {
628 			x = xa;
629 			xc = xc0;
630 			carry = 0;
631 			do {
632 				z = *x++ * y + *xc + carry;
633 				carry = z >> 16;
634 				*xc++ = z & 0xffff;
635 			} while (x < xae);
636 			*xc = carry;
637 		}
638 	}
639 #endif
640 	for (xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
641 	c->wds = wc;
642 	return c;
643 }
644 
645 
646 static Bigint *p5s;
647 
648 
649 static Bigint *
pow5mult(Bigint * b,int k)650 pow5mult(Bigint *b, int k)
651 {
652 	Bigint *b1, *p5, *p51;
653 	int i;
654 	static int p05[3] = { 5, 25, 125 };
655 
656 	if ( (i = k & 3) )
657 		b = multadd(b, p05[i-1], 0);
658 
659 	if (!(k >>= 2))
660 		return b;
661 	if (!(p5 = p5s)) {
662 		/* first time */
663 		p5 = p5s = i2b(625);
664 		p5->next = 0;
665 	}
666 	for (;;) {
667 		if (k & 1) {
668 			b1 = mult(b, p5);
669 			Bfree(b);
670 			b = b1;
671 		}
672 		if (!(k >>= 1))
673 			break;
674 		if (!(p51 = p5->next)) {
675 			p51 = p5->next = mult(p5,p5);
676 			p51->next = 0;
677 		}
678 		p5 = p51;
679 	}
680 	return b;
681 }
682 
683 
684 static Bigint *
lshift(Bigint * b,int k)685 lshift(Bigint *b, int k)
686 {
687 	int i, k1, n, n1;
688 	Bigint *b1;
689 	ULong *x, *x1, *xe, z;
690 
691 #ifdef Pack_32
692 	n = k >> 5;
693 #else
694 	n = k >> 4;
695 #endif
696 	k1 = b->k;
697 	n1 = n + b->wds + 1;
698 	for (i = b->maxwds; n1 > i; i <<= 1)
699 		k1++;
700 	b1 = Balloc(k1);
701 	x1 = b1->x;
702 	for (i = 0; i < n; i++)
703 		*x1++ = 0;
704 	x = b->x;
705 	xe = x + b->wds;
706 #ifdef Pack_32
707 	if (k &= 0x1f) {
708 		k1 = 32 - k;
709 		z = 0;
710 		do {
711 			*x1++ = *x << k | z;
712 			z = *x++ >> k1;
713 		} while (x < xe);
714 		if ( (*x1 = z) )
715 			++n1;
716 	}
717 #else
718 	if (k &= 0xf) {
719 		k1 = 16 - k;
720 		z = 0;
721 		do {
722 			*x1++ = *x << k  & 0xffff | z;
723 			z = *x++ >> k1;
724 		} while (x < xe);
725 		if (*x1 = z)
726 			++n1;
727 	}
728 #endif
729 	else
730 		do
731 			*x1++ = *x++;
732 		while (x < xe);
733 	b1->wds = n1 - 1;
734 	Bfree(b);
735 	return b1;
736 }
737 
738 
739 static int
cmp(Bigint * a,Bigint * b)740 cmp(Bigint *a, Bigint *b)
741 {
742 	ULong *xa, *xa0, *xb, *xb0;
743 	int i, j;
744 
745 	i = a->wds;
746 	j = b->wds;
747 #ifdef DEBUG
748 	if (i > 1 && !a->x[i-1])
749 		Bug("cmp called with a->x[a->wds-1] == 0");
750 	if (j > 1 && !b->x[j-1])
751 		Bug("cmp called with b->x[b->wds-1] == 0");
752 #endif
753 	if (i -= j)
754 		return i;
755 	xa0 = a->x;
756 	xa = xa0 + j;
757 	xb0 = b->x;
758 	xb = xb0 + j;
759 	for (;;) {
760 		if (*--xa != *--xb)
761 			return *xa < *xb ? -1 : 1;
762 		if (xa <= xa0)
763 			break;
764 	}
765 	return 0;
766 }
767 
768 
769 static Bigint *
diff(Bigint * a,Bigint * b)770 diff(Bigint *a, Bigint *b)
771 {
772 	Bigint *c;
773 	int i, wa, wb;
774 	Long borrow, y;	/* We need signed shifts here. */
775 	ULong *xa, *xae, *xb, *xbe, *xc;
776 #ifdef Pack_32
777 	Long z;
778 #endif
779 
780 	i = cmp(a,b);
781 	if (!i) {
782 		c = Balloc(0);
783 		c->wds = 1;
784 		c->x[0] = 0;
785 		return c;
786 	}
787 	if (i < 0) {
788 		c = a;
789 		a = b;
790 		b = c;
791 		i = 1;
792 	} else
793 		i = 0;
794 	c = Balloc(a->k);
795 	c->sign = i;
796 	wa = a->wds;
797 	xa = a->x;
798 	xae = xa + wa;
799 	wb = b->wds;
800 	xb = b->x;
801 	xbe = xb + wb;
802 	xc = c->x;
803 	borrow = 0;
804 #ifdef Pack_32
805 	do {
806 		y = (*xa & 0xffff) - (*xb & 0xffff) + borrow;
807 		borrow = y >> 16;
808 		Sign_Extend(borrow, y);
809 		z = (*xa++ >> 16) - (*xb++ >> 16) + borrow;
810 		borrow = z >> 16;
811 		Sign_Extend(borrow, z);
812 		Storeinc(xc, z, y);
813 	} while (xb < xbe);
814 	while (xa < xae) {
815 		y = (*xa & 0xffff) + borrow;
816 		borrow = y >> 16;
817 		Sign_Extend(borrow, y);
818 		z = (*xa++ >> 16) + borrow;
819 		borrow = z >> 16;
820 		Sign_Extend(borrow, z);
821 		Storeinc(xc, z, y);
822 	}
823 #else
824 	do {
825 		y = *xa++ - *xb++ + borrow;
826 		borrow = y >> 16;
827 		Sign_Extend(borrow, y);
828 		*xc++ = y & 0xffff;
829 	} while (xb < xbe);
830 	while (xa < xae) {
831 		y = *xa++ + borrow;
832 		borrow = y >> 16;
833 		Sign_Extend(borrow, y);
834 		*xc++ = y & 0xffff;
835 	}
836 #endif
837 	while (!*--xc)
838 		wa--;
839 	c->wds = wa;
840 	return c;
841 }
842 
843 
844 static double
ulp(double x)845 ulp(double x)
846 {
847 	Long L;
848 	double a;
849 
850 	L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
851 #ifndef Sudden_Underflow
852 	if (L > 0) {
853 #endif
854 #ifdef IBM
855 		L |= Exp_msk1 >> 4;
856 #endif
857 		word0(a) = L;
858 		word1(a) = 0;
859 #ifndef Sudden_Underflow
860 	} else {
861 		L = -L >> Exp_shift;
862 		if (L < Exp_shift) {
863 			word0(a) = 0x80000 >> L;
864 			word1(a) = 0;
865 		} else {
866 			word0(a) = 0;
867 			L -= Exp_shift;
868 			word1(a) = L >= 31 ? 1 : 1 << (31 - L);
869 		}
870 	}
871 #endif
872 	return a;
873 }
874 
875 
876 static double
b2d(Bigint * a,int * e)877 b2d(Bigint *a, int *e)
878 {
879 	ULong *xa, *xa0, w, y, z;
880 	int k;
881 	double d;
882 #ifdef VAX
883 	ULong d0, d1;
884 #else
885 #define d0 word0(d)
886 #define d1 word1(d)
887 #endif
888 
889 	xa0 = a->x;
890 	xa = xa0 + a->wds;
891 	y = *--xa;
892 #ifdef DEBUG
893 	if (!y) Bug("zero y in b2d");
894 #endif
895 	k = hi0bits(y);
896 	*e = 32 - k;
897 #ifdef Pack_32
898 	if (k < Ebits) {
899 		d0 = Exp_1 | (y >> (Ebits - k));
900 		w = xa > xa0 ? *--xa : 0;
901 		d1 = (y << ((32-Ebits) + k)) | (w >> (Ebits - k));
902 		goto ret_d;
903 		}
904 	z = xa > xa0 ? *--xa : 0;
905 	if (k -= Ebits) {
906 		d0 = Exp_1 | (y << k) | (z >> (32 - k));
907 		y = xa > xa0 ? *--xa : 0;
908 		d1 = (z << k) | (y >> (32 - k));
909 	} else {
910 		d0 = Exp_1 | y;
911 		d1 = z;
912 	}
913 #else
914 	if (k < Ebits + 16) {
915 		z = xa > xa0 ? *--xa : 0;
916 		d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
917 		w = xa > xa0 ? *--xa : 0;
918 		y = xa > xa0 ? *--xa : 0;
919 		d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
920 		goto ret_d;
921 	}
922 	z = xa > xa0 ? *--xa : 0;
923 	w = xa > xa0 ? *--xa : 0;
924 	k -= Ebits + 16;
925 	d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
926 	y = xa > xa0 ? *--xa : 0;
927 	d1 = w << k + 16 | y << k;
928 #endif
929  ret_d:
930 #ifdef VAX
931 	word0(d) = d0 >> 16 | d0 << 16;
932 	word1(d) = d1 >> 16 | d1 << 16;
933 #else
934 #undef d0
935 #undef d1
936 #endif
937 	return d;
938 }
939 
940 
941 static Bigint *
d2b(double d,int * e,int * bits)942 d2b(double d, int *e, int *bits)
943 {
944 	Bigint *b;
945 	int de, i, k;
946 	ULong *x, y, z;
947 #ifdef VAX
948 	ULong d0, d1;
949 	d0 = word0(d) >> 16 | word0(d) << 16;
950 	d1 = word1(d) >> 16 | word1(d) << 16;
951 #else
952 #define d0 word0(d)
953 #define d1 word1(d)
954 #endif
955 
956 #ifdef Pack_32
957 	b = Balloc(1);
958 #else
959 	b = Balloc(2);
960 #endif
961 	x = b->x;
962 
963 	z = d0 & Frac_mask;
964 	d0 &= 0x7fffffff;	/* clear sign bit, which we ignore */
965 #ifdef Sudden_Underflow
966 	de = (int)(d0 >> Exp_shift);
967 #ifndef IBM
968 	z |= Exp_msk11;
969 #endif
970 #else
971 	if ( (de = (int)(d0 >> Exp_shift)) )
972 		z |= Exp_msk1;
973 #endif
974 #ifdef Pack_32
975 	if ( (y = d1) ) {
976 		if ( (k = lo0bits(&y)) ) {
977 			x[0] = y | (z << (32 - k));
978 			z >>= k;
979 			}
980 		else
981 			x[0] = y;
982 		i = b->wds = (x[1] = z) ? 2 : 1;
983 	} else {
984 #ifdef DEBUG
985 		if (!z)
986 			Bug("Zero passed to d2b");
987 #endif
988 		k = lo0bits(&z);
989 		x[0] = z;
990 		i = b->wds = 1;
991 		k += 32;
992 	}
993 #else
994 	if (y = d1) {
995 		if (k = lo0bits(&y))
996 			if (k >= 16) {
997 				x[0] = y | z << 32 - k & 0xffff;
998 				x[1] = z >> k - 16 & 0xffff;
999 				x[2] = z >> k;
1000 				i = 2;
1001 			} else {
1002 				x[0] = y & 0xffff;
1003 				x[1] = y >> 16 | z << 16 - k & 0xffff;
1004 				x[2] = z >> k & 0xffff;
1005 				x[3] = z >> k+16;
1006 				i = 3;
1007 			}
1008 		else {
1009 			x[0] = y & 0xffff;
1010 			x[1] = y >> 16;
1011 			x[2] = z & 0xffff;
1012 			x[3] = z >> 16;
1013 			i = 3;
1014 		}
1015 	} else {
1016 #ifdef DEBUG
1017 		if (!z)
1018 			Bug("Zero passed to d2b");
1019 #endif
1020 		k = lo0bits(&z);
1021 		if (k >= 16) {
1022 			x[0] = z;
1023 			i = 0;
1024 		} else {
1025 			x[0] = z & 0xffff;
1026 			x[1] = z >> 16;
1027 			i = 1;
1028 		}
1029 		k += 32;
1030 	}
1031 	while (!x[i])
1032 		--i;
1033 	b->wds = i + 1;
1034 #endif
1035 #ifndef Sudden_Underflow
1036 	if (de) {
1037 #endif
1038 #ifdef IBM
1039 		*e = (de - Bias - (P-1) << 2) + k;
1040 		*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1041 #else
1042 		*e = de - Bias - (P-1) + k;
1043 		*bits = P - k;
1044 #endif
1045 #ifndef Sudden_Underflow
1046 	} else {
1047 		*e = de - Bias - (P-1) + 1 + k;
1048 #ifdef Pack_32
1049 		*bits = 32*i - hi0bits(x[i-1]);
1050 #else
1051 		*bits = (i+2)*16 - hi0bits(x[i]);
1052 #endif
1053 	}
1054 #endif
1055 	return b;
1056 }
1057 #undef d0
1058 #undef d1
1059 
1060 
1061 static double
ratio(Bigint * a,Bigint * b)1062 ratio(Bigint *a, Bigint *b)
1063 {
1064 	double da, db;
1065 	int k, ka, kb;
1066 
1067 	da = b2d(a, &ka);
1068 	db = b2d(b, &kb);
1069 #ifdef Pack_32
1070 	k = ka - kb + 32*(a->wds - b->wds);
1071 #else
1072 	k = ka - kb + 16*(a->wds - b->wds);
1073 #endif
1074 #ifdef IBM
1075 	if (k > 0) {
1076 		word0(da) += (k >> 2)*Exp_msk1;
1077 		if (k &= 3)
1078 			da *= 1 << k;
1079 	} else {
1080 		k = -k;
1081 		word0(db) += (k >> 2)*Exp_msk1;
1082 		if (k &= 3)
1083 			db *= 1 << k;
1084 	}
1085 #else
1086 	if (k > 0)
1087 		word0(da) += k*Exp_msk1;
1088 	else {
1089 		k = -k;
1090 		word0(db) += k*Exp_msk1;
1091 	}
1092 #endif
1093 	return da / db;
1094 }
1095 
1096 static double
1097 tens[] = {
1098 		1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1099 		1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1100 		1e20, 1e21, 1e22
1101 #ifdef VAX
1102 		, 1e23, 1e24
1103 #endif
1104 		};
1105 
1106 static double
1107 #ifdef IEEE_Arith
1108 bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1109 static double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 };
1110 #define n_bigtens 5
1111 #else
1112 #ifdef IBM
1113 bigtens[] = { 1e16, 1e32, 1e64 };
1114 static double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1115 #define n_bigtens 3
1116 #else
1117 bigtens[] = { 1e16, 1e32 };
1118 static double tinytens[] = { 1e-16, 1e-32 };
1119 #define n_bigtens 2
1120 #endif
1121 #endif
1122 
1123 
1124 double
strtod(const char * __restrict s00,char ** __restrict se)1125 strtod(const char * __restrict s00, char ** __restrict se)
1126 {
1127 	int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
1128 		 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1129 	const char *s, *s0, *s1;
1130 	double aadj, aadj1, adj, rv, rv0;
1131 	Long L;
1132 	ULong y, z;
1133 	Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
1134 	char decimal_point = localeconv()->decimal_point[0];
1135 
1136 	sign = nz0 = nz = 0;
1137 	rv = 0.;
1138 	for (s = s00;;s++) switch(*s) {
1139 		case '-':
1140 			sign = 1;
1141 			/* no break */
1142 		case '+':
1143 			if (*++s)
1144 				goto break2;
1145 			/* no break */
1146 		case 0:
1147 			s = s00;
1148 			goto ret;
1149 		default:
1150 			if (isspace((unsigned char)*s))
1151 				continue;
1152 			goto break2;
1153 	}
1154  break2:
1155 	if (*s == '0') {
1156 		nz0 = 1;
1157 		while (*++s == '0') ;
1158 		if (!*s)
1159 			goto ret;
1160 	}
1161 	s0 = s;
1162 	y = z = 0;
1163 	for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
1164 		if (nd < 9)
1165 			y = 10*y + c - '0';
1166 		else if (nd < 16)
1167 			z = 10*z + c - '0';
1168 	nd0 = nd;
1169 	if ((char)c == decimal_point) {
1170 		c = *++s;
1171 		if (!nd) {
1172 			for (; c == '0'; c = *++s)
1173 				nz++;
1174 			if (c > '0' && c <= '9') {
1175 				s0 = s;
1176 				nf += nz;
1177 				nz = 0;
1178 				goto have_dig;
1179 			}
1180 			goto dig_done;
1181 		}
1182 		for (; c >= '0' && c <= '9'; c = *++s) {
1183  have_dig:
1184 			nz++;
1185 			if (c - '0' > 0) {
1186 				nf += nz;
1187 				for (i = 1; i < nz; i++)
1188 					if (nd++ < 9)
1189 						y *= 10;
1190 					else if (nd <= DBL_DIG + 1)
1191 						z *= 10;
1192 				if (nd++ < 9)
1193 					y = 10*y + c - '0';
1194 				else if (nd <= DBL_DIG + 1)
1195 					z = 10*z + c - '0';
1196 				nz = 0;
1197 			}
1198 		}
1199 	}
1200  dig_done:
1201 	e = 0;
1202 	if (c == 'e' || c == 'E') {
1203 		if (!nd && !nz && !nz0) {
1204 			s = s00;
1205 			goto ret;
1206 		}
1207 		s00 = s;
1208 		esign = 0;
1209 		switch(c = *++s) {
1210 			case '-':
1211 				esign = 1;
1212 			case '+':
1213 				c = *++s;
1214 		}
1215 		if (c >= '0' && c <= '9') {
1216 			while (c == '0')
1217 				c = *++s;
1218 			if (c > '0' && c <= '9') {
1219 				L = c - '0';
1220 				s1 = s;
1221 				while ((c = *++s) >= '0' && c <= '9')
1222 					L = 10*L + c - '0';
1223 				if (s - s1 > 8 || L > 19999)
1224 					/* Avoid confusion from exponents
1225 					 * so large that e might overflow.
1226 					 */
1227 					e = 19999; /* safe for 16 bit ints */
1228 				else
1229 					e = (int)L;
1230 				if (esign)
1231 					e = -e;
1232 			} else
1233 				e = 0;
1234 		} else
1235 			s = s00;
1236 	}
1237 	if (!nd) {
1238 		if (!nz && !nz0)
1239 			s = s00;
1240 		goto ret;
1241 	}
1242 	e1 = e -= nf;
1243 
1244 	/* Now we have nd0 digits, starting at s0, followed by a
1245 	 * decimal point, followed by nd-nd0 digits.  The number we're
1246 	 * after is the integer represented by those digits times
1247 	 * 10**e */
1248 
1249 	if (!nd0)
1250 		nd0 = nd;
1251 	k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1252 	rv = y;
1253 	if (k > 9)
1254 		rv = tens[k - 9] * rv + z;
1255 	if (nd <= DBL_DIG
1256 #ifndef RND_PRODQUOT
1257 		&& FLT_ROUNDS == 1
1258 #endif
1259 			) {
1260 		if (!e)
1261 			goto ret;
1262 		if (e > 0) {
1263 			if (e <= Ten_pmax) {
1264 #ifdef VAX
1265 				goto vax_ovfl_check;
1266 #else
1267 				/* rv = */ rounded_product(rv, tens[e]);
1268 				goto ret;
1269 #endif
1270 				}
1271 			i = DBL_DIG - nd;
1272 			if (e <= Ten_pmax + i) {
1273 				/* A fancier test would sometimes let us do
1274 				 * this for larger i values.
1275 				 */
1276 				e -= i;
1277 				rv *= tens[i];
1278 #ifdef VAX
1279 				/* VAX exponent range is so narrow we must
1280 				 * worry about overflow here...
1281 				 */
1282  vax_ovfl_check:
1283 				word0(rv) -= P*Exp_msk1;
1284 				/* rv = */ rounded_product(rv, tens[e]);
1285 				if ((word0(rv) & Exp_mask)
1286 				 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
1287 					goto ovfl;
1288 				word0(rv) += P*Exp_msk1;
1289 #else
1290 				/* rv = */ rounded_product(rv, tens[e]);
1291 #endif
1292 				goto ret;
1293 			}
1294 		}
1295 #ifndef Inaccurate_Divide
1296 		else if (e >= -Ten_pmax) {
1297 			/* rv = */ rounded_quotient(rv, tens[-e]);
1298 			goto ret;
1299 		}
1300 #endif
1301 	}
1302 	e1 += nd - k;
1303 
1304 	/* Get starting approximation = rv * 10**e1 */
1305 
1306 	if (e1 > 0) {
1307 		if ( (i = e1 & 15) )
1308 			rv *= tens[i];
1309 		if ( (e1 &= ~15) ) {
1310 			if (e1 > DBL_MAX_10_EXP) {
1311  ovfl:
1312 				__set_errno(ERANGE);
1313 				rv = HUGE_VAL;
1314 				goto ret;
1315 			}
1316 			if (e1 >>= 4) {
1317 				for (j = 0; e1 > 1; j++, e1 >>= 1)
1318 					if (e1 & 1)
1319 						rv *= bigtens[j];
1320 			/* The last multiplication could overflow. */
1321 				word0(rv) -= P*Exp_msk1;
1322 				rv *= bigtens[j];
1323 				if ((z = word0(rv) & Exp_mask)
1324 				 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1325 					goto ovfl;
1326 				if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1327 					/* set to largest number */
1328 					/* (Can't trust DBL_MAX) */
1329 					word0(rv) = Big0;
1330 					word1(rv) = Big1;
1331 					}
1332 				else
1333 					word0(rv) += P*Exp_msk1;
1334 			}
1335 		}
1336 	} else if (e1 < 0) {
1337 		e1 = -e1;
1338 		if ( (i = e1 & 15) )
1339 			rv /= tens[i];
1340 		if ( (e1 &= ~15) ) {
1341 			e1 >>= 4;
1342 			for (j = 0; e1 > 1; j++, e1 >>= 1)
1343 				if (e1 & 1)
1344 					rv *= tinytens[j];
1345 			/* The last multiplication could underflow. */
1346 			rv0 = rv;
1347 			rv *= tinytens[j];
1348 			if (!rv) {
1349 				rv = 2.*rv0;
1350 				rv *= tinytens[j];
1351 				if (!rv) {
1352  undfl:
1353 					rv = 0.;
1354 					__set_errno(ERANGE);
1355 					goto ret;
1356 					}
1357 				word0(rv) = Tiny0;
1358 				word1(rv) = Tiny1;
1359 				/* The refinement below will clean
1360 				 * this approximation up.
1361 				 */
1362 			}
1363 		}
1364 	}
1365 
1366 	/* Now the hard part -- adjusting rv to the correct value.*/
1367 
1368 	/* Put digits into bd: true value = bd * 10^e */
1369 
1370 	bd0 = s2b(s0, nd0, nd, y);
1371 
1372 	for (;;) {
1373 		bd = Balloc(bd0->k);
1374 		Bcopy(bd, bd0);
1375 		bb = d2b(rv, &bbe, &bbbits);	/* rv = bb * 2^bbe */
1376 		bs = i2b(1);
1377 
1378 		if (e >= 0) {
1379 			bb2 = bb5 = 0;
1380 			bd2 = bd5 = e;
1381 		} else {
1382 			bb2 = bb5 = -e;
1383 			bd2 = bd5 = 0;
1384 		}
1385 		if (bbe >= 0)
1386 			bb2 += bbe;
1387 		else
1388 			bd2 -= bbe;
1389 		bs2 = bb2;
1390 #ifdef Sudden_Underflow
1391 #ifdef IBM
1392 		j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
1393 #else
1394 		j = P + 1 - bbbits;
1395 #endif
1396 #else
1397 		i = bbe + bbbits - 1;	/* logb(rv) */
1398 		if (i < Emin)	/* denormal */
1399 			j = bbe + (P-Emin);
1400 		else
1401 			j = P + 1 - bbbits;
1402 #endif
1403 		bb2 += j;
1404 		bd2 += j;
1405 		i = bb2 < bd2 ? bb2 : bd2;
1406 		if (i > bs2)
1407 			i = bs2;
1408 		if (i > 0) {
1409 			bb2 -= i;
1410 			bd2 -= i;
1411 			bs2 -= i;
1412 			}
1413 		if (bb5 > 0) {
1414 			bs = pow5mult(bs, bb5);
1415 			bb1 = mult(bs, bb);
1416 			Bfree(bb);
1417 			bb = bb1;
1418 			}
1419 		if (bb2 > 0)
1420 			bb = lshift(bb, bb2);
1421 		if (bd5 > 0)
1422 			bd = pow5mult(bd, bd5);
1423 		if (bd2 > 0)
1424 			bd = lshift(bd, bd2);
1425 		if (bs2 > 0)
1426 			bs = lshift(bs, bs2);
1427 		delta = diff(bb, bd);
1428 		dsign = delta->sign;
1429 		delta->sign = 0;
1430 		i = cmp(delta, bs);
1431 		if (i < 0) {
1432 			/* Error is less than half an ulp -- check for
1433 			 * special case of mantissa a power of two.
1434 			 */
1435 			if (dsign || word1(rv) || word0(rv) & Bndry_mask)
1436 				break;
1437 			delta = lshift(delta,Log2P);
1438 			if (cmp(delta, bs) > 0)
1439 				goto drop_down;
1440 			break;
1441 		}
1442 		if (i == 0) {
1443 			/* exactly half-way between */
1444 			if (dsign) {
1445 				if ((word0(rv) & Bndry_mask1) == Bndry_mask1
1446 				 &&  word1(rv) == 0xffffffff) {
1447 					/*boundary case -- increment exponent*/
1448 					word0(rv) = (word0(rv) & Exp_mask)
1449 						+ Exp_msk1
1450 #ifdef IBM
1451 						| Exp_msk1 >> 4
1452 #endif
1453 						;
1454 					word1(rv) = 0;
1455 					break;
1456 				}
1457 			} else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
1458  drop_down:
1459 				/* boundary case -- decrement exponent */
1460 #ifdef Sudden_Underflow
1461 				L = word0(rv) & Exp_mask;
1462 #ifdef IBM
1463 				if (L <  Exp_msk1)
1464 #else
1465 				if (L <= Exp_msk1)
1466 #endif
1467 					goto undfl;
1468 				L -= Exp_msk1;
1469 #else
1470 				L = (word0(rv) & Exp_mask) - Exp_msk1;
1471 #endif
1472 				word0(rv) = L | Bndry_mask1;
1473 				word1(rv) = 0xffffffff;
1474 #ifdef IBM
1475 				goto cont;
1476 #else
1477 				break;
1478 #endif
1479 			}
1480 #ifndef ROUND_BIASED
1481 			if (!(word1(rv) & LSB))
1482 				break;
1483 #endif
1484 			if (dsign)
1485 				rv += ulp(rv);
1486 #ifndef ROUND_BIASED
1487 			else {
1488 				rv -= ulp(rv);
1489 #ifndef Sudden_Underflow
1490 				if (!rv)
1491 					goto undfl;
1492 #endif
1493 			}
1494 #endif
1495 			break;
1496 		}
1497 		if ((aadj = ratio(delta, bs)) <= 2.) {
1498 			if (dsign)
1499 				aadj = aadj1 = 1.;
1500 			else if (word1(rv) || word0(rv) & Bndry_mask) {
1501 #ifndef Sudden_Underflow
1502 				if (word1(rv) == Tiny1 && !word0(rv))
1503 					goto undfl;
1504 #endif
1505 				aadj = 1.;
1506 				aadj1 = -1.;
1507 			} else {
1508 				/* special case -- power of FLT_RADIX to be */
1509 				/* rounded down... */
1510 
1511 				if (aadj < 2./FLT_RADIX)
1512 					aadj = 1./FLT_RADIX;
1513 				else
1514 					aadj *= 0.5;
1515 				aadj1 = -aadj;
1516 			}
1517 		} else {
1518 			aadj *= 0.5;
1519 			aadj1 = dsign ? aadj : -aadj;
1520 #ifdef Check_FLT_ROUNDS
1521 			switch(FLT_ROUNDS) {
1522 				case 2: /* towards +infinity */
1523 					aadj1 -= 0.5;
1524 					break;
1525 				case 0: /* towards 0 */
1526 				case 3: /* towards -infinity */
1527 					aadj1 += 0.5;
1528 			}
1529 #else
1530 			if (FLT_ROUNDS == 0)
1531 				aadj1 += 0.5;
1532 #endif
1533 		}
1534 		y = word0(rv) & Exp_mask;
1535 
1536 		/* Check for overflow */
1537 
1538 		if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
1539 			rv0 = rv;
1540 			word0(rv) -= P*Exp_msk1;
1541 			adj = aadj1 * ulp(rv);
1542 			rv += adj;
1543 			if ((word0(rv) & Exp_mask) >=
1544 					Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
1545 				if (word0(rv0) == Big0 && word1(rv0) == Big1)
1546 					goto ovfl;
1547 				word0(rv) = Big0;
1548 				word1(rv) = Big1;
1549 				goto cont;
1550 			} else
1551 				word0(rv) += P*Exp_msk1;
1552 		} else {
1553 #ifdef Sudden_Underflow
1554 			if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
1555 				rv0 = rv;
1556 				word0(rv) += P*Exp_msk1;
1557 				adj = aadj1 * ulp(rv);
1558 				rv += adj;
1559 #ifdef IBM
1560 				if ((word0(rv) & Exp_mask) <  P*Exp_msk1)
1561 #else
1562 				if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
1563 #endif
1564 				{
1565 					if (word0(rv0) == Tiny0
1566 					 && word1(rv0) == Tiny1)
1567 						goto undfl;
1568 					word0(rv) = Tiny0;
1569 					word1(rv) = Tiny1;
1570 					goto cont;
1571 				} else
1572 					word0(rv) -= P*Exp_msk1;
1573 			} else {
1574 				adj = aadj1 * ulp(rv);
1575 				rv += adj;
1576 			}
1577 #else
1578 			/* Compute adj so that the IEEE rounding rules will
1579 			 * correctly round rv + adj in some half-way cases.
1580 			 * If rv * ulp(rv) is denormalized (i.e.,
1581 			 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
1582 			 * trouble from bits lost to denormalization;
1583 			 * example: 1.2e-307 .
1584 			 */
1585 			if (y <= (P-1)*Exp_msk1 && aadj >= 1.) {
1586 				aadj1 = (double)(int)(aadj + 0.5);
1587 				if (!dsign)
1588 					aadj1 = -aadj1;
1589 			}
1590 			adj = aadj1 * ulp(rv);
1591 			rv += adj;
1592 #endif
1593 		}
1594 		z = word0(rv) & Exp_mask;
1595 		if (y == z) {
1596 			/* Can we stop now? */
1597 			L = aadj;
1598 			aadj -= L;
1599 			/* The tolerances below are conservative. */
1600 			if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
1601 				if (aadj < .4999999 || aadj > .5000001)
1602 					break;
1603 			} else if (aadj < .4999999/FLT_RADIX)
1604 				break;
1605 		}
1606  cont:
1607 		Bfree(bb);
1608 		Bfree(bd);
1609 		Bfree(bs);
1610 		Bfree(delta);
1611 	}
1612 	Bfree(bb);
1613 	Bfree(bd);
1614 	Bfree(bs);
1615 	Bfree(bd0);
1616 	Bfree(delta);
1617  ret:
1618 	if (se)
1619 		*se = (char *)s;
1620 	return sign ? -rv : rv;
1621 }
1622 
1623 
1624 double __strtod_internal(const char *number, char **_end, int group);
1625 
1626 double
__strtod_internal(const char * number,char ** _end,int group)1627 __strtod_internal(const char *number, char **_end, int group)
1628 {
1629 	// ToDo: group is currently not supported!
1630 	(void)group;
1631 
1632 	return strtod(number, _end);
1633 }
1634 
1635 // XXX this is not correct
1636 
1637 long double __strtold_internal(const char *number, char **_end, int group);
1638 
1639 long double
__strtold_internal(const char * number,char ** _end,int group)1640 __strtold_internal(const char *number, char **_end, int group)
1641 {
1642 	return __strtod_internal(number, _end, group);
1643 }
1644 
1645 float __strtof_internal(const char *number, char **_end, int group);
1646 
1647 float
__strtof_internal(const char * number,char ** _end,int group)1648 __strtof_internal(const char *number, char **_end, int group)
1649 {
1650 	return __strtod_internal(number, _end, group);
1651 }
1652 
1653 
1654 /* removed from the build, is only used by __dtoa() */
1655 #if 0
1656 static int
1657 quorem(Bigint *b, Bigint *S)
1658 {
1659 	int n;
1660 	Long borrow, y;
1661 	ULong carry, q, ys;
1662 	ULong *bx, *bxe, *sx, *sxe;
1663 #ifdef Pack_32
1664 	Long z;
1665 	ULong si, zs;
1666 #endif
1667 
1668 	n = S->wds;
1669 #ifdef DEBUG
1670 	/*debug*/ if (b->wds > n)
1671 	/*debug*/	Bug("oversize b in quorem");
1672 #endif
1673 	if (b->wds < n)
1674 		return 0;
1675 	sx = S->x;
1676 	sxe = sx + --n;
1677 	bx = b->x;
1678 	bxe = bx + n;
1679 	q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */
1680 #ifdef DEBUG
1681 	/*debug*/ if (q > 9)
1682 	/*debug*/	Bug("oversized quotient in quorem");
1683 #endif
1684 	if (q) {
1685 		borrow = 0;
1686 		carry = 0;
1687 		do {
1688 #ifdef Pack_32
1689 			si = *sx++;
1690 			ys = (si & 0xffff) * q + carry;
1691 			zs = (si >> 16) * q + (ys >> 16);
1692 			carry = zs >> 16;
1693 			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1694 			borrow = y >> 16;
1695 			Sign_Extend(borrow, y);
1696 			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1697 			borrow = z >> 16;
1698 			Sign_Extend(borrow, z);
1699 			Storeinc(bx, z, y);
1700 #else
1701 			ys = *sx++ * q + carry;
1702 			carry = ys >> 16;
1703 			y = *bx - (ys & 0xffff) + borrow;
1704 			borrow = y >> 16;
1705 			Sign_Extend(borrow, y);
1706 			*bx++ = y & 0xffff;
1707 #endif
1708 		} while (sx <= sxe);
1709 		if (!*bxe) {
1710 			bx = b->x;
1711 			while (--bxe > bx && !*bxe)
1712 				--n;
1713 			b->wds = n;
1714 		}
1715 	}
1716 	if (cmp(b, S) >= 0) {
1717 		q++;
1718 		borrow = 0;
1719 		carry = 0;
1720 		bx = b->x;
1721 		sx = S->x;
1722 		do {
1723 #ifdef Pack_32
1724 			si = *sx++;
1725 			ys = (si & 0xffff) + carry;
1726 			zs = (si >> 16) + (ys >> 16);
1727 			carry = zs >> 16;
1728 			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1729 			borrow = y >> 16;
1730 			Sign_Extend(borrow, y);
1731 			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1732 			borrow = z >> 16;
1733 			Sign_Extend(borrow, z);
1734 			Storeinc(bx, z, y);
1735 #else
1736 			ys = *sx++ + carry;
1737 			carry = ys >> 16;
1738 			y = *bx - (ys & 0xffff) + borrow;
1739 			borrow = y >> 16;
1740 			Sign_Extend(borrow, y);
1741 			*bx++ = y & 0xffff;
1742 #endif
1743 		} while (sx <= sxe);
1744 		bx = b->x;
1745 		bxe = bx + n;
1746 		if (!*bxe) {
1747 			while (--bxe > bx && !*bxe)
1748 				--n;
1749 			b->wds = n;
1750 		}
1751 	}
1752 	return q;
1753 }
1754 #endif	/* removed from the build, is only used by __dtoa() */
1755 
1756 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
1757  *
1758  * Inspired by "How to Print Floating-Point Numbers Accurately" by
1759  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
1760  *
1761  * Modifications:
1762  *	1. Rather than iterating, we use a simple numeric overestimate
1763  *	   to determine k = floor(log10(d)).  We scale relevant
1764  *	   quantities using O(log2(k)) rather than O(k) multiplications.
1765  *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
1766  *	   try to generate digits strictly left to right.  Instead, we
1767  *	   compute with fewer bits and propagate the carry if necessary
1768  *	   when rounding the final digit up.  This is often faster.
1769  *	3. Under the assumption that input will be rounded nearest,
1770  *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
1771  *	   That is, we allow equality in stopping tests when the
1772  *	   round-nearest rule will give the same floating-point value
1773  *	   as would satisfaction of the stopping test with strict
1774  *	   inequality.
1775  *	4. We remove common factors of powers of 2 from relevant
1776  *	   quantities.
1777  *	5. When converting floating-point integers less than 1e16,
1778  *	   we use floating-point arithmetic rather than resorting
1779  *	   to multiple-precision integers.
1780  *	6. When asked to produce fewer than 15 digits, we first try
1781  *	   to get by with floating-point arithmetic; we resort to
1782  *	   multiple-precision integer arithmetic only if we cannot
1783  *	   guarantee that the floating-point calculation has given
1784  *	   the correctly rounded result.  For k requested digits and
1785  *	   "uniformly" distributed input, the probability is
1786  *	   something like 10^(k-15) that we must resort to the Long
1787  *	   calculation.
1788  */
1789 
1790 #if 0
1791 char *
1792 __dtoa(double d, int mode, int ndigits, int *decpt, int *sign, char **rve,
1793 	 char **resultp)
1794 {
1795  /*	Arguments ndigits, decpt, sign are similar to those
1796 	of ecvt and fcvt; trailing zeros are suppressed from
1797 	the returned string.  If not null, *rve is set to point
1798 	to the end of the return value.  If d is +-Infinity or NaN,
1799 	then *decpt is set to 9999.
1800 
1801 	mode:
1802 		0 ==> shortest string that yields d when read in
1803 			and rounded to nearest.
1804 		1 ==> like 0, but with Steele & White stopping rule;
1805 			e.g. with IEEE P754 arithmetic , mode 0 gives
1806 			1e23 whereas mode 1 gives 9.999999999999999e22.
1807 		2 ==> max(1,ndigits) significant digits.  This gives a
1808 			return value similar to that of ecvt, except
1809 			that trailing zeros are suppressed.
1810 		3 ==> through ndigits past the decimal point.  This
1811 			gives a return value similar to that from fcvt,
1812 			except that trailing zeros are suppressed, and
1813 			ndigits can be negative.
1814 		4-9 should give the same return values as 2-3, i.e.,
1815 			4 <= mode <= 9 ==> same return as mode
1816 			2 + (mode & 1).  These modes are mainly for
1817 			debugging; often they run slower but sometimes
1818 			faster than modes 2-3.
1819 		4,5,8,9 ==> left-to-right digit generation.
1820 		6-9 ==> don't try fast floating-point estimate
1821 			(if applicable).
1822 
1823 		Values of mode other than 0-9 are treated as mode 0.
1824 
1825 		Sufficient space is allocated to the return value
1826 		to hold the suppressed trailing zeros.
1827 	*/
1828 
1829 	int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
1830 		j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
1831 		spec_case, try_quick;
1832 	Long L;
1833 #ifndef Sudden_Underflow
1834 	int denorm;
1835 	ULong x;
1836 #endif
1837 	Bigint *b, *b1, *delta, *mlo, *mhi, *S;
1838 	double d2, ds, eps;
1839 	char *s, *s0;
1840 
1841 	if (word0(d) & Sign_bit) {
1842 		/* set sign for everything, including 0's and NaNs */
1843 		*sign = 1;
1844 		word0(d) &= ~Sign_bit;	/* clear sign bit */
1845 	}
1846 	else
1847 		*sign = 0;
1848 
1849 #if defined(IEEE_Arith) + defined(VAX)
1850 #ifdef IEEE_Arith
1851 	if ((word0(d) & Exp_mask) == Exp_mask)
1852 #else
1853 	if (word0(d)  == 0x8000)
1854 #endif
1855 	{
1856 		/* Infinity or NaN */
1857 		*decpt = 9999;
1858 		s =
1859 #ifdef IEEE_Arith
1860 			!word1(d) && !(word0(d) & 0xfffff) ? "Infinity" :
1861 #endif
1862 				"NaN";
1863 		if (rve)
1864 			*rve =
1865 #ifdef IEEE_Arith
1866 				s[3] ? s + 8 :
1867 #endif
1868 						s + 3;
1869 		return s;
1870 	}
1871 #endif
1872 #ifdef IBM
1873 	d += 0; /* normalize */
1874 #endif
1875 	if (!d) {
1876 		*decpt = 1;
1877 		s = "0";
1878 		if (rve)
1879 			*rve = s + 1;
1880 		return s;
1881 	}
1882 
1883 	b = d2b(d, &be, &bbits);
1884 #ifdef Sudden_Underflow
1885 	i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
1886 #else
1887 	if ( (i = (int)((word0(d) >> Exp_shift1) & (Exp_mask>>Exp_shift1))) ) {
1888 #endif
1889 		d2 = d;
1890 		word0(d2) &= Frac_mask1;
1891 		word0(d2) |= Exp_11;
1892 #ifdef IBM
1893 		if ( (j = 11 - hi0bits(word0(d2) & Frac_mask)) )
1894 			d2 /= 1 << j;
1895 #endif
1896 
1897 		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5
1898 		 * log10(x)	 =  log(x) / log(10)
1899 		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
1900 		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
1901 		 *
1902 		 * This suggests computing an approximation k to log10(d) by
1903 		 *
1904 		 * k = (i - Bias)*0.301029995663981
1905 		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
1906 		 *
1907 		 * We want k to be too large rather than too small.
1908 		 * The error in the first-order Taylor series approximation
1909 		 * is in our favor, so we just round up the constant enough
1910 		 * to compensate for any error in the multiplication of
1911 		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
1912 		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
1913 		 * adding 1e-13 to the constant term more than suffices.
1914 		 * Hence we adjust the constant term to 0.1760912590558.
1915 		 * (We could get a more accurate k by invoking log10,
1916 		 *  but this is probably not worthwhile.)
1917 		 */
1918 
1919 		i -= Bias;
1920 #ifdef IBM
1921 		i <<= 2;
1922 		i += j;
1923 #endif
1924 #ifndef Sudden_Underflow
1925 		denorm = 0;
1926 	} else {
1927 		/* d is denormalized */
1928 
1929 		i = bbits + be + (Bias + (P-1) - 1);
1930 		x = i > 32  ? ((word0(d) << (64 - i)) | (word1(d) >> (i - 32)))
1931 			    : (word1(d) << (32 - i));
1932 		d2 = x;
1933 		word0(d2) -= 31*Exp_msk1; /* adjust exponent */
1934 		i -= (Bias + (P-1) - 1) + 1;
1935 		denorm = 1;
1936 	}
1937 #endif
1938 	ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
1939 	k = (int)ds;
1940 	if (ds < 0. && ds != k)
1941 		k--;	/* want k = floor(ds) */
1942 	k_check = 1;
1943 	if (k >= 0 && k <= Ten_pmax) {
1944 		if (d < tens[k])
1945 			k--;
1946 		k_check = 0;
1947 	}
1948 	j = bbits - i - 1;
1949 	if (j >= 0) {
1950 		b2 = 0;
1951 		s2 = j;
1952 	} else {
1953 		b2 = -j;
1954 		s2 = 0;
1955 	}
1956 	if (k >= 0) {
1957 		b5 = 0;
1958 		s5 = k;
1959 		s2 += k;
1960 	} else {
1961 		b2 -= k;
1962 		b5 = -k;
1963 		s5 = 0;
1964 	}
1965 	if (mode < 0 || mode > 9)
1966 		mode = 0;
1967 	try_quick = 1;
1968 	if (mode > 5) {
1969 		mode -= 4;
1970 		try_quick = 0;
1971 	}
1972 	leftright = 1;
1973 	switch(mode) {
1974 		case 0:
1975 		case 1:
1976 			ilim = ilim1 = -1;
1977 			i = 18;
1978 			ndigits = 0;
1979 			break;
1980 		case 2:
1981 			leftright = 0;
1982 			/* no break */
1983 		case 4:
1984 			if (ndigits <= 0)
1985 				ndigits = 1;
1986 			ilim = ilim1 = i = ndigits;
1987 			break;
1988 		case 3:
1989 			leftright = 0;
1990 			/* no break */
1991 		case 5:
1992 			i = ndigits + k + 1;
1993 			ilim = i;
1994 			ilim1 = i - 1;
1995 			if (i <= 0)
1996 				i = 1;
1997 	}
1998 	*resultp = (char *) malloc(i + 1);
1999 	s = s0 = *resultp;
2000 
2001 	if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2002 
2003 		/* Try to get by with floating-point arithmetic. */
2004 
2005 		i = 0;
2006 		d2 = d;
2007 		k0 = k;
2008 		ilim0 = ilim;
2009 		ieps = 2; /* conservative */
2010 		if (k > 0) {
2011 			ds = tens[k&0xf];
2012 			j = k >> 4;
2013 			if (j & Bletch) {
2014 				/* prevent overflows */
2015 				j &= Bletch - 1;
2016 				d /= bigtens[n_bigtens-1];
2017 				ieps++;
2018 			}
2019 			for (; j; j >>= 1, i++)
2020 				if (j & 1) {
2021 					ieps++;
2022 					ds *= bigtens[i];
2023 				}
2024 			d /= ds;
2025 		} else if ( (j1 = -k) ) {
2026 			d *= tens[j1 & 0xf];
2027 			for (j = j1 >> 4; j; j >>= 1, i++)
2028 				if (j & 1) {
2029 					ieps++;
2030 					d *= bigtens[i];
2031 				}
2032 		}
2033 		if (k_check && d < 1. && ilim > 0) {
2034 			if (ilim1 <= 0)
2035 				goto fast_failed;
2036 			ilim = ilim1;
2037 			k--;
2038 			d *= 10.;
2039 			ieps++;
2040 		}
2041 		eps = ieps*d + 7.;
2042 		word0(eps) -= (P-1)*Exp_msk1;
2043 		if (ilim == 0) {
2044 			S = mhi = 0;
2045 			d -= 5.;
2046 			if (d > eps)
2047 				goto one_digit;
2048 			if (d < -eps)
2049 				goto no_digits;
2050 			goto fast_failed;
2051 		}
2052 #ifndef No_leftright
2053 		if (leftright) {
2054 			/* Use Steele & White method of only
2055 			 * generating digits needed.
2056 			 */
2057 			eps = 0.5/tens[ilim-1] - eps;
2058 			for (i = 0;;) {
2059 				L = d;
2060 				d -= L;
2061 				*s++ = '0' + (int)L;
2062 				if (d < eps)
2063 					goto ret1;
2064 				if (1. - d < eps)
2065 					goto bump_up;
2066 				if (++i >= ilim)
2067 					break;
2068 				eps *= 10.;
2069 				d *= 10.;
2070 			}
2071 		} else {
2072 #endif
2073 			/* Generate ilim digits, then fix them up. */
2074 			eps *= tens[ilim-1];
2075 			for (i = 1;; i++, d *= 10.) {
2076 				L = d;
2077 				d -= L;
2078 				*s++ = '0' + (int)L;
2079 				if (i == ilim) {
2080 					if (d > 0.5 + eps)
2081 						goto bump_up;
2082 					else if (d < 0.5 - eps) {
2083 						while (*--s == '0');
2084 						s++;
2085 						goto ret1;
2086 					}
2087 					break;
2088 				}
2089 			}
2090 #ifndef No_leftright
2091 		}
2092 #endif
2093  fast_failed:
2094 		s = s0;
2095 		d = d2;
2096 		k = k0;
2097 		ilim = ilim0;
2098 	}
2099 
2100 	/* Do we have a "small" integer? */
2101 
2102 	if (be >= 0 && k <= Int_max) {
2103 		/* Yes. */
2104 		ds = tens[k];
2105 		if (ndigits < 0 && ilim <= 0) {
2106 			S = mhi = 0;
2107 			if (ilim < 0 || d <= 5*ds)
2108 				goto no_digits;
2109 			goto one_digit;
2110 		}
2111 		for (i = 1;; i++) {
2112 			L = d / ds;
2113 			d -= L*ds;
2114 #ifdef Check_FLT_ROUNDS
2115 			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
2116 			if (d < 0) {
2117 				L--;
2118 				d += ds;
2119 			}
2120 #endif
2121 			*s++ = '0' + (int)L;
2122 			if (i == ilim) {
2123 				d += d;
2124 				if (d > ds || (d == ds && L & 1)) {
2125  bump_up:
2126 					while (*--s == '9')
2127 						if (s == s0) {
2128 							k++;
2129 							*s = '0';
2130 							break;
2131 						}
2132 					++*s++;
2133 				}
2134 				break;
2135 			}
2136 			if (!(d *= 10.))
2137 				break;
2138 		}
2139 		goto ret1;
2140 	}
2141 
2142 	m2 = b2;
2143 	m5 = b5;
2144 	mhi = mlo = 0;
2145 	if (leftright) {
2146 		if (mode < 2) {
2147 			i =
2148 #ifndef Sudden_Underflow
2149 				denorm ? be + (Bias + (P-1) - 1 + 1) :
2150 #endif
2151 #ifdef IBM
2152 				1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
2153 #else
2154 				1 + P - bbits;
2155 #endif
2156 		} else {
2157 			j = ilim - 1;
2158 			if (m5 >= j)
2159 				m5 -= j;
2160 			else {
2161 				s5 += j -= m5;
2162 				b5 += j;
2163 				m5 = 0;
2164 			}
2165 			if ((i = ilim) < 0) {
2166 				m2 -= i;
2167 				i = 0;
2168 			}
2169 		}
2170 		b2 += i;
2171 		s2 += i;
2172 		mhi = i2b(1);
2173 	}
2174 	if (m2 > 0 && s2 > 0) {
2175 		i = m2 < s2 ? m2 : s2;
2176 		b2 -= i;
2177 		m2 -= i;
2178 		s2 -= i;
2179 	}
2180 	if (b5 > 0) {
2181 		if (leftright) {
2182 			if (m5 > 0) {
2183 				mhi = pow5mult(mhi, m5);
2184 				b1 = mult(mhi, b);
2185 				Bfree(b);
2186 				b = b1;
2187 				}
2188 			if ( (j = b5 - m5) )
2189 				b = pow5mult(b, j);
2190 		} else
2191 			b = pow5mult(b, b5);
2192 	}
2193 	S = i2b(1);
2194 	if (s5 > 0)
2195 		S = pow5mult(S, s5);
2196 
2197 	/* Check for special case that d is a normalized power of 2. */
2198 
2199 	if (mode < 2) {
2200 		if (!word1(d) && !(word0(d) & Bndry_mask)
2201 #ifndef Sudden_Underflow
2202 		 && word0(d) & Exp_mask
2203 #endif
2204 				) {
2205 			/* The special case */
2206 			b2 += Log2P;
2207 			s2 += Log2P;
2208 			spec_case = 1;
2209 		} else
2210 			spec_case = 0;
2211 	}
2212 
2213 	/* Arrange for convenient computation of quotients:
2214 	 * shift left if necessary so divisor has 4 leading 0 bits.
2215 	 *
2216 	 * Perhaps we should just compute leading 28 bits of S once
2217 	 * and for all and pass them and a shift to quorem, so it
2218 	 * can do shifts and ors to compute the numerator for q.
2219 	 */
2220 #ifdef Pack_32
2221 	if ( (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) )
2222 		i = 32 - i;
2223 #else
2224 	if ( (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) )
2225 		i = 16 - i;
2226 #endif
2227 	if (i > 4) {
2228 		i -= 4;
2229 		b2 += i;
2230 		m2 += i;
2231 		s2 += i;
2232 	} else if (i < 4) {
2233 		i += 28;
2234 		b2 += i;
2235 		m2 += i;
2236 		s2 += i;
2237 	}
2238 	if (b2 > 0)
2239 		b = lshift(b, b2);
2240 	if (s2 > 0)
2241 		S = lshift(S, s2);
2242 	if (k_check) {
2243 		if (cmp(b,S) < 0) {
2244 			k--;
2245 			b = multadd(b, 10, 0);	/* we botched the k estimate */
2246 			if (leftright)
2247 				mhi = multadd(mhi, 10, 0);
2248 			ilim = ilim1;
2249 		}
2250 	}
2251 	if (ilim <= 0 && mode > 2) {
2252 		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
2253 			/* no digits, fcvt style */
2254  no_digits:
2255 			k = -1 - ndigits;
2256 			goto ret;
2257 		}
2258  one_digit:
2259 		*s++ = '1';
2260 		k++;
2261 		goto ret;
2262 	}
2263 	if (leftright) {
2264 		if (m2 > 0)
2265 			mhi = lshift(mhi, m2);
2266 
2267 		/* Compute mlo -- check for special case
2268 		 * that d is a normalized power of 2.
2269 		 */
2270 
2271 		mlo = mhi;
2272 		if (spec_case) {
2273 			mhi = Balloc(mhi->k);
2274 			Bcopy(mhi, mlo);
2275 			mhi = lshift(mhi, Log2P);
2276 		}
2277 
2278 		for (i = 1;;i++) {
2279 			dig = quorem(b,S) + '0';
2280 			/* Do we yet have the shortest decimal string
2281 			 * that will round to d?
2282 			 */
2283 			j = cmp(b, mlo);
2284 			delta = diff(S, mhi);
2285 			j1 = delta->sign ? 1 : cmp(b, delta);
2286 			Bfree(delta);
2287 #ifndef ROUND_BIASED
2288 			if (j1 == 0 && !mode && !(word1(d) & 1)) {
2289 				if (dig == '9')
2290 					goto round_9_up;
2291 				if (j > 0)
2292 					dig++;
2293 				*s++ = dig;
2294 				goto ret;
2295 			}
2296 #endif
2297 			if (j < 0 || (j == 0 && !mode
2298 #ifndef ROUND_BIASED
2299 							&& !(word1(d) & 1)
2300 #endif
2301 					)) {
2302 				if (j1 > 0) {
2303 					b = lshift(b, 1);
2304 					j1 = cmp(b, S);
2305 					if ((j1 > 0 || (j1 == 0 && dig & 1))
2306 					&& dig++ == '9')
2307 						goto round_9_up;
2308 				}
2309 				*s++ = dig;
2310 				goto ret;
2311 			}
2312 			if (j1 > 0) {
2313 				if (dig == '9') { /* possible if i == 1 */
2314  round_9_up:
2315 					*s++ = '9';
2316 					goto roundoff;
2317 				}
2318 				*s++ = dig + 1;
2319 				goto ret;
2320 			}
2321 			*s++ = dig;
2322 			if (i == ilim)
2323 				break;
2324 			b = multadd(b, 10, 0);
2325 			if (mlo == mhi)
2326 				mlo = mhi = multadd(mhi, 10, 0);
2327 			else {
2328 				mlo = multadd(mlo, 10, 0);
2329 				mhi = multadd(mhi, 10, 0);
2330 			}
2331 		}
2332 	} else
2333 		for (i = 1;; i++) {
2334 			*s++ = dig = quorem(b,S) + '0';
2335 			if (i >= ilim)
2336 				break;
2337 			b = multadd(b, 10, 0);
2338 		}
2339 
2340 	/* Round off last digit */
2341 
2342 	b = lshift(b, 1);
2343 	j = cmp(b, S);
2344 	if (j > 0 || (j == 0 && dig & 1)) {
2345  roundoff:
2346 		while (*--s == '9')
2347 			if (s == s0) {
2348 				k++;
2349 				*s++ = '1';
2350 				goto ret;
2351 			}
2352 		++*s++;
2353 	} else {
2354 		while (*--s == '0');
2355 		s++;
2356 	}
2357  ret:
2358 	Bfree(S);
2359 	if (mhi) {
2360 		if (mlo && mlo != mhi)
2361 			Bfree(mlo);
2362 		Bfree(mhi);
2363 	}
2364  ret1:
2365 	Bfree(b);
2366 	if (s == s0) {	/* don't return empty string */
2367 		*s++ = '0';
2368 		k = 0;
2369 	}
2370 	*s = 0;
2371 	*decpt = k + 1;
2372 	if (rve)
2373 		*rve = s;
2374 	return s0;
2375 }
2376 #endif	// 0 -> __dtoa() is removed from the build
2377 
2378 #ifdef __cplusplus
2379 }
2380 #endif
2381