/* Print floating point number in hexadecimal notation according to ISO C99. Copyright (C) 1997-2002,2004,2006 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include #include #include #include #include #include #include #include #include "_itoa.h" #include "_itowa.h" #include /* #define NDEBUG 1*/ /* Undefine this for debugging assertions. */ #include int __printf_fphex (FILE *fp, const struct printf_info *info, const void *const *args); /* This defines make it possible to use the same code for GNU C library and the GNU I/O library. */ #ifdef USE_IN_LIBIO # include # define PUT(f, s, n) _IO_sputn (f, s, n) # define PAD(f, c, n) (wide ? _IO_wpadn (f, c, n) : _IO_padn (f, c, n)) /* We use this file GNU C library and GNU I/O library. So make names equal. */ # undef putc # define putc(c, f) (wide \ ? (int)_IO_putwc_unlocked (c, f) : _IO_putc_unlocked (c, f)) # define size_t _IO_size_t # define FILE _IO_FILE #else /* ! USE_IN_LIBIO */ # define PUT(f, s, n) fwrite (s, 1, n, f) # define PAD(f, c, n) __printf_pad (f, c, n) ssize_t __printf_pad __P ((FILE *, char pad, int n)); /* In vfprintf.c. */ #endif /* USE_IN_LIBIO */ /* Macros for doing the actual output. */ #define outchar(ch) \ do \ { \ register const int outc = (ch); \ if (putc (outc, fp) == EOF) \ return -1; \ ++done; \ } while (0) #define PRINT(ptr, wptr, len) \ do \ { \ register size_t outlen = (len); \ if (wide) \ while (outlen-- > 0) \ outchar (*wptr++); \ else \ while (outlen-- > 0) \ outchar (*ptr++); \ } while (0) #define PADN(ch, len) \ do \ { \ if (PAD (fp, ch, len) != len) \ return -1; \ done += len; \ } \ while (0) #ifndef MIN # define MIN(a,b) ((a)<(b)?(a):(b)) #endif #if defined(__x86_64__) || defined(__INTEL__) /* sysdeps/x86_64/fpu/printf_fphex.c */ #ifndef LONG_DOUBLE_DENORM_BIAS # define LONG_DOUBLE_DENORM_BIAS (IEEE854_LONG_DOUBLE_BIAS - 1) #endif #define PRINT_FPHEX_LONG_DOUBLE \ do { \ /* The "strange" 80 bit format on ix86 and m68k has an explicit \ leading digit in the 64 bit mantissa. */ \ unsigned long long int num; \ \ \ num = (((unsigned long long int) fpnum.ldbl.ieee.mantissa0) << 32 \ | fpnum.ldbl.ieee.mantissa1); \ \ zero_mantissa = num == 0; \ \ if (sizeof (unsigned long int) > 6) \ { \ numstr = _itoa_word (num, numbuf + sizeof numbuf, 16, \ info->spec == 'A'); \ wnumstr = _itowa_word (num, \ wnumbuf + sizeof (wnumbuf) / sizeof (wchar_t),\ 16, info->spec == 'A'); \ } \ else \ { \ numstr = _itoa (num, numbuf + sizeof numbuf, 16, info->spec == 'A');\ wnumstr = _itowa (num, \ wnumbuf + sizeof (wnumbuf) / sizeof (wchar_t), \ 16, info->spec == 'A'); \ } \ \ /* Fill with zeroes. */ \ while (numstr > numbuf + (sizeof numbuf - 64 / 4)) \ { \ *--numstr = '0'; \ *--wnumstr = L'0'; \ } \ \ /* We use a full nibble for the leading digit. */ \ leading = *numstr++; \ \ /* We have 3 bits from the mantissa in the leading nibble. \ Therefore we are here using `IEEE854_LONG_DOUBLE_BIAS + 3'. */ \ exponent = fpnum.ldbl.ieee.exponent; \ \ if (exponent == 0) \ { \ if (zero_mantissa) \ expnegative = 0; \ else \ { \ /* This is a denormalized number. */ \ expnegative = 1; \ /* This is a hook for the m68k long double format, where the \ exponent bias is the same for normalized and denormalized \ numbers. */ \ exponent = LONG_DOUBLE_DENORM_BIAS + 3; \ } \ } \ else if (exponent >= IEEE854_LONG_DOUBLE_BIAS + 3) \ { \ expnegative = 0; \ exponent -= IEEE854_LONG_DOUBLE_BIAS + 3; \ } \ else \ { \ expnegative = 1; \ exponent = -(exponent - (IEEE854_LONG_DOUBLE_BIAS + 3)); \ } \ } while (0) #endif /* __x86_64__ || __INTEL__ */ int __printf_fphex (FILE *fp, const struct printf_info *info, const void *const *args) { /* The floating-point value to output. */ union { union ieee754_double dbl; union ieee854_long_double ldbl; } fpnum; /* Locale-dependent representation of decimal point. */ const char *decimal; wchar_t decimalwc; /* "NaN" or "Inf" for the special cases. */ const char *special = NULL; const wchar_t *wspecial = NULL; /* Buffer for the generated number string for the mantissa. The maximal size for the mantissa is 128 bits. */ char numbuf[32]; char *numstr=""; char *numend; wchar_t wnumbuf[32]; wchar_t *wnumstr=L""; wchar_t *wnumend; int negative; /* The maximal exponent of two in decimal notation has 5 digits. */ char expbuf[5]; char *expstr; wchar_t wexpbuf[5]; wchar_t *wexpstr; int expnegative = 0; int exponent = 0; /* Non-zero is mantissa is zero. */ int zero_mantissa = 1; /* The leading digit before the decimal point. */ char leading = '0'; /* Precision. */ int precision = info->prec; /* Width. */ int width = info->width; /* Number of characters written. */ int done = 0; /* Nonzero if this is output on a wide character stream. */ int wide = info->wide; /* Figure out the decimal point character. */ if (info->extra == 0) { decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT); decimalwc = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC); } else { decimal = _NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT); decimalwc = _NL_CURRENT_WORD (LC_MONETARY, _NL_MONETARY_DECIMAL_POINT_WC); } /* The decimal point character must never be zero. */ assert (*decimal != '\0' && decimalwc != L'\0'); /* Fetch the argument value. */ #ifndef __NO_LONG_DOUBLE_MATH if (info->is_long_double && sizeof (long double) > sizeof (double)) { fpnum.ldbl.d = *(const long double *) args[0]; /* Check for special values: not a number or infinity. */ if (__isnanl (fpnum.ldbl.d)) { if (isupper (info->spec)) { special = "NAN"; wspecial = L"NAN"; } else { special = "nan"; wspecial = L"nan"; } negative = 0; } else { if (__isinfl (fpnum.ldbl.d)) { if (isupper (info->spec)) { special = "INF"; wspecial = L"INF"; } else { special = "inf"; wspecial = L"inf"; } } negative = signbit (fpnum.ldbl.d); } } else #endif /* no long double */ { fpnum.dbl.d = *(const double *) args[0]; /* Check for special values: not a number or infinity. */ if (__isnan (fpnum.dbl.d)) { if (isupper (info->spec)) { special = "NAN"; wspecial = L"NAN"; } else { special = "nan"; wspecial = L"nan"; } negative = 0; } else { if (__isinf (fpnum.dbl.d)) { if (isupper (info->spec)) { special = "INF"; wspecial = L"INF"; } else { special = "inf"; wspecial = L"inf"; } } negative = signbit (fpnum.dbl.d); } } if (special) { int width = info->width; if (negative || info->showsign || info->space) --width; width -= 3; if (!info->left && width > 0) PADN (' ', width); if (negative) outchar ('-'); else if (info->showsign) outchar ('+'); else if (info->space) outchar (' '); PRINT (special, wspecial, 3); if (info->left && width > 0) PADN (' ', width); return done; } if (info->is_long_double == 0 || sizeof (double) == sizeof (long double)) { /* We have 52 bits of mantissa plus one implicit digit. Since 52 bits are representable without rest using hexadecimal digits we use only the implicit digits for the number before the decimal point. */ unsigned long long int num; num = (((unsigned long long int) fpnum.dbl.ieee.mantissa0) << 32 | fpnum.dbl.ieee.mantissa1); zero_mantissa = num == 0; if (sizeof (unsigned long int) > 6) { wnumstr = _itowa_word (num, wnumbuf + (sizeof wnumbuf) / sizeof (wchar_t), 16, info->spec == 'A'); numstr = _itoa_word (num, numbuf + sizeof numbuf, 16, info->spec == 'A'); } else { wnumstr = _itowa (num, wnumbuf + sizeof wnumbuf / sizeof (wchar_t), 16, info->spec == 'A'); numstr = _itoa (num, numbuf + sizeof numbuf, 16, info->spec == 'A'); } /* Fill with zeroes. */ while (wnumstr > wnumbuf + (sizeof wnumbuf - 52) / sizeof (wchar_t)) { *--wnumstr = L'0'; *--numstr = '0'; } leading = fpnum.dbl.ieee.exponent == 0 ? '0' : '1'; exponent = fpnum.dbl.ieee.exponent; if (exponent == 0) { if (zero_mantissa) expnegative = 0; else { /* This is a denormalized number. */ expnegative = 1; exponent = IEEE754_DOUBLE_BIAS - 1; } } else if (exponent >= IEEE754_DOUBLE_BIAS) { expnegative = 0; exponent -= IEEE754_DOUBLE_BIAS; } else { expnegative = 1; exponent = -(exponent - IEEE754_DOUBLE_BIAS); } } #ifdef PRINT_FPHEX_LONG_DOUBLE else PRINT_FPHEX_LONG_DOUBLE; #endif /* Look for trailing zeroes. */ if (! zero_mantissa) { wnumend = &wnumbuf[sizeof wnumbuf / sizeof wnumbuf[0]]; numend = &numbuf[sizeof numbuf / sizeof numbuf[0]]; while (wnumend[-1] == L'0') { --wnumend; --numend; } if (precision == -1) precision = numend - numstr; else if (precision < numend - numstr && (numstr[precision] > '8' || (('A' < '0' || 'a' < '0') && numstr[precision] < '0') || (numstr[precision] == '8' && (precision + 1 < numend - numstr /* Round to even. */ || (precision > 0 && ((numstr[precision - 1] & 1) ^ (isdigit (numstr[precision - 1]) == 0))) || (precision == 0 && ((leading & 1) ^ (isdigit (leading) == 0))))))) { /* Round up. */ int cnt = precision; while (--cnt >= 0) { char ch = numstr[cnt]; /* We assume that the digits and the letters are ordered like in ASCII. This is true for the rest of GNU, too. */ if (ch == '9') { wnumstr[cnt] = (wchar_t) info->spec; numstr[cnt] = info->spec; /* This is tricky, think about it! */ break; } else if (tolower (ch) < 'f') { ++numstr[cnt]; ++wnumstr[cnt]; break; } else { numstr[cnt] = '0'; wnumstr[cnt] = L'0'; } } if (cnt < 0) { /* The mantissa so far was fff...f Now increment the leading digit. Here it is again possible that we get an overflow. */ if (leading == '9') leading = info->spec; else if (tolower (leading) < 'f') ++leading; else { leading = '1'; if (expnegative) { exponent -= 4; if (exponent <= 0) { exponent = -exponent; expnegative = 0; } } else exponent += 4; } } } } else { if (precision == -1) precision = 0; numend = numstr; wnumend = wnumstr; } /* Now we can compute the exponent string. */ expstr = _itoa_word (exponent, expbuf + sizeof expbuf, 10, 0); wexpstr = _itowa_word (exponent, wexpbuf + sizeof wexpbuf / sizeof (wchar_t), 10, 0); /* Now we have all information to compute the size. */ width -= ((negative || info->showsign || info->space) /* Sign. */ + 2 + 1 + 0 + precision + 1 + 1 /* 0x h . hhh P ExpoSign. */ + ((expbuf + sizeof expbuf) - expstr)); /* Exponent. */ /* Count the decimal point. A special case when the mantissa or the precision is zero and the `#' is not given. In this case we must not print the decimal point. */ if (precision > 0 || info->alt) width -= wide ? 1 : strlen (decimal); if (!info->left && info->pad != '0' && width > 0) PADN (' ', width); if (negative) outchar ('-'); else if (info->showsign) outchar ('+'); else if (info->space) outchar (' '); outchar ('0'); if ('X' - 'A' == 'x' - 'a') outchar (info->spec + ('x' - 'a')); else outchar (info->spec == 'A' ? 'X' : 'x'); if (!info->left && info->pad == '0' && width > 0) PADN ('0', width); outchar (leading); if (precision > 0 || info->alt) { const wchar_t *wtmp = &decimalwc; PRINT (decimal, wtmp, wide ? 1 : strlen (decimal)); } if (precision > 0) { ssize_t tofill = precision - (numend - numstr); PRINT (numstr, wnumstr, MIN (numend - numstr, precision)); if (tofill > 0) PADN ('0', tofill); } if ('P' - 'A' == 'p' - 'a') outchar (info->spec + ('p' - 'a')); else outchar (info->spec == 'A' ? 'P' : 'p'); outchar (expnegative ? '-' : '+'); PRINT (expstr, wexpstr, (expbuf + sizeof expbuf) - expstr); if (info->left && info->pad != '0' && width > 0) PADN (info->pad, width); return done; }