/* * Copyright 2002-2009, Axel Dörfler, axeld@pinc-software.de. * Distributed under the terms of the MIT License. * * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. * Distributed under the terms of the NewOS License. */ /*! This is main - initializes the kernel and launches the Bootscript */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vm/VMAnonymousCache.h" //#define TRACE_BOOT #ifdef TRACE_BOOT # define TRACE(x...) dprintf("INIT: " x) #else # define TRACE(x...) ; #endif bool gKernelStartup = true; static kernel_args sKernelArgs; static uint32 sCpuRendezvous; static uint32 sCpuRendezvous2; static int32 main2(void *); extern "C" int _start(kernel_args *bootKernelArgs, int currentCPU) { if (bootKernelArgs->kernel_args_size != sizeof(kernel_args) || bootKernelArgs->version != CURRENT_KERNEL_ARGS_VERSION) { // This is something we cannot handle right now - release kernels // should always be able to handle the kernel_args of earlier // released kernels. debug_early_boot_message("Version mismatch between boot loader and " "kernel!\n"); return -1; } smp_set_num_cpus(bootKernelArgs->num_cpus); // wait for all the cpus to get here smp_cpu_rendezvous(&sCpuRendezvous, currentCPU); // the passed in kernel args are in a non-allocated range of memory if (currentCPU == 0) memcpy(&sKernelArgs, bootKernelArgs, sizeof(kernel_args)); smp_cpu_rendezvous(&sCpuRendezvous2, currentCPU); // do any pre-booting cpu config cpu_preboot_init_percpu(&sKernelArgs, currentCPU); thread_preboot_init_percpu(&sKernelArgs, currentCPU); // if we're not a boot cpu, spin here until someone wakes us up if (smp_trap_non_boot_cpus(currentCPU)) { // init platform arch_platform_init(&sKernelArgs); // setup debug output debug_init(&sKernelArgs); set_dprintf_enabled(true); dprintf("Welcome to kernel debugger output!\n"); dprintf("Haiku revision: %lu\n", get_haiku_revision()); // init modules TRACE("init CPU\n"); cpu_init(&sKernelArgs); cpu_init_percpu(&sKernelArgs, currentCPU); TRACE("init interrupts\n"); int_init(&sKernelArgs); TRACE("init VM\n"); vm_init(&sKernelArgs); // Before vm_init_post_sem() is called, we have to make sure that // the boot loader allocated region is not used anymore low_resource_manager_init(); // now we can use the heap and create areas arch_platform_init_post_vm(&sKernelArgs); lock_debug_init(); TRACE("init driver_settings\n"); boot_item_init(); driver_settings_init(&sKernelArgs); debug_init_post_vm(&sKernelArgs); TRACE("init notification services\n"); notifications_init(); TRACE("init teams\n"); team_init(&sKernelArgs); TRACE("init ELF loader\n"); elf_init(&sKernelArgs); TRACE("init modules\n"); module_init(&sKernelArgs); TRACE("init semaphores\n"); haiku_sem_init(&sKernelArgs); TRACE("init interrupts post vm\n"); int_init_post_vm(&sKernelArgs); cpu_init_post_vm(&sKernelArgs); commpage_init(); TRACE("init system info\n"); system_info_init(&sKernelArgs); TRACE("init SMP\n"); smp_init(&sKernelArgs); TRACE("init timer\n"); timer_init(&sKernelArgs); TRACE("init real time clock\n"); rtc_init(&sKernelArgs); TRACE("init condition variables\n"); condition_variable_init(); // now we can create and use semaphores TRACE("init VM semaphores\n"); vm_init_post_sem(&sKernelArgs); TRACE("init generic syscall\n"); generic_syscall_init(); smp_init_post_generic_syscalls(); TRACE("init scheduler\n"); scheduler_init(); TRACE("init threads\n"); thread_init(&sKernelArgs); TRACE("init kernel daemons\n"); kernel_daemon_init(); arch_platform_init_post_thread(&sKernelArgs); TRACE("init VM threads\n"); vm_init_post_thread(&sKernelArgs); low_resource_manager_init_post_thread(); TRACE("init VFS\n"); vfs_init(&sKernelArgs); #if ENABLE_SWAP_SUPPORT TRACE("init swap support\n"); swap_init(); #endif TRACE("init POSIX semaphores\n"); realtime_sem_init(); xsi_sem_init(); xsi_msg_init(); // Start a thread to finish initializing the rest of the system. Note, // it won't be scheduled before calling scheduler_start() (on any CPU). TRACE("spawning main2 thread\n"); thread_id thread = spawn_kernel_thread(&main2, "main2", B_NORMAL_PRIORITY, NULL); send_signal_etc(thread, SIGCONT, B_DO_NOT_RESCHEDULE); // bring up the AP cpus in a lock step fashion TRACE("waking up AP cpus\n"); sCpuRendezvous = sCpuRendezvous2 = 0; smp_wake_up_non_boot_cpus(); smp_cpu_rendezvous(&sCpuRendezvous, 0); // wait until they're booted // exit the kernel startup phase (mutexes, etc work from now on out) TRACE("exiting kernel startup\n"); gKernelStartup = false; smp_cpu_rendezvous(&sCpuRendezvous2, 0); // release the AP cpus to go enter the scheduler TRACE("starting scheduler on cpu 0 and enabling interrupts\n"); scheduler_start(); enable_interrupts(); } else { // lets make sure we're in sync with the main cpu // the boot processor has probably been sending us // tlb sync messages all along the way, but we've // been ignoring them arch_cpu_global_TLB_invalidate(); // this is run for each non boot processor after they've been set loose cpu_init_percpu(&sKernelArgs, currentCPU); smp_per_cpu_init(&sKernelArgs, currentCPU); // wait for all other AP cpus to get to this point smp_cpu_rendezvous(&sCpuRendezvous, currentCPU); smp_cpu_rendezvous(&sCpuRendezvous2, currentCPU); // welcome to the machine scheduler_start(); enable_interrupts(); } TRACE("main: done... begin idle loop on cpu %d\n", currentCPU); for (;;) arch_cpu_idle(); return 0; } static int32 main2(void *unused) { (void)(unused); TRACE("start of main2: initializing devices\n"); boot_splash_init(sKernelArgs.boot_splash); commpage_init_post_cpus(); TRACE("init ports\n"); port_init(&sKernelArgs); TRACE("Init modules\n"); boot_splash_set_stage(BOOT_SPLASH_STAGE_1_INIT_MODULES); module_init_post_threads(); // init userland debugging TRACE("Init Userland debugging\n"); init_user_debug(); // init the messaging service TRACE("Init Messaging Service\n"); init_messaging_service(); /* bootstrap all the filesystems */ TRACE("Bootstrap file systems\n"); boot_splash_set_stage(BOOT_SPLASH_STAGE_2_BOOTSTRAP_FS); vfs_bootstrap_file_systems(); TRACE("Init Device Manager\n"); boot_splash_set_stage(BOOT_SPLASH_STAGE_3_INIT_DEVICES); device_manager_init(&sKernelArgs); TRACE("Add preloaded old-style drivers\n"); legacy_driver_add_preloaded(&sKernelArgs); int_init_post_device_manager(&sKernelArgs); TRACE("Mount boot file system\n"); boot_splash_set_stage(BOOT_SPLASH_STAGE_4_MOUNT_BOOT_FS); vfs_mount_boot_file_system(&sKernelArgs); #if ENABLE_SWAP_SUPPORT TRACE("swap_init_post_modules\n"); swap_init_post_modules(); #endif // CPU specific modules may now be available boot_splash_set_stage(BOOT_SPLASH_STAGE_5_INIT_CPU_MODULES); cpu_init_post_modules(&sKernelArgs); TRACE("vm_init_post_modules\n"); boot_splash_set_stage(BOOT_SPLASH_STAGE_6_INIT_VM_MODULES); vm_init_post_modules(&sKernelArgs); TRACE("debug_init_post_modules\n"); debug_init_post_modules(&sKernelArgs); TRACE("device_manager_init_post_modules\n"); device_manager_init_post_modules(&sKernelArgs); boot_splash_set_stage(BOOT_SPLASH_STAGE_7_RUN_BOOT_SCRIPT); boot_splash_uninit(); // NOTE: We could introduce a syscall to draw more icons indicating // stages in the boot script itself. Then we should not free the image. // In that case we should copy it over to the kernel heap, so that we // can still free the kernel args. // The boot splash screen is the last user of the kernel args. // Note: don't confuse the kernel_args structure (which is never freed) // with the kernel args ranges it contains (and which are freed here). vm_free_kernel_args(&sKernelArgs); // start the init process { KPath bootScriptPath; status_t status = find_directory(B_BEOS_SYSTEM_DIRECTORY, gBootDevice, false, bootScriptPath.LockBuffer(), bootScriptPath.BufferSize()); if (status != B_OK) dprintf("main2: find_directory() failed: %s\n", strerror(status)); bootScriptPath.UnlockBuffer(); status = bootScriptPath.Append("boot/Bootscript"); if (status != B_OK) { dprintf("main2: constructing path to Bootscript failed: " "%s\n", strerror(status)); } const char *args[] = { "/bin/sh", bootScriptPath.Path(), NULL }; int32 argc = 2; thread_id thread; thread = load_image(argc, args, NULL); if (thread >= B_OK) { resume_thread(thread); TRACE("Bootscript started\n"); } else dprintf("error starting \"%s\" error = %ld \n", args[0], thread); } return 0; }