/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002 Jake Burkholder * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include int elf2aout32(void *v, int fd); int elf2aout64(void *v, int fd); #define xe16toh(x) ((data == ELFDATA2MSB) ? be16toh(x) : le16toh(x)) #define xe32toh(x) ((data == ELFDATA2MSB) ? be32toh(x) : le32toh(x)) #define xe64toh(x) ((data == ELFDATA2MSB) ? be64toh(x) : le64toh(x)) #define htoxe32(x) ((data == ELFDATA2MSB) ? htobe32(x) : htole32(x)) struct exec { u_int32_t a_magic; u_int32_t a_text; u_int32_t a_data; u_int32_t a_bss; u_int32_t a_syms; u_int32_t a_entry; u_int32_t a_trsize; u_int32_t a_drsize; }; /* we only support OMAGIC */ #define OMAGIC 0407 static void usage(void); /* parts from NetBSD */ #define MID_ZERO 0x000 /* unknown - implementation dependent */ #define MID_SUN010 0x001 /* sun 68010/68020 binary */ #define MID_SUN020 0x002 /* sun 68020-only binary */ #define MID_PC386 0x064 /* 386 PC binary. (so quoth BFD) */ #define MID_I386 0x086 /* i386 BSD binary */ #define MID_M68K 0x087 /* m68k BSD binary with 8K page sizes */ #define MID_M68K4K 0x088 /* m68k BSD binary with 4K page sizes */ #define MID_NS32532 0x089 /* ns32532 */ #define MID_SPARC 0x08a /* sparc */ #define MID_PMAX 0x08b /* pmax */ #define MID_VAX1K 0x08c /* VAX 1K page size binaries */ #define MID_ALPHA 0x08d /* Alpha BSD binary */ #define MID_MIPS 0x08e /* big-endian MIPS */ #define MID_ARM6 0x08f /* ARM6 */ #define MID_M680002K 0x090 /* m68000 with 2K page sizes */ #define MID_SH3 0x091 /* SH3 */ #define MID_POWERPC64 0x094 /* big-endian PowerPC 64 */ #define MID_POWERPC 0x095 /* big-endian PowerPC */ #define MID_VAX 0x096 /* VAX */ #define MID_MIPS1 0x097 /* MIPS1 */ #define MID_MIPS2 0x098 /* MIPS2 */ #define MID_M88K 0x099 /* m88k BSD */ #define MID_HPPA 0x09a /* HP PARISC */ #define MID_SH5_64 0x09b /* LP64 SH5 */ #define MID_SPARC64 0x09c /* LP64 sparc */ #define MID_X86_64 0x09d /* AMD x86-64 */ #define MID_SH5_32 0x09e /* ILP32 SH5 */ #define MID_IA64 0x09f /* Itanium */ #define MID_AARCH64 0x0b7 /* ARM AARCH64 */ #define MID_OR1K 0x0b8 /* OpenRISC 1000 */ #define MID_RISCV 0x0b9 /* Risc-V */ #define MID_HP200 0x0c8 /* hp200 (68010) BSD binary */ #define MID_HP300 0x12c /* hp300 (68020+68881) BSD binary */ #define MID_HPUX800 0x20b /* hp800 HP-UX binary */ #define MID_HPUX 0x20c /* hp200/300 HP-UX binary */ //(ex->e_machine, ex->e_ident[EI_DATA], ex->e_ident[EI_CLASS]) static uint32_t get_mid(int m, int e, int c) { switch (m) { case EM_AARCH64: return MID_AARCH64; case EM_ALPHA: return MID_ALPHA; case EM_ARM: return MID_ARM6; case EM_PARISC: return MID_HPPA; case EM_386: return MID_I386; case EM_68K: return MID_M68K; /* case EM_OR1K: return MID_OR1K;*/ case EM_MIPS: if (e == ELFDATA2LSB) return MID_PMAX; else return MID_MIPS; case EM_PPC: return MID_POWERPC; case EM_PPC64: return MID_POWERPC64; break; case EM_RISCV: return MID_RISCV; case EM_SH: return MID_SH3; case EM_SPARC: case EM_SPARC32PLUS: case EM_SPARCV9: if (c == ELFCLASS32) return MID_SPARC; return MID_SPARC64; case EM_X86_64: return MID_X86_64; case EM_VAX: return MID_VAX; case EM_NONE: return MID_ZERO; default: break; } return MID_ZERO; } int elf2aout32(void *v, int fd) { Elf32_Half phentsize; Elf32_Half phnum; Elf32_Word filesz; Elf32_Word memsz; Elf32_Addr entry; Elf32_Off offset; Elf32_Off phoff; Elf32_Word type; Elf32_Phdr *p; Elf32_Ehdr *e = v; unsigned char data = e->e_ident[EI_DATA]; struct exec a; int i; uint32_t mid; mid = get_mid(xe16toh(e->e_machine), e->e_ident[EI_DATA], e->e_ident[EI_CLASS]); phentsize = xe16toh(e->e_phentsize); if (phentsize != sizeof(*p)) errx(1, "phdr size mismatch"); entry = xe32toh(e->e_entry); phoff = xe32toh(e->e_phoff); phnum = xe16toh(e->e_phnum); p = (Elf32_Phdr *)((char *)e + phoff); bzero(&a, sizeof(a)); for (i = 0; i < phnum; i++) { type = xe32toh(p[i].p_type); switch (type) { case PT_LOAD: if (a.a_magic != 0) errx(1, "too many loadable segments"); filesz = xe32toh(p[i].p_filesz); memsz = xe32toh(p[i].p_memsz); offset = xe32toh(p[i].p_offset); a.a_magic = htoxe32(((uint32_t)mid << 16) | OMAGIC); a.a_text = htoxe32(filesz); a.a_bss = htoxe32(memsz - filesz); a.a_entry = htoxe32(entry); if (write(fd, &a, sizeof(a)) != sizeof(a) || write(fd, (char *)e + offset, filesz) != (ssize_t)filesz) err(1, NULL); break; default: break; } } return (0); } int elf2aout64(void *v, int fd) { Elf64_Half phentsize; Elf64_Half phnum; Elf64_Xword filesz; Elf64_Xword memsz; Elf64_Addr entry; Elf64_Off offset; Elf64_Off phoff; Elf64_Word type; Elf64_Phdr *p; Elf64_Ehdr *e = v; unsigned char data = e->e_ident[EI_DATA]; struct exec a; int i; uint32_t mid; mid = get_mid(xe16toh(e->e_machine), e->e_ident[EI_DATA], e->e_ident[EI_CLASS]); phentsize = xe16toh(e->e_phentsize); if (phentsize != sizeof(*p)) errx(1, "phdr size mismatch"); entry = xe64toh(e->e_entry); phoff = xe64toh(e->e_phoff); phnum = xe16toh(e->e_phnum); p = (Elf64_Phdr *)((char *)e + phoff); bzero(&a, sizeof(a)); for (i = 0; i < phnum; i++) { type = xe32toh(p[i].p_type); switch (type) { case PT_LOAD: if (a.a_magic != 0) errx(1, "too many loadable segments"); filesz = xe64toh(p[i].p_filesz); memsz = xe64toh(p[i].p_memsz); offset = xe64toh(p[i].p_offset); a.a_magic = htoxe32(((uint32_t)mid << 16) | OMAGIC); a.a_text = htoxe32(filesz); a.a_bss = htoxe32(memsz - filesz); a.a_entry = htoxe32(entry); if (write(fd, &a, sizeof(a)) != sizeof(a) || write(fd, (char *)e + offset, filesz) != (ssize_t)filesz) err(1, NULL); break; default: break; } } return (0); } /* * elf to a.out converter for freebsd/sparc64 bootblocks. */ int main(int ac, char **av) { unsigned char data; struct stat sb; Elf64_Ehdr *e; void *v; int efd; int fd; int c; fd = STDIN_FILENO; while ((c = getopt(ac, av, "o:")) != -1) switch (c) { case 'o': if ((fd = open(optarg, O_CREAT|O_RDWR, 0644)) < 0) err(1, "%s", optarg); break; case '?': default: usage(); } ac -= optind; av += optind; if (ac == 0) usage(); if ((efd = open(*av, O_RDONLY)) < 0 || fstat(efd, &sb) < 0) err(1, NULL); v = mmap(NULL, sb.st_size, PROT_READ, MAP_SHARED, efd, 0); if ((e = v) == MAP_FAILED) err(1, NULL); if (!IS_ELF(*e)) errx(1, "not an elf file"); if (e->e_ident[EI_CLASS] != ELFCLASS64 && e->e_ident[EI_CLASS] != ELFCLASS32) errx(1, "wrong class"); data = e->e_ident[EI_DATA]; if (data != ELFDATA2MSB && data != ELFDATA2LSB) errx(1, "wrong data format"); if (e->e_ident[EI_VERSION] != EV_CURRENT) errx(1, "wrong elf version"); if (e->e_ident[EI_CLASS] == ELFCLASS64) return elf2aout64(v, fd); else return elf2aout32(v, fd); } static void usage(void) { fprintf(stderr, "usage: elf2aout [-o outfile] infile\n"); exit(1); }