xref: /haiku/src/add-ons/kernel/drivers/power/x86_cpuidle/acpi_cpuidle.cpp (revision 215b685f7fd7d2f9a04260bb164be31ddc001ea2)
1 /*
2  * Copyright 2012, Haiku, Inc. All Rights Reserved.
3  *
4  * Distributed under the terms of the MIT License.
5  *
6  * Authors:
7  *		Yongcong Du <ycdu.vmcore@gmail.com>
8  */
9 
10 
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 
15 #include <ACPI.h>
16 #include <Drivers.h>
17 #include <Errors.h>
18 #include <KernelExport.h>
19 
20 #include <arch_system_info.h>
21 #include <cpu.h>
22 #include <cpuidle.h>
23 #include <smp.h>
24 
25 #include "x86_cpuidle.h"
26 
27 
28 #define ACPI_PDC_REVID		0x1
29 #define ACPI_OSC_QUERY		(1 << 0)
30 
31 #define ACPI_PDC_P_FFH		(1 << 0)
32 #define ACPI_PDC_C_C1_HALT	(1 << 1)
33 #define ACPI_PDC_T_FFH		(1 << 2)
34 #define ACPI_PDC_SMP_C1PT	(1 << 3)
35 #define ACPI_PDC_SMP_C2C3	(1 << 4)
36 #define ACPI_PDC_SMP_P_SW	(1 << 5)
37 #define ACPI_PDC_SMP_C_SW	(1 << 6)
38 #define ACPI_PDC_SMP_T_SW	(1 << 7)
39 #define ACPI_PDC_C_C1_FFH	(1 << 8)
40 #define ACPI_PDC_C_C2C3_FFH	(1 << 9)
41 #define ACPI_PDC_P_HWCOORD	(1 << 11)
42 
43 // Bus Master check required
44 #define ACPI_PDC_GAS_BM		(1 << 1)
45 
46 #define ACPI_CSTATE_HALT	0x1
47 #define ACPI_CSTATE_SYSIO	0x2
48 #define ACPI_CSTATE_FFH		0x3
49 
50 // Bus Master Check
51 #define ACPI_FLAG_C_BM		(1 << 0)
52 // Bus master arbitration
53 #define ACPI_FLAG_C_ARB		(1 << 1)
54 
55 // Copied from acpica's actypes.h, where's the best place to put?
56 #define ACPI_BITREG_BUS_MASTER_STATUS           0x01
57 #define ACPI_BITREG_BUS_MASTER_RLD              0x0F
58 #define ACPI_BITREG_ARB_DISABLE                 0x13
59 
60 #define ACPI_STATE_C0                   (uint8) 0
61 #define ACPI_STATE_C1                   (uint8) 1
62 #define ACPI_STATE_C2                   (uint8) 2
63 #define ACPI_STATE_C3                   (uint8) 3
64 #define ACPI_C_STATES_MAX               ACPI_STATE_C3
65 #define ACPI_C_STATE_COUNT              4
66 
67 
68 #define ACPI_CPUIDLE_MODULE_NAME "drivers/power/x86_cpuidle/acpi/driver_v1"
69 
70 
71 struct acpicpu_reg {
72 	uint8	reg_desc;
73 	uint16	reg_reslen;
74 	uint8	reg_spaceid;
75 	uint8	reg_bitwidth;
76 	uint8	reg_bitoffset;
77 	uint8	reg_accesssize;
78 	uint64	reg_addr;
79 } __attribute__((packed));
80 
81 struct acpi_cpuidle_driver_info {
82 	device_node *node;
83 	acpi_device_module_info *acpi;
84 	acpi_device acpi_cookie;
85 	uint32 flags;
86 	int32 cpuIndex;
87 };
88 
89 struct acpi_cstate_info {
90 	uint32 address;
91 	uint8 skip_bm_sts;
92 	uint8 method;
93 	uint8 type;
94 };
95 
96 
97 static acpi_cpuidle_driver_info *sAcpiProcessor[SMP_MAX_CPUS];
98 static CpuidleDevice sAcpiDevice;
99 static device_manager_info *sDeviceManager;
100 static acpi_module_info *sAcpi;
101 
102 CpuidleModuleInfo *gIdle;
103 
104 
105 static status_t
acpi_eval_pdc(acpi_cpuidle_driver_info * device)106 acpi_eval_pdc(acpi_cpuidle_driver_info *device)
107 {
108 	acpi_objects arg;
109 	acpi_object_type obj;
110 	uint32 cap[3];
111 
112 	arg.count = 1;
113 	arg.pointer = &obj;
114 	cap[0] = 1;
115 	cap[1] = 1;
116 	cap[2] = ACPI_PDC_C_C1_HALT | ACPI_PDC_SMP_C1PT | ACPI_PDC_SMP_C2C3;
117 	cap[2] |= ACPI_PDC_SMP_P_SW | ACPI_PDC_SMP_C_SW | ACPI_PDC_SMP_T_SW;
118 	cap[2] |= ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH;
119 	cap[2] |= ACPI_PDC_SMP_T_SW | ACPI_PDC_P_FFH | ACPI_PDC_P_HWCOORD
120 		| ACPI_PDC_T_FFH;
121 	obj.object_type = ACPI_TYPE_BUFFER;
122 	obj.data.buffer.length = sizeof(cap);
123 	obj.data.buffer.buffer = cap;
124 	status_t status = device->acpi->evaluate_method(device->acpi_cookie, "_PDC",
125 		&arg, NULL);
126 	return status;
127 }
128 
129 
130 static status_t
acpi_eval_osc(acpi_cpuidle_driver_info * device)131 acpi_eval_osc(acpi_cpuidle_driver_info *device)
132 {
133 	// guid for intel platform
134 	dprintf("%s@%p\n", __func__, device->acpi_cookie);
135 	static uint8 uuid[] = {
136 		0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29, 0xBE, 0x47,
137 		0x9E, 0xBD, 0xD8, 0x70, 0x58, 0x71, 0x39, 0x53
138 	};
139 	uint32 cap[2];
140 	cap[0] = 0;
141 	cap[1] = ACPI_PDC_C_C1_HALT | ACPI_PDC_SMP_C1PT | ACPI_PDC_SMP_C2C3;
142 	cap[1] |= ACPI_PDC_SMP_P_SW | ACPI_PDC_SMP_C_SW | ACPI_PDC_SMP_T_SW;
143 	cap[1] |= ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH;
144 	cap[1] |= ACPI_PDC_SMP_T_SW | ACPI_PDC_P_FFH | ACPI_PDC_P_HWCOORD
145 		| ACPI_PDC_T_FFH;
146 
147 	acpi_objects arg;
148 	acpi_object_type obj[4];
149 
150 	arg.count = 4;
151 	arg.pointer = obj;
152 
153 	obj[0].object_type = ACPI_TYPE_BUFFER;
154 	obj[0].data.buffer.length = sizeof(uuid);
155 	obj[0].data.buffer.buffer = uuid;
156 	obj[1].object_type = ACPI_TYPE_INTEGER;
157 	obj[1].data.integer = ACPI_PDC_REVID;
158 	obj[2].object_type = ACPI_TYPE_INTEGER;
159 	obj[2].data.integer = sizeof(cap)/sizeof(cap[0]);
160 	obj[3].object_type = ACPI_TYPE_BUFFER;
161 	obj[3].data.buffer.length = sizeof(cap);
162 	obj[3].data.buffer.buffer = (void *)cap;
163 
164 	acpi_data buf;
165 	buf.pointer = NULL;
166 	buf.length = ACPI_ALLOCATE_LOCAL_BUFFER;
167 	status_t status = device->acpi->evaluate_method(device->acpi_cookie, "_OSC",
168 		&arg, &buf);
169 	if (status != B_OK)
170 		return status;
171 	acpi_object_type *osc = (acpi_object_type *)buf.pointer;
172 	if (osc->object_type != ACPI_TYPE_BUFFER)
173 		return B_BAD_TYPE;
174 	if (osc->data.buffer.length != sizeof(cap))
175 		return B_BUFFER_OVERFLOW;
176 	return status;
177 }
178 
179 
180 static inline bool
acpi_cstate_bm_check(void)181 acpi_cstate_bm_check(void)
182 {
183 	uint32 val;
184 	sAcpi->read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &val);
185 	if (!val)
186 		return false;
187 	sAcpi->write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
188 
189 	return true;
190 }
191 
192 
193 static inline void
acpi_cstate_ffh_enter(CpuidleCstate * cState)194 acpi_cstate_ffh_enter(CpuidleCstate *cState)
195 {
196 	cpu_ent *cpu = get_cpu_struct();
197 	if (cpu->invoke_scheduler)
198 		return;
199 
200 	x86_monitor((void *)&cpu->invoke_scheduler, 0, 0);
201 	if (!cpu->invoke_scheduler)
202 		x86_mwait((unsigned long)cState->pData, 1);
203 }
204 
205 
206 static inline void
acpi_cstate_halt(void)207 acpi_cstate_halt(void)
208 {
209 	cpu_ent *cpu = get_cpu_struct();
210 	if (cpu->invoke_scheduler)
211 		return;
212 	asm("hlt");
213 }
214 
215 
216 static void
acpi_cstate_enter(CpuidleCstate * cState)217 acpi_cstate_enter(CpuidleCstate *cState)
218 {
219 	acpi_cstate_info *ci = (acpi_cstate_info *)cState->pData;
220 	if (ci->method == ACPI_CSTATE_FFH)
221 		acpi_cstate_ffh_enter(cState);
222 	else if (ci->method == ACPI_CSTATE_SYSIO)
223 		in8(ci->address);
224 	else
225 		acpi_cstate_halt();
226 }
227 
228 
229 static int32
acpi_cstate_idle(int32 state,CpuidleDevice * device)230 acpi_cstate_idle(int32 state, CpuidleDevice *device)
231 {
232 	CpuidleCstate *cState = &device->cStates[state];
233 	acpi_cstate_info *ci = (acpi_cstate_info *)cState->pData;
234 	if (!ci->skip_bm_sts) {
235 		// we fall back to C1 if there's bus master activity
236 		if (acpi_cstate_bm_check())
237 			state = 1;
238 	}
239 	if (ci->type != ACPI_STATE_C3)
240 		acpi_cstate_enter(cState);
241 
242 	// set BM_RLD for Bus Master to activity to wake the system from C3
243 	// With Newer chipsets BM_RLD is a NOP Since DMA is automatically handled
244 	// during C3 State
245 	acpi_cpuidle_driver_info *pi = sAcpiProcessor[smp_get_current_cpu()];
246 	if (pi->flags & ACPI_FLAG_C_BM)
247 		sAcpi->write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
248 
249 	// disable bus master arbitration during C3
250 	if (pi->flags & ACPI_FLAG_C_ARB)
251 		sAcpi->write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
252 
253 	acpi_cstate_enter(cState);
254 
255 	// clear BM_RLD and re-enable the arbiter
256 	if (pi->flags & ACPI_FLAG_C_BM)
257 		sAcpi->write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
258 
259 	if (pi->flags & ACPI_FLAG_C_ARB)
260 		sAcpi->write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
261 
262 	return state;
263 }
264 
265 
266 static status_t
acpi_cstate_add(acpi_object_type * object,CpuidleCstate * cState)267 acpi_cstate_add(acpi_object_type *object, CpuidleCstate *cState)
268 {
269 	acpi_cstate_info *ci = (acpi_cstate_info *)malloc(sizeof(acpi_cstate_info));
270 	if (!ci)
271 		return B_NO_MEMORY;
272 
273 	if (object->object_type != ACPI_TYPE_PACKAGE) {
274 		dprintf("invalid _CST object\n");
275 		goto error;
276 	}
277 
278 	if (object->data.package.count != 4) {
279 		dprintf("invalid _CST number\n");
280 		goto error;
281 	}
282 
283 	// type
284 	acpi_object_type * pointer = &object->data.package.objects[1];
285 	if (pointer->object_type != ACPI_TYPE_INTEGER) {
286 		dprintf("invalid _CST elem type\n");
287 		goto error;
288 	}
289 	uint32 n = pointer->data.integer;
290 	if (n < 1 || n > 3) {
291 		dprintf("invalid _CST elem value\n");
292 		goto error;
293 	}
294 	ci->type = n;
295 	dprintf("C%" B_PRId32 "\n", n);
296 	snprintf(cState->name, sizeof(cState->name), "C%" B_PRId32, n);
297 
298 	// Latency
299 	pointer = &object->data.package.objects[2];
300 	if (pointer->object_type != ACPI_TYPE_INTEGER) {
301 		dprintf("invalid _CST elem type\n");
302 		goto error;
303 	}
304 	n = pointer->data.integer;
305 	cState->latency = n;
306 	dprintf("Latency: %" B_PRId32 "\n", n);
307 
308 	// power
309 	pointer = &object->data.package.objects[3];
310 	if (pointer->object_type != ACPI_TYPE_INTEGER) {
311 		dprintf("invalid _CST elem type\n");
312 		goto error;
313 	}
314 	n = pointer->data.integer;
315 	dprintf("power: %" B_PRId32 "\n", n);
316 
317 	// register
318 	pointer = &object->data.package.objects[0];
319 	if (pointer->object_type != ACPI_TYPE_BUFFER) {
320 		dprintf("invalid _CST elem type\n");
321 		goto error;
322 	}
323 	if (pointer->data.buffer.length < 15) {
324 		dprintf("invalid _CST elem length\n");
325 		goto error;
326 	}
327 
328 	struct acpicpu_reg *reg = (struct acpicpu_reg *)pointer->data.buffer.buffer;
329 	switch (reg->reg_spaceid) {
330 		case ACPI_ADR_SPACE_SYSTEM_IO:
331 			dprintf("IO method\n");
332 			if (reg->reg_addr == 0) {
333 				dprintf("illegal address\n");
334 				goto error;
335 			}
336 			if (reg->reg_bitwidth != 8) {
337 				dprintf("invalid source length\n");
338 				goto error;
339 			}
340 			ci->address = reg->reg_addr;
341 			ci->method = ACPI_CSTATE_SYSIO;
342 			break;
343 		case ACPI_ADR_SPACE_FIXED_HARDWARE:
344 		{
345 			dprintf("FFH method\n");
346 			ci->method = ACPI_CSTATE_FFH;
347 			ci->address = reg->reg_addr;
348 
349 			// skip checking BM_STS if ACPI_PDC_GAS_BM is cleared
350 			cpu_ent *cpu = get_cpu_struct();
351 			if ((cpu->arch.vendor == VENDOR_INTEL) &&
352 				!(reg->reg_accesssize & ACPI_PDC_GAS_BM))
353 				ci->skip_bm_sts = 1;
354 			break;
355 		}
356 		default:
357 			dprintf("invalid spaceid %" B_PRId8 "\n", reg->reg_spaceid);
358 			break;
359 	}
360 	cState->pData = ci;
361 	cState->EnterIdle = acpi_cstate_idle;
362 
363 	return B_OK;
364 error:
365 	free(ci);
366 	return B_ERROR;
367 }
368 
369 
370 static void
acpi_cstate_quirks(acpi_cpuidle_driver_info * device)371 acpi_cstate_quirks(acpi_cpuidle_driver_info *device)
372 {
373 	cpu_ent *cpu = get_cpu_struct();
374 	// Calculated Model Value: M = (Extended Model << 4) + Model
375 	uint32 model = (cpu->arch.extended_model << 4) + cpu->arch.model;
376 
377 	// On all recent Intel platforms, ARB_DIS is not necessary
378 	if (cpu->arch.vendor != VENDOR_INTEL)
379 		return;
380 	if (cpu->arch.family > 0xf || (cpu->arch.family == 6 && model >= 0xf))
381 		device->flags &= ~ACPI_FLAG_C_ARB;
382 }
383 
384 
385 static status_t
acpi_cpuidle_setup(acpi_cpuidle_driver_info * device)386 acpi_cpuidle_setup(acpi_cpuidle_driver_info *device)
387 {
388 	// _PDC is deprecated in the ACPI 3.0, we will try _OSC firstly
389 	// and fall back to _PDC if _OSC fail
390 	status_t status = acpi_eval_osc(device);
391 	if (status != B_OK)
392 		status = acpi_eval_pdc(device);
393 	if (status != B_OK) {
394 		dprintf("failed to eval _OSC and _PDC\n");
395 		return status;
396 	}
397 
398 	acpi_data buffer;
399 	buffer.pointer = NULL;
400 	buffer.length = ACPI_ALLOCATE_BUFFER;
401 
402 	dprintf("evaluate _CST @%p\n", device->acpi_cookie);
403 	status = device->acpi->evaluate_method(device->acpi_cookie, "_CST", NULL,
404 		&buffer);
405 	if (status != B_OK) {
406 		dprintf("failed to get _CST\n");
407 		return B_IO_ERROR;
408 	}
409 
410 	acpi_object_type *object = (acpi_object_type *)buffer.pointer;
411 	if (object->object_type != ACPI_TYPE_PACKAGE)
412 		dprintf("invalid _CST type\n");
413 	if (object->data.package.count < 2)
414 		dprintf("invalid _CST count\n");
415 
416 	acpi_object_type *pointer = object->data.package.objects;
417 	if (pointer[0].object_type != ACPI_TYPE_INTEGER)
418 		dprintf("invalid _CST type 2\n");
419 	uint32 n = pointer[0].data.integer;
420 	if (n != object->data.package.count - 1)
421 		dprintf("invalid _CST count 2\n");
422 	if (n > 8)
423 		dprintf("_CST has too many states\n");
424 	dprintf("cpuidle found %" B_PRId32 " cstates\n", n);
425 	uint32 count = 1;
426 	for (uint32 i = 1; i <= n; i++) {
427 		pointer = &object->data.package.objects[i];
428 		if (acpi_cstate_add(pointer, &sAcpiDevice.cStates[count]) == B_OK)
429 			++count;
430 	}
431 	sAcpiDevice.cStateCount = count;
432 	free(buffer.pointer);
433 
434 	// TODO we assume BM is a must and ARB_DIS is always available
435 	device->flags |= ACPI_FLAG_C_ARB | ACPI_FLAG_C_BM;
436 
437 	acpi_cstate_quirks(device);
438 
439 	return B_OK;
440 }
441 
442 
443 static status_t
acpi_cpuidle_init(void)444 acpi_cpuidle_init(void)
445 {
446 	dprintf("acpi_cpuidle_init\n");
447 
448 	for (int32 i = 0; i < smp_get_num_cpus(); i++)
449 		if (acpi_cpuidle_setup(sAcpiProcessor[i]) != B_OK)
450 			return B_ERROR;
451 
452 	status_t status = gIdle->AddDevice(&sAcpiDevice);
453 	if (status == B_OK)
454 		dprintf("using acpi idle\n");
455 	return status;
456 }
457 
458 
459 static status_t
acpi_processor_init(acpi_cpuidle_driver_info * device)460 acpi_processor_init(acpi_cpuidle_driver_info *device)
461 {
462 	// get the CPU index
463 	dprintf("get acpi processor @%p\n", device->acpi_cookie);
464 
465 	acpi_data buffer;
466 	buffer.pointer = NULL;
467 	buffer.length = ACPI_ALLOCATE_BUFFER;
468 	status_t status = device->acpi->evaluate_method(device->acpi_cookie, NULL,
469 		NULL, &buffer);
470 	if (status != B_OK) {
471 		dprintf("failed to get processor obj\n");
472 		return status;
473 	}
474 
475 	acpi_object_type *object = (acpi_object_type *)buffer.pointer;
476 	dprintf("acpi cpu%" B_PRId32 ": P_BLK at %#x/%lu\n",
477 		object->data.processor.cpu_id,
478 		object->data.processor.pblk_address,
479 		object->data.processor.pblk_length);
480 
481 	int32 cpuIndex = object->data.processor.cpu_id;
482 	free(buffer.pointer);
483 
484 	if (cpuIndex < 0 || cpuIndex >= smp_get_num_cpus())
485 		return B_ERROR;
486 
487 	device->cpuIndex = cpuIndex;
488 	sAcpiProcessor[cpuIndex] = device;
489 
490 	// If nodes for all processors have been registered, init the idle callback.
491 	for (int32 i = smp_get_num_cpus() - 1; i >= 0; i--) {
492 		if (sAcpiProcessor[i] == NULL)
493 			return B_OK;
494 	}
495 
496 	if (intel_cpuidle_init() == B_OK)
497 		return B_OK;
498 
499 	status = acpi_cpuidle_init();
500 	if (status != B_OK)
501 		sAcpiProcessor[cpuIndex] = NULL;
502 
503 	return status;
504 }
505 
506 
507 static float
acpi_cpuidle_support(device_node * parent)508 acpi_cpuidle_support(device_node *parent)
509 {
510 	const char *bus;
511 	uint32 device_type;
512 
513 	dprintf("acpi_cpuidle_support\n");
514 	// make sure parent is really the ACPI bus manager
515 	if (sDeviceManager->get_attr_string(parent, B_DEVICE_BUS, &bus, false))
516 		return -1;
517 
518 	if (strcmp(bus, "acpi") != 0)
519 		return 0.0;
520 
521 	// check whether it's really a cpu Device
522 	if (sDeviceManager->get_attr_uint32(parent, ACPI_DEVICE_TYPE_ITEM,
523 			&device_type, false) != B_OK
524 		|| device_type != ACPI_TYPE_PROCESSOR) {
525 		return 0.0;
526 	}
527 
528 	return 0.6;
529 }
530 
531 
532 static status_t
acpi_cpuidle_register_device(device_node * node)533 acpi_cpuidle_register_device(device_node *node)
534 {
535 	device_attr attrs[] = {
536 		{ B_DEVICE_PRETTY_NAME, B_STRING_TYPE, { .string = "ACPI CPU IDLE" }},
537 		{ NULL }
538 	};
539 
540 	dprintf("acpi_cpuidle_register_device\n");
541 	return sDeviceManager->register_node(node, ACPI_CPUIDLE_MODULE_NAME, attrs,
542 		NULL, NULL);
543 }
544 
545 
546 static status_t
acpi_cpuidle_init_driver(device_node * node,void ** driverCookie)547 acpi_cpuidle_init_driver(device_node *node, void **driverCookie)
548 {
549 	dprintf("acpi_cpuidle_init_driver\n");
550 	acpi_cpuidle_driver_info *device;
551 	device = (acpi_cpuidle_driver_info *)calloc(1, sizeof(*device));
552 	if (device == NULL)
553 		return B_NO_MEMORY;
554 
555 	device->node = node;
556 
557 	device_node *parent;
558 	parent = sDeviceManager->get_parent_node(node);
559 	sDeviceManager->get_driver(parent, (driver_module_info **)&device->acpi,
560 		(void **)&device->acpi_cookie);
561 	sDeviceManager->put_node(parent);
562 
563 	status_t status = acpi_processor_init(device);
564 	if (status != B_OK) {
565 		free(device);
566 		return status;
567 	}
568 
569 	*driverCookie = device;
570 	return B_OK;
571 }
572 
573 
574 static void
acpi_cpuidle_uninit_driver(void * driverCookie)575 acpi_cpuidle_uninit_driver(void *driverCookie)
576 {
577 	dprintf("acpi_cpuidle_uninit_driver");
578 	acpi_cpuidle_driver_info *device = (acpi_cpuidle_driver_info *)driverCookie;
579 	// TODO: When the first device to be unregistered, we'd need to balance the
580 	// gIdle->AddDevice() call, but ATM isn't any API for that.
581 	sAcpiProcessor[device->cpuIndex] = NULL;
582 	free(device);
583 }
584 
585 
586 module_dependency module_dependencies[] = {
587 	{ B_DEVICE_MANAGER_MODULE_NAME, (module_info **)&sDeviceManager },
588 	{ B_ACPI_MODULE_NAME, (module_info **)&sAcpi},
589 	{ B_CPUIDLE_MODULE_NAME, (module_info **)&gIdle },
590 	{}
591 };
592 
593 
594 static driver_module_info sAcpiidleModule = {
595 	{
596 		ACPI_CPUIDLE_MODULE_NAME,
597 		0,
598 		NULL
599 	},
600 
601 	acpi_cpuidle_support,
602 	acpi_cpuidle_register_device,
603 	acpi_cpuidle_init_driver,
604 	acpi_cpuidle_uninit_driver,
605 	NULL,
606 	NULL,	// rescan
607 	NULL,	// removed
608 };
609 
610 
611 module_info *modules[] = {
612 	(module_info *)&sAcpiidleModule,
613 	NULL
614 };
615