/* * Copyright 2005-2011, Ingo Weinhold, ingo_weinhold@gmx.de. * Copyright 2002-2010, Axel Dörfler, axeld@pinc-software.de. * Distributed under the terms of the MIT License. * * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. * Distributed under the terms of the NewOS License. */ /*! Virtual File System and File System Interface Layer */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "EntryCache.h" #include "fifo.h" #include "IORequest.h" #include "unused_vnodes.h" #include "vfs_tracing.h" #include "Vnode.h" #include "../cache/vnode_store.h" //#define TRACE_VFS #ifdef TRACE_VFS # define TRACE(x) dprintf x # define FUNCTION(x) dprintf x #else # define TRACE(x) ; # define FUNCTION(x) ; #endif #define ADD_DEBUGGER_COMMANDS #define HAS_FS_CALL(vnode, op) (vnode->ops->op != NULL) #define HAS_FS_MOUNT_CALL(mount, op) (mount->volume->ops->op != NULL) #if KDEBUG # define FS_CALL(vnode, op, params...) \ ( HAS_FS_CALL(vnode, op) ? \ vnode->ops->op(vnode->mount->volume, vnode, params) \ : (panic("FS_CALL op " #op " is NULL"), 0)) # define FS_CALL_NO_PARAMS(vnode, op) \ ( HAS_FS_CALL(vnode, op) ? \ vnode->ops->op(vnode->mount->volume, vnode) \ : (panic("FS_CALL_NO_PARAMS op " #op " is NULL"), 0)) # define FS_MOUNT_CALL(mount, op, params...) \ ( HAS_FS_MOUNT_CALL(mount, op) ? \ mount->volume->ops->op(mount->volume, params) \ : (panic("FS_MOUNT_CALL op " #op " is NULL"), 0)) # define FS_MOUNT_CALL_NO_PARAMS(mount, op) \ ( HAS_FS_MOUNT_CALL(mount, op) ? \ mount->volume->ops->op(mount->volume) \ : (panic("FS_MOUNT_CALL_NO_PARAMS op " #op " is NULL"), 0)) #else # define FS_CALL(vnode, op, params...) \ vnode->ops->op(vnode->mount->volume, vnode, params) # define FS_CALL_NO_PARAMS(vnode, op) \ vnode->ops->op(vnode->mount->volume, vnode) # define FS_MOUNT_CALL(mount, op, params...) \ mount->volume->ops->op(mount->volume, params) # define FS_MOUNT_CALL_NO_PARAMS(mount, op) \ mount->volume->ops->op(mount->volume) #endif const static size_t kMaxPathLength = 65536; // The absolute maximum path length (for getcwd() - this is not depending // on PATH_MAX struct vnode_hash_key { dev_t device; ino_t vnode; }; typedef DoublyLinkedList VnodeList; /*! \brief Structure to manage a mounted file system Note: The root_vnode and covers_vnode fields (what others?) are initialized in fs_mount() and not changed afterwards. That is as soon as the mount is mounted and it is made sure it won't be unmounted (e.g. by holding a reference to a vnode of that mount) (read) access to those fields is always safe, even without additional locking. Morever while mounted the mount holds a reference to the covers_vnode, and thus making the access path vnode->mount->covers_vnode->mount->... safe if a reference to vnode is held (note that for the root mount covers_vnode is NULL, though). */ struct fs_mount { fs_mount() : volume(NULL), device_name(NULL) { recursive_lock_init(&rlock, "mount rlock"); } ~fs_mount() { recursive_lock_destroy(&rlock); free(device_name); while (volume) { fs_volume* superVolume = volume->super_volume; if (volume->file_system != NULL) put_module(volume->file_system->info.name); free(volume->file_system_name); free(volume); volume = superVolume; } } struct fs_mount* next; dev_t id; fs_volume* volume; char* device_name; recursive_lock rlock; // guards the vnodes list // TODO: Make this a mutex! It is never used recursively. struct vnode* root_vnode; struct vnode* covers_vnode; KPartition* partition; VnodeList vnodes; EntryCache entry_cache; bool unmounting; bool owns_file_device; }; struct advisory_lock : public DoublyLinkedListLinkImpl { list_link link; team_id team; pid_t session; off_t start; off_t end; bool shared; }; typedef DoublyLinkedList LockList; struct advisory_locking { sem_id lock; sem_id wait_sem; LockList locks; advisory_locking() : lock(-1), wait_sem(-1) { } ~advisory_locking() { if (lock >= 0) delete_sem(lock); if (wait_sem >= 0) delete_sem(wait_sem); } }; /*! \brief Guards sMountsTable. The holder is allowed to read/write access the sMountsTable. Manipulation of the fs_mount structures themselves (and their destruction) requires different locks though. */ static mutex sMountMutex = MUTEX_INITIALIZER("vfs_mount_lock"); /*! \brief Guards mount/unmount operations. The fs_mount() and fs_unmount() hold the lock during their whole operation. That is locking the lock ensures that no FS is mounted/unmounted. In particular this means that - sMountsTable will not be modified, - the fields immutable after initialization of the fs_mount structures in sMountsTable will not be modified, - vnode::covered_by of any vnode in sVnodeTable will not be modified. The thread trying to lock the lock must not hold sVnodeLock or sMountMutex. */ static recursive_lock sMountOpLock; /*! \brief Guards sVnodeTable. The holder is allowed read/write access to sVnodeTable and to any unbusy vnode in that table, save to the immutable fields (device, id, private_node, mount) to which only read-only access is allowed. The mutable fields advisory_locking, mandatory_locked_by, and ref_count, as well as the busy, removed, unused flags, and the vnode's type can also be write access when holding a read lock to sVnodeLock *and* having the vnode locked. Writing access to covered_by requires to write lock sVnodeLock. The thread trying to acquire the lock must not hold sMountMutex. You must not have this lock held when calling create_sem(), as this might call vfs_free_unused_vnodes() and thus cause a deadlock. */ static rw_lock sVnodeLock = RW_LOCK_INITIALIZER("vfs_vnode_lock"); /*! \brief Guards io_context::root. Must be held when setting or getting the io_context::root field. The only operation allowed while holding this lock besides getting or setting the field is inc_vnode_ref_count() on io_context::root. */ static mutex sIOContextRootLock = MUTEX_INITIALIZER("io_context::root lock"); #define VNODE_HASH_TABLE_SIZE 1024 static hash_table* sVnodeTable; static struct vnode* sRoot; #define MOUNTS_HASH_TABLE_SIZE 16 static hash_table* sMountsTable; static dev_t sNextMountID = 1; #define MAX_TEMP_IO_VECS 8 mode_t __gUmask = 022; /* function declarations */ static void free_unused_vnodes(); // file descriptor operation prototypes static status_t file_read(struct file_descriptor* descriptor, off_t pos, void* buffer, size_t* _bytes); static status_t file_write(struct file_descriptor* descriptor, off_t pos, const void* buffer, size_t* _bytes); static off_t file_seek(struct file_descriptor* descriptor, off_t pos, int seekType); static void file_free_fd(struct file_descriptor* descriptor); static status_t file_close(struct file_descriptor* descriptor); static status_t file_select(struct file_descriptor* descriptor, uint8 event, struct selectsync* sync); static status_t file_deselect(struct file_descriptor* descriptor, uint8 event, struct selectsync* sync); static status_t dir_read(struct io_context* context, struct file_descriptor* descriptor, struct dirent* buffer, size_t bufferSize, uint32* _count); static status_t dir_read(struct io_context* ioContext, struct vnode* vnode, void* cookie, struct dirent* buffer, size_t bufferSize, uint32* _count); static status_t dir_rewind(struct file_descriptor* descriptor); static void dir_free_fd(struct file_descriptor* descriptor); static status_t dir_close(struct file_descriptor* descriptor); static status_t attr_dir_read(struct io_context* context, struct file_descriptor* descriptor, struct dirent* buffer, size_t bufferSize, uint32* _count); static status_t attr_dir_rewind(struct file_descriptor* descriptor); static void attr_dir_free_fd(struct file_descriptor* descriptor); static status_t attr_dir_close(struct file_descriptor* descriptor); static status_t attr_read(struct file_descriptor* descriptor, off_t pos, void* buffer, size_t* _bytes); static status_t attr_write(struct file_descriptor* descriptor, off_t pos, const void* buffer, size_t* _bytes); static off_t attr_seek(struct file_descriptor* descriptor, off_t pos, int seekType); static void attr_free_fd(struct file_descriptor* descriptor); static status_t attr_close(struct file_descriptor* descriptor); static status_t attr_read_stat(struct file_descriptor* descriptor, struct stat* statData); static status_t attr_write_stat(struct file_descriptor* descriptor, const struct stat* stat, int statMask); static status_t index_dir_read(struct io_context* context, struct file_descriptor* descriptor, struct dirent* buffer, size_t bufferSize, uint32* _count); static status_t index_dir_rewind(struct file_descriptor* descriptor); static void index_dir_free_fd(struct file_descriptor* descriptor); static status_t index_dir_close(struct file_descriptor* descriptor); static status_t query_read(struct io_context* context, struct file_descriptor* descriptor, struct dirent* buffer, size_t bufferSize, uint32* _count); static status_t query_rewind(struct file_descriptor* descriptor); static void query_free_fd(struct file_descriptor* descriptor); static status_t query_close(struct file_descriptor* descriptor); static status_t common_ioctl(struct file_descriptor* descriptor, uint32 op, void* buffer, size_t length); static status_t common_read_stat(struct file_descriptor* descriptor, struct stat* statData); static status_t common_write_stat(struct file_descriptor* descriptor, const struct stat* statData, int statMask); static status_t common_path_read_stat(int fd, char* path, bool traverseLeafLink, struct stat* stat, bool kernel); static status_t vnode_path_to_vnode(struct vnode* vnode, char* path, bool traverseLeafLink, int count, bool kernel, struct vnode** _vnode, ino_t* _parentID); static status_t dir_vnode_to_path(struct vnode* vnode, char* buffer, size_t bufferSize, bool kernel); static status_t fd_and_path_to_vnode(int fd, char* path, bool traverseLeafLink, struct vnode** _vnode, ino_t* _parentID, bool kernel); static void inc_vnode_ref_count(struct vnode* vnode); static status_t dec_vnode_ref_count(struct vnode* vnode, bool alwaysFree, bool reenter); static inline void put_vnode(struct vnode* vnode); static status_t fs_unmount(char* path, dev_t mountID, uint32 flags, bool kernel); static int open_vnode(struct vnode* vnode, int openMode, bool kernel); static struct fd_ops sFileOps = { file_read, file_write, file_seek, common_ioctl, NULL, // set_flags file_select, file_deselect, NULL, // read_dir() NULL, // rewind_dir() common_read_stat, common_write_stat, file_close, file_free_fd }; static struct fd_ops sDirectoryOps = { NULL, // read() NULL, // write() NULL, // seek() common_ioctl, NULL, // set_flags NULL, // select() NULL, // deselect() dir_read, dir_rewind, common_read_stat, common_write_stat, dir_close, dir_free_fd }; static struct fd_ops sAttributeDirectoryOps = { NULL, // read() NULL, // write() NULL, // seek() common_ioctl, NULL, // set_flags NULL, // select() NULL, // deselect() attr_dir_read, attr_dir_rewind, common_read_stat, common_write_stat, attr_dir_close, attr_dir_free_fd }; static struct fd_ops sAttributeOps = { attr_read, attr_write, attr_seek, common_ioctl, NULL, // set_flags NULL, // select() NULL, // deselect() NULL, // read_dir() NULL, // rewind_dir() attr_read_stat, attr_write_stat, attr_close, attr_free_fd }; static struct fd_ops sIndexDirectoryOps = { NULL, // read() NULL, // write() NULL, // seek() NULL, // ioctl() NULL, // set_flags NULL, // select() NULL, // deselect() index_dir_read, index_dir_rewind, NULL, // read_stat() NULL, // write_stat() index_dir_close, index_dir_free_fd }; #if 0 static struct fd_ops sIndexOps = { NULL, // read() NULL, // write() NULL, // seek() NULL, // ioctl() NULL, // set_flags NULL, // select() NULL, // deselect() NULL, // dir_read() NULL, // dir_rewind() index_read_stat, // read_stat() NULL, // write_stat() NULL, // dir_close() NULL // free_fd() }; #endif static struct fd_ops sQueryOps = { NULL, // read() NULL, // write() NULL, // seek() NULL, // ioctl() NULL, // set_flags NULL, // select() NULL, // deselect() query_read, query_rewind, NULL, // read_stat() NULL, // write_stat() query_close, query_free_fd }; // VNodePutter class VNodePutter { public: VNodePutter(struct vnode* vnode = NULL) : fVNode(vnode) {} ~VNodePutter() { Put(); } void SetTo(struct vnode* vnode) { Put(); fVNode = vnode; } void Put() { if (fVNode) { put_vnode(fVNode); fVNode = NULL; } } struct vnode* Detach() { struct vnode* vnode = fVNode; fVNode = NULL; return vnode; } private: struct vnode* fVNode; }; class FDCloser { public: FDCloser() : fFD(-1), fKernel(true) {} FDCloser(int fd, bool kernel) : fFD(fd), fKernel(kernel) {} ~FDCloser() { Close(); } void SetTo(int fd, bool kernel) { Close(); fFD = fd; fKernel = kernel; } void Close() { if (fFD >= 0) { if (fKernel) _kern_close(fFD); else _user_close(fFD); fFD = -1; } } int Detach() { int fd = fFD; fFD = -1; return fd; } private: int fFD; bool fKernel; }; #if VFS_PAGES_IO_TRACING namespace VFSPagesIOTracing { class PagesIOTraceEntry : public AbstractTraceEntry { protected: PagesIOTraceEntry(struct vnode* vnode, void* cookie, off_t pos, const generic_io_vec* vecs, uint32 count, uint32 flags, generic_size_t bytesRequested, status_t status, generic_size_t bytesTransferred) : fVnode(vnode), fMountID(vnode->mount->id), fNodeID(vnode->id), fCookie(cookie), fPos(pos), fCount(count), fFlags(flags), fBytesRequested(bytesRequested), fStatus(status), fBytesTransferred(bytesTransferred) { fVecs = (generic_io_vec*)alloc_tracing_buffer_memcpy(vecs, sizeof(generic_io_vec) * count, false); } void AddDump(TraceOutput& out, const char* mode) { out.Print("vfs pages io %5s: vnode: %p (%ld, %lld), cookie: %p, " "pos: %lld, size: %llu, vecs: {", mode, fVnode, fMountID, fNodeID, fCookie, fPos, (uint64)fBytesRequested); if (fVecs != NULL) { for (uint32 i = 0; i < fCount; i++) { if (i > 0) out.Print(", "); out.Print("(%llx, %llu)", (uint64)fVecs[i].base, (uint64)fVecs[i].length); } } out.Print("}, flags: %#lx -> status: %#lx, transferred: %llu", fFlags, fStatus, (uint64)fBytesTransferred); } protected: struct vnode* fVnode; dev_t fMountID; ino_t fNodeID; void* fCookie; off_t fPos; generic_io_vec* fVecs; uint32 fCount; uint32 fFlags; generic_size_t fBytesRequested; status_t fStatus; generic_size_t fBytesTransferred; }; class ReadPages : public PagesIOTraceEntry { public: ReadPages(struct vnode* vnode, void* cookie, off_t pos, const generic_io_vec* vecs, uint32 count, uint32 flags, generic_size_t bytesRequested, status_t status, generic_size_t bytesTransferred) : PagesIOTraceEntry(vnode, cookie, pos, vecs, count, flags, bytesRequested, status, bytesTransferred) { Initialized(); } virtual void AddDump(TraceOutput& out) { PagesIOTraceEntry::AddDump(out, "read"); } }; class WritePages : public PagesIOTraceEntry { public: WritePages(struct vnode* vnode, void* cookie, off_t pos, const generic_io_vec* vecs, uint32 count, uint32 flags, generic_size_t bytesRequested, status_t status, generic_size_t bytesTransferred) : PagesIOTraceEntry(vnode, cookie, pos, vecs, count, flags, bytesRequested, status, bytesTransferred) { Initialized(); } virtual void AddDump(TraceOutput& out) { PagesIOTraceEntry::AddDump(out, "write"); } }; } // namespace VFSPagesIOTracing # define TPIO(x) new(std::nothrow) VFSPagesIOTracing::x; #else # define TPIO(x) ; #endif // VFS_PAGES_IO_TRACING static int mount_compare(void* _m, const void* _key) { struct fs_mount* mount = (fs_mount*)_m; const dev_t* id = (dev_t*)_key; if (mount->id == *id) return 0; return -1; } static uint32 mount_hash(void* _m, const void* _key, uint32 range) { struct fs_mount* mount = (fs_mount*)_m; const dev_t* id = (dev_t*)_key; if (mount) return mount->id % range; return (uint32)*id % range; } /*! Finds the mounted device (the fs_mount structure) with the given ID. Note, you must hold the gMountMutex lock when you call this function. */ static struct fs_mount* find_mount(dev_t id) { ASSERT_LOCKED_MUTEX(&sMountMutex); return (fs_mount*)hash_lookup(sMountsTable, (void*)&id); } static status_t get_mount(dev_t id, struct fs_mount** _mount) { struct fs_mount* mount; ReadLocker nodeLocker(sVnodeLock); MutexLocker mountLocker(sMountMutex); mount = find_mount(id); if (mount == NULL) return B_BAD_VALUE; struct vnode* rootNode = mount->root_vnode; if (rootNode == NULL || rootNode->IsBusy() || rootNode->ref_count == 0) { // might have been called during a mount/unmount operation return B_BUSY; } inc_vnode_ref_count(mount->root_vnode); *_mount = mount; return B_OK; } static void put_mount(struct fs_mount* mount) { if (mount) put_vnode(mount->root_vnode); } /*! Tries to open the specified file system module. Accepts a file system name of the form "bfs" or "file_systems/bfs/v1". Returns a pointer to file system module interface, or NULL if it could not open the module. */ static file_system_module_info* get_file_system(const char* fsName) { char name[B_FILE_NAME_LENGTH]; if (strncmp(fsName, "file_systems/", strlen("file_systems/"))) { // construct module name if we didn't get one // (we currently support only one API) snprintf(name, sizeof(name), "file_systems/%s/v1", fsName); fsName = NULL; } file_system_module_info* info; if (get_module(fsName ? fsName : name, (module_info**)&info) != B_OK) return NULL; return info; } /*! Accepts a file system name of the form "bfs" or "file_systems/bfs/v1" and returns a compatible fs_info.fsh_name name ("bfs" in both cases). The name is allocated for you, and you have to free() it when you're done with it. Returns NULL if the required memory is not available. */ static char* get_file_system_name(const char* fsName) { const size_t length = strlen("file_systems/"); if (strncmp(fsName, "file_systems/", length)) { // the name already seems to be the module's file name return strdup(fsName); } fsName += length; const char* end = strchr(fsName, '/'); if (end == NULL) { // this doesn't seem to be a valid name, but well... return strdup(fsName); } // cut off the trailing /v1 char* name = (char*)malloc(end + 1 - fsName); if (name == NULL) return NULL; strlcpy(name, fsName, end + 1 - fsName); return name; } /*! Accepts a list of file system names separated by a colon, one for each layer and returns the file system name for the specified layer. The name is allocated for you, and you have to free() it when you're done with it. Returns NULL if the required memory is not available or if there is no name for the specified layer. */ static char* get_file_system_name_for_layer(const char* fsNames, int32 layer) { while (layer >= 0) { const char* end = strchr(fsNames, ':'); if (end == NULL) { if (layer == 0) return strdup(fsNames); return NULL; } if (layer == 0) { size_t length = end - fsNames + 1; char* result = (char*)malloc(length); strlcpy(result, fsNames, length); return result; } fsNames = end + 1; layer--; } return NULL; } static int vnode_compare(void* _vnode, const void* _key) { struct vnode* vnode = (struct vnode*)_vnode; const struct vnode_hash_key* key = (vnode_hash_key*)_key; if (vnode->device == key->device && vnode->id == key->vnode) return 0; return -1; } static uint32 vnode_hash(void* _vnode, const void* _key, uint32 range) { struct vnode* vnode = (struct vnode*)_vnode; const struct vnode_hash_key* key = (vnode_hash_key*)_key; #define VHASH(mountid, vnodeid) \ (((uint32)((vnodeid) >> 32) + (uint32)(vnodeid)) ^ (uint32)(mountid)) if (vnode != NULL) return VHASH(vnode->device, vnode->id) % range; return VHASH(key->device, key->vnode) % range; #undef VHASH } static void add_vnode_to_mount_list(struct vnode* vnode, struct fs_mount* mount) { RecursiveLocker _(mount->rlock); mount->vnodes.Add(vnode); } static void remove_vnode_from_mount_list(struct vnode* vnode, struct fs_mount* mount) { RecursiveLocker _(mount->rlock); mount->vnodes.Remove(vnode); } /*! \brief Looks up a vnode by mount and node ID in the sVnodeTable. The caller must hold the sVnodeLock (read lock at least). \param mountID the mount ID. \param vnodeID the node ID. \return The vnode structure, if it was found in the hash table, \c NULL otherwise. */ static struct vnode* lookup_vnode(dev_t mountID, ino_t vnodeID) { struct vnode_hash_key key; key.device = mountID; key.vnode = vnodeID; return (vnode*)hash_lookup(sVnodeTable, &key); } /*! Creates a new vnode with the given mount and node ID. If the node already exists, it is returned instead and no new node is created. In either case -- but not, if an error occurs -- the function write locks \c sVnodeLock and keeps it locked for the caller when returning. On error the lock is not not held on return. \param mountID The mount ID. \param vnodeID The vnode ID. \param _vnode Will be set to the new vnode on success. \param _nodeCreated Will be set to \c true when the returned vnode has been newly created, \c false when it already existed. Will not be changed on error. \return \c B_OK, when the vnode was successfully created and inserted or a node with the given ID was found, \c B_NO_MEMORY or \c B_ENTRY_NOT_FOUND on error. */ static status_t create_new_vnode_and_lock(dev_t mountID, ino_t vnodeID, struct vnode*& _vnode, bool& _nodeCreated) { FUNCTION(("create_new_vnode_and_lock()\n")); struct vnode* vnode = (struct vnode*)malloc(sizeof(struct vnode)); if (vnode == NULL) return B_NO_MEMORY; // initialize basic values memset(vnode, 0, sizeof(struct vnode)); vnode->device = mountID; vnode->id = vnodeID; vnode->ref_count = 1; vnode->SetBusy(true); // look up the the node -- it might have been added by someone else in the // meantime rw_lock_write_lock(&sVnodeLock); struct vnode* existingVnode = lookup_vnode(mountID, vnodeID); if (existingVnode != NULL) { free(vnode); _vnode = existingVnode; _nodeCreated = false; return B_OK; } // get the mount structure mutex_lock(&sMountMutex); vnode->mount = find_mount(mountID); if (!vnode->mount || vnode->mount->unmounting) { mutex_unlock(&sMountMutex); rw_lock_write_unlock(&sVnodeLock); free(vnode); return B_ENTRY_NOT_FOUND; } // add the vnode to the mount's node list and the hash table hash_insert(sVnodeTable, vnode); add_vnode_to_mount_list(vnode, vnode->mount); mutex_unlock(&sMountMutex); _vnode = vnode; _nodeCreated = true; // keep the vnode lock locked return B_OK; } /*! Frees the vnode and all resources it has acquired, and removes it from the vnode hash as well as from its mount structure. Will also make sure that any cache modifications are written back. */ static void free_vnode(struct vnode* vnode, bool reenter) { ASSERT_PRINT(vnode->ref_count == 0 && vnode->IsBusy(), "vnode: %p\n", vnode); // write back any changes in this vnode's cache -- but only // if the vnode won't be deleted, in which case the changes // will be discarded if (!vnode->IsRemoved() && HAS_FS_CALL(vnode, fsync)) FS_CALL_NO_PARAMS(vnode, fsync); // Note: If this vnode has a cache attached, there will still be two // references to that cache at this point. The last one belongs to the vnode // itself (cf. vfs_get_vnode_cache()) and one belongs to the node's file // cache. Each but the last reference to a cache also includes a reference // to the vnode. The file cache, however, released its reference (cf. // file_cache_create()), so that this vnode's ref count has the chance to // ever drop to 0. Deleting the file cache now, will cause the next to last // cache reference to be released, which will also release a (no longer // existing) vnode reference. To avoid problems, we set the vnode's ref // count, so that it will neither become negative nor 0. vnode->ref_count = 2; if (!vnode->IsUnpublished()) { if (vnode->IsRemoved()) FS_CALL(vnode, remove_vnode, reenter); else FS_CALL(vnode, put_vnode, reenter); } // If the vnode has a VMCache attached, make sure that it won't try to get // another reference via VMVnodeCache::AcquireUnreferencedStoreRef(). As // long as the vnode is busy and in the hash, that won't happen, but as // soon as we've removed it from the hash, it could reload the vnode -- with // a new cache attached! if (vnode->cache != NULL) ((VMVnodeCache*)vnode->cache)->VnodeDeleted(); // The file system has removed the resources of the vnode now, so we can // make it available again (by removing the busy vnode from the hash). rw_lock_write_lock(&sVnodeLock); hash_remove(sVnodeTable, vnode); rw_lock_write_unlock(&sVnodeLock); // if we have a VMCache attached, remove it if (vnode->cache) vnode->cache->ReleaseRef(); vnode->cache = NULL; remove_vnode_from_mount_list(vnode, vnode->mount); free(vnode); } /*! \brief Decrements the reference counter of the given vnode and deletes it, if the counter dropped to 0. The caller must, of course, own a reference to the vnode to call this function. The caller must not hold the sVnodeLock or the sMountMutex. \param vnode the vnode. \param alwaysFree don't move this vnode into the unused list, but really delete it if possible. \param reenter \c true, if this function is called (indirectly) from within a file system. This will be passed to file system hooks only. \return \c B_OK, if everything went fine, an error code otherwise. */ static status_t dec_vnode_ref_count(struct vnode* vnode, bool alwaysFree, bool reenter) { ReadLocker locker(sVnodeLock); AutoLocker nodeLocker(vnode); int32 oldRefCount = atomic_add(&vnode->ref_count, -1); ASSERT_PRINT(oldRefCount > 0, "vnode %p\n", vnode); TRACE(("dec_vnode_ref_count: vnode %p, ref now %ld\n", vnode, vnode->ref_count)); if (oldRefCount != 1) return B_OK; if (vnode->IsBusy()) panic("dec_vnode_ref_count: called on busy vnode %p\n", vnode); bool freeNode = false; bool freeUnusedNodes = false; // Just insert the vnode into an unused list if we don't need // to delete it if (vnode->IsRemoved() || alwaysFree) { vnode_to_be_freed(vnode); vnode->SetBusy(true); freeNode = true; } else freeUnusedNodes = vnode_unused(vnode); nodeLocker.Unlock(); locker.Unlock(); if (freeNode) free_vnode(vnode, reenter); else if (freeUnusedNodes) free_unused_vnodes(); return B_OK; } /*! \brief Increments the reference counter of the given vnode. The caller must make sure that the node isn't deleted while this function is called. This can be done either: - by ensuring that a reference to the node exists and remains in existence, or - by holding the vnode's lock (which also requires read locking sVnodeLock) or by holding sVnodeLock write locked. In the second case the caller is responsible for dealing with the ref count 0 -> 1 transition. That is 1. this function must not be invoked when the node is busy in the first place and 2. vnode_used() must be called for the node. \param vnode the vnode. */ static void inc_vnode_ref_count(struct vnode* vnode) { atomic_add(&vnode->ref_count, 1); TRACE(("inc_vnode_ref_count: vnode %p, ref now %ld\n", vnode, vnode->ref_count)); } static bool is_special_node_type(int type) { // at the moment only FIFOs are supported return S_ISFIFO(type); } static status_t create_special_sub_node(struct vnode* vnode, uint32 flags) { if (S_ISFIFO(vnode->Type())) return create_fifo_vnode(vnode->mount->volume, vnode); return B_BAD_VALUE; } /*! \brief Retrieves a vnode for a given mount ID, node ID pair. If the node is not yet in memory, it will be loaded. The caller must not hold the sVnodeLock or the sMountMutex. \param mountID the mount ID. \param vnodeID the node ID. \param _vnode Pointer to a vnode* variable into which the pointer to the retrieved vnode structure shall be written. \param reenter \c true, if this function is called (indirectly) from within a file system. \return \c B_OK, if everything when fine, an error code otherwise. */ static status_t get_vnode(dev_t mountID, ino_t vnodeID, struct vnode** _vnode, bool canWait, int reenter) { FUNCTION(("get_vnode: mountid %ld vnid 0x%Lx %p\n", mountID, vnodeID, _vnode)); rw_lock_read_lock(&sVnodeLock); int32 tries = 2000; // try for 10 secs restart: struct vnode* vnode = lookup_vnode(mountID, vnodeID); AutoLocker nodeLocker(vnode); if (vnode && vnode->IsBusy()) { nodeLocker.Unlock(); rw_lock_read_unlock(&sVnodeLock); if (!canWait || --tries < 0) { // vnode doesn't seem to become unbusy dprintf("vnode %ld:%Ld is not becoming unbusy!\n", mountID, vnodeID); return B_BUSY; } snooze(5000); // 5 ms rw_lock_read_lock(&sVnodeLock); goto restart; } TRACE(("get_vnode: tried to lookup vnode, got %p\n", vnode)); status_t status; if (vnode) { if (vnode->ref_count == 0) { // this vnode has been unused before vnode_used(vnode); } inc_vnode_ref_count(vnode); nodeLocker.Unlock(); rw_lock_read_unlock(&sVnodeLock); } else { // we need to create a new vnode and read it in rw_lock_read_unlock(&sVnodeLock); // unlock -- create_new_vnode_and_lock() write-locks on success bool nodeCreated; status = create_new_vnode_and_lock(mountID, vnodeID, vnode, nodeCreated); if (status != B_OK) return status; if (!nodeCreated) { rw_lock_read_lock(&sVnodeLock); rw_lock_write_unlock(&sVnodeLock); goto restart; } rw_lock_write_unlock(&sVnodeLock); int type; uint32 flags; status = FS_MOUNT_CALL(vnode->mount, get_vnode, vnodeID, vnode, &type, &flags, reenter); if (status == B_OK && vnode->private_node == NULL) status = B_BAD_VALUE; bool gotNode = status == B_OK; bool publishSpecialSubNode = false; if (gotNode) { vnode->SetType(type); publishSpecialSubNode = is_special_node_type(type) && (flags & B_VNODE_DONT_CREATE_SPECIAL_SUB_NODE) == 0; } if (gotNode && publishSpecialSubNode) status = create_special_sub_node(vnode, flags); if (status != B_OK) { if (gotNode) FS_CALL(vnode, put_vnode, reenter); rw_lock_write_lock(&sVnodeLock); hash_remove(sVnodeTable, vnode); remove_vnode_from_mount_list(vnode, vnode->mount); rw_lock_write_unlock(&sVnodeLock); free(vnode); return status; } rw_lock_read_lock(&sVnodeLock); vnode->Lock(); vnode->SetRemoved((flags & B_VNODE_PUBLISH_REMOVED) != 0); vnode->SetBusy(false); vnode->Unlock(); rw_lock_read_unlock(&sVnodeLock); } TRACE(("get_vnode: returning %p\n", vnode)); *_vnode = vnode; return B_OK; } /*! \brief Decrements the reference counter of the given vnode and deletes it, if the counter dropped to 0. The caller must, of course, own a reference to the vnode to call this function. The caller must not hold the sVnodeLock or the sMountMutex. \param vnode the vnode. */ static inline void put_vnode(struct vnode* vnode) { dec_vnode_ref_count(vnode, false, false); } static void free_unused_vnodes(int32 level) { unused_vnodes_check_started(); if (level == B_NO_LOW_RESOURCE) { unused_vnodes_check_done(); return; } flush_hot_vnodes(); // determine how many nodes to free uint32 count = 1; { MutexLocker unusedVnodesLocker(sUnusedVnodesLock); switch (level) { case B_LOW_RESOURCE_NOTE: count = sUnusedVnodes / 100; break; case B_LOW_RESOURCE_WARNING: count = sUnusedVnodes / 10; break; case B_LOW_RESOURCE_CRITICAL: count = sUnusedVnodes; break; } if (count > sUnusedVnodes) count = sUnusedVnodes; } // Write back the modified pages of some unused vnodes and free them. for (uint32 i = 0; i < count; i++) { ReadLocker vnodesReadLocker(sVnodeLock); // get the first node MutexLocker unusedVnodesLocker(sUnusedVnodesLock); struct vnode* vnode = (struct vnode*)list_get_first_item( &sUnusedVnodeList); unusedVnodesLocker.Unlock(); if (vnode == NULL) break; // lock the node AutoLocker nodeLocker(vnode); // Check whether the node is still unused -- since we only append to the // the tail of the unused queue, the vnode should still be at its head. // Alternatively we could check its ref count for 0 and its busy flag, // but if the node is no longer at the head of the queue, it means it // has been touched in the meantime, i.e. it is no longer the least // recently used unused vnode and we rather don't free it. unusedVnodesLocker.Lock(); if (vnode != list_get_first_item(&sUnusedVnodeList)) continue; unusedVnodesLocker.Unlock(); ASSERT(!vnode->IsBusy()); // grab a reference inc_vnode_ref_count(vnode); vnode_used(vnode); // write back changes and free the node nodeLocker.Unlock(); vnodesReadLocker.Unlock(); if (vnode->cache != NULL) vnode->cache->WriteModified(); dec_vnode_ref_count(vnode, true, false); // this should free the vnode when it's still unused } unused_vnodes_check_done(); } static void free_unused_vnodes() { free_unused_vnodes( low_resource_state(B_KERNEL_RESOURCE_PAGES | B_KERNEL_RESOURCE_MEMORY | B_KERNEL_RESOURCE_ADDRESS_SPACE)); } static void vnode_low_resource_handler(void* /*data*/, uint32 resources, int32 level) { TRACE(("vnode_low_resource_handler(level = %ld)\n", level)); free_unused_vnodes(level); } static inline void put_advisory_locking(struct advisory_locking* locking) { release_sem(locking->lock); } /*! Returns the advisory_locking object of the \a vnode in case it has one, and locks it. You have to call put_advisory_locking() when you're done with it. Note, you must not have the vnode mutex locked when calling this function. */ static struct advisory_locking* get_advisory_locking(struct vnode* vnode) { rw_lock_read_lock(&sVnodeLock); vnode->Lock(); struct advisory_locking* locking = vnode->advisory_locking; sem_id lock = locking != NULL ? locking->lock : B_ERROR; vnode->Unlock(); rw_lock_read_unlock(&sVnodeLock); if (lock >= 0) lock = acquire_sem(lock); if (lock < 0) { // This means the locking has been deleted in the mean time // or had never existed in the first place - otherwise, we // would get the lock at some point. return NULL; } return locking; } /*! Creates a locked advisory_locking object, and attaches it to the given \a vnode. Returns B_OK in case of success - also if the vnode got such an object from someone else in the mean time, you'll still get this one locked then. */ static status_t create_advisory_locking(struct vnode* vnode) { if (vnode == NULL) return B_FILE_ERROR; ObjectDeleter lockingDeleter; struct advisory_locking* locking = NULL; while (get_advisory_locking(vnode) == NULL) { // no locking object set on the vnode yet, create one if (locking == NULL) { locking = new(std::nothrow) advisory_locking; if (locking == NULL) return B_NO_MEMORY; lockingDeleter.SetTo(locking); locking->wait_sem = create_sem(0, "advisory lock"); if (locking->wait_sem < 0) return locking->wait_sem; locking->lock = create_sem(0, "advisory locking"); if (locking->lock < 0) return locking->lock; } // set our newly created locking object ReadLocker _(sVnodeLock); AutoLocker nodeLocker(vnode); if (vnode->advisory_locking == NULL) { vnode->advisory_locking = locking; lockingDeleter.Detach(); return B_OK; } } // The vnode already had a locking object. That's just as well. return B_OK; } /*! Retrieves the first lock that has been set by the current team. */ static status_t get_advisory_lock(struct vnode* vnode, struct flock* flock) { struct advisory_locking* locking = get_advisory_locking(vnode); if (locking == NULL) return B_BAD_VALUE; // TODO: this should probably get the flock by its file descriptor! team_id team = team_get_current_team_id(); status_t status = B_BAD_VALUE; LockList::Iterator iterator = locking->locks.GetIterator(); while (iterator.HasNext()) { struct advisory_lock* lock = iterator.Next(); if (lock->team == team) { flock->l_start = lock->start; flock->l_len = lock->end - lock->start + 1; status = B_OK; break; } } put_advisory_locking(locking); return status; } /*! Returns \c true when either \a flock is \c NULL or the \a flock intersects with the advisory_lock \a lock. */ static bool advisory_lock_intersects(struct advisory_lock* lock, struct flock* flock) { if (flock == NULL) return true; return lock->start <= flock->l_start - 1 + flock->l_len && lock->end >= flock->l_start; } /*! Removes the specified lock, or all locks of the calling team if \a flock is NULL. */ static status_t release_advisory_lock(struct vnode* vnode, struct flock* flock) { FUNCTION(("release_advisory_lock(vnode = %p, flock = %p)\n", vnode, flock)); struct advisory_locking* locking = get_advisory_locking(vnode); if (locking == NULL) return B_OK; // TODO: use the thread ID instead?? team_id team = team_get_current_team_id(); pid_t session = thread_get_current_thread()->team->session_id; // find matching lock entries LockList::Iterator iterator = locking->locks.GetIterator(); while (iterator.HasNext()) { struct advisory_lock* lock = iterator.Next(); bool removeLock = false; if (lock->session == session) removeLock = true; else if (lock->team == team && advisory_lock_intersects(lock, flock)) { bool endsBeyond = false; bool startsBefore = false; if (flock != NULL) { startsBefore = lock->start < flock->l_start; endsBeyond = lock->end > flock->l_start - 1 + flock->l_len; } if (!startsBefore && !endsBeyond) { // lock is completely contained in flock removeLock = true; } else if (startsBefore && !endsBeyond) { // cut the end of the lock lock->end = flock->l_start - 1; } else if (!startsBefore && endsBeyond) { // cut the start of the lock lock->start = flock->l_start + flock->l_len; } else { // divide the lock into two locks struct advisory_lock* secondLock = new advisory_lock; if (secondLock == NULL) { // TODO: we should probably revert the locks we already // changed... (ie. allocate upfront) put_advisory_locking(locking); return B_NO_MEMORY; } lock->end = flock->l_start - 1; secondLock->team = lock->team; secondLock->session = lock->session; // values must already be normalized when getting here secondLock->start = flock->l_start + flock->l_len; secondLock->end = lock->end; secondLock->shared = lock->shared; locking->locks.Add(secondLock); } } if (removeLock) { // this lock is no longer used iterator.Remove(); free(lock); } } bool removeLocking = locking->locks.IsEmpty(); release_sem_etc(locking->wait_sem, 1, B_RELEASE_ALL); put_advisory_locking(locking); if (removeLocking) { // We can remove the whole advisory locking structure; it's no // longer used locking = get_advisory_locking(vnode); if (locking != NULL) { ReadLocker locker(sVnodeLock); AutoLocker nodeLocker(vnode); // the locking could have been changed in the mean time if (locking->locks.IsEmpty()) { vnode->advisory_locking = NULL; nodeLocker.Unlock(); locker.Unlock(); // we've detached the locking from the vnode, so we can // safely delete it delete locking; } else { // the locking is in use again nodeLocker.Unlock(); locker.Unlock(); release_sem_etc(locking->lock, 1, B_DO_NOT_RESCHEDULE); } } } return B_OK; } /*! Acquires an advisory lock for the \a vnode. If \a wait is \c true, it will wait for the lock to become available, if there are any collisions (it will return B_PERMISSION_DENIED in this case if \a wait is \c false). If \a session is -1, POSIX semantics are used for this lock. Otherwise, BSD flock() semantics are used, that is, all children can unlock the file in question (we even allow parents to remove the lock, though, but that seems to be in line to what the BSD's are doing). */ static status_t acquire_advisory_lock(struct vnode* vnode, pid_t session, struct flock* flock, bool wait) { FUNCTION(("acquire_advisory_lock(vnode = %p, flock = %p, wait = %s)\n", vnode, flock, wait ? "yes" : "no")); bool shared = flock->l_type == F_RDLCK; status_t status = B_OK; // TODO: do deadlock detection! struct advisory_locking* locking; while (true) { // if this vnode has an advisory_locking structure attached, // lock that one and search for any colliding file lock status = create_advisory_locking(vnode); if (status != B_OK) return status; locking = vnode->advisory_locking; team_id team = team_get_current_team_id(); sem_id waitForLock = -1; // test for collisions LockList::Iterator iterator = locking->locks.GetIterator(); while (iterator.HasNext()) { struct advisory_lock* lock = iterator.Next(); // TODO: locks from the same team might be joinable! if (lock->team != team && advisory_lock_intersects(lock, flock)) { // locks do overlap if (!shared || !lock->shared) { // we need to wait waitForLock = locking->wait_sem; break; } } } if (waitForLock < 0) break; // We need to wait. Do that or fail now, if we've been asked not to. if (!wait) { put_advisory_locking(locking); return session != -1 ? B_WOULD_BLOCK : B_PERMISSION_DENIED; } status = switch_sem_etc(locking->lock, waitForLock, 1, B_CAN_INTERRUPT, 0); if (status != B_OK && status != B_BAD_SEM_ID) return status; // We have been notified, but we need to re-lock the locking object. So // go another round... } // install new lock struct advisory_lock* lock = (struct advisory_lock*)malloc( sizeof(struct advisory_lock)); if (lock == NULL) { put_advisory_locking(locking); return B_NO_MEMORY; } lock->team = team_get_current_team_id(); lock->session = session; // values must already be normalized when getting here lock->start = flock->l_start; lock->end = flock->l_start - 1 + flock->l_len; lock->shared = shared; locking->locks.Add(lock); put_advisory_locking(locking); return status; } /*! Normalizes the \a flock structure to make it easier to compare the structure with others. The l_start and l_len fields are set to absolute values according to the l_whence field. */ static status_t normalize_flock(struct file_descriptor* descriptor, struct flock* flock) { switch (flock->l_whence) { case SEEK_SET: break; case SEEK_CUR: flock->l_start += descriptor->pos; break; case SEEK_END: { struct vnode* vnode = descriptor->u.vnode; struct stat stat; status_t status; if (!HAS_FS_CALL(vnode, read_stat)) return B_NOT_SUPPORTED; status = FS_CALL(vnode, read_stat, &stat); if (status != B_OK) return status; flock->l_start += stat.st_size; break; } default: return B_BAD_VALUE; } if (flock->l_start < 0) flock->l_start = 0; if (flock->l_len == 0) flock->l_len = OFF_MAX; // don't let the offset and length overflow if (flock->l_start > 0 && OFF_MAX - flock->l_start < flock->l_len) flock->l_len = OFF_MAX - flock->l_start; if (flock->l_len < 0) { // a negative length reverses the region flock->l_start += flock->l_len; flock->l_len = -flock->l_len; } return B_OK; } static void replace_vnode_if_disconnected(struct fs_mount* mount, struct vnode* vnodeToDisconnect, struct vnode*& vnode, struct vnode* fallBack, bool lockRootLock) { if (lockRootLock) mutex_lock(&sIOContextRootLock); struct vnode* obsoleteVnode = NULL; if (vnode != NULL && vnode->mount == mount && (vnodeToDisconnect == NULL || vnodeToDisconnect == vnode)) { obsoleteVnode = vnode; if (vnode == mount->root_vnode) { // redirect the vnode to the covered vnode vnode = mount->covers_vnode; } else vnode = fallBack; if (vnode != NULL) inc_vnode_ref_count(vnode); } if (lockRootLock) mutex_unlock(&sIOContextRootLock); if (obsoleteVnode != NULL) put_vnode(obsoleteVnode); } /*! Disconnects all file descriptors that are associated with the \a vnodeToDisconnect, or if this is NULL, all vnodes of the specified \a mount object. Note, after you've called this function, there might still be ongoing accesses - they won't be interrupted if they already happened before. However, any subsequent access will fail. This is not a cheap function and should be used with care and rarely. TODO: there is currently no means to stop a blocking read/write! */ void disconnect_mount_or_vnode_fds(struct fs_mount* mount, struct vnode* vnodeToDisconnect) { // iterate over all teams and peek into their file descriptors int32 nextTeamID = 0; while (true) { struct io_context* context = NULL; bool contextLocked = false; Team* team = NULL; team_id lastTeamID; cpu_status state = disable_interrupts(); SpinLocker teamsLock(gTeamSpinlock); lastTeamID = peek_next_thread_id(); if (nextTeamID < lastTeamID) { // get next valid team while (nextTeamID < lastTeamID && !(team = team_get_team_struct_locked(nextTeamID))) { nextTeamID++; } if (team) { context = (io_context*)team->io_context; // Some acrobatics to lock the context in a safe way // (cf. _kern_get_next_fd_info() for details). GRAB_THREAD_LOCK(); teamsLock.Unlock(); contextLocked = mutex_lock_threads_locked(&context->io_mutex) == B_OK; RELEASE_THREAD_LOCK(); nextTeamID++; } } teamsLock.Unlock(); restore_interrupts(state); if (context == NULL) break; // we now have a context - since we couldn't lock it while having // safe access to the team structure, we now need to lock the mutex // manually if (!contextLocked) { // team seems to be gone, go over to the next team continue; } // the team cannot be deleted completely while we're owning its // io_context mutex, so we can safely play with it now replace_vnode_if_disconnected(mount, vnodeToDisconnect, context->root, sRoot, true); replace_vnode_if_disconnected(mount, vnodeToDisconnect, context->cwd, sRoot, false); for (uint32 i = 0; i < context->table_size; i++) { if (struct file_descriptor* descriptor = context->fds[i]) { inc_fd_ref_count(descriptor); // if this descriptor points at this mount, we // need to disconnect it to be able to unmount struct vnode* vnode = fd_vnode(descriptor); if (vnodeToDisconnect != NULL) { if (vnode == vnodeToDisconnect) disconnect_fd(descriptor); } else if ((vnode != NULL && vnode->mount == mount) || (vnode == NULL && descriptor->u.mount == mount)) disconnect_fd(descriptor); put_fd(descriptor); } } mutex_unlock(&context->io_mutex); } } /*! \brief Gets the root node of the current IO context. If \a kernel is \c true, the kernel IO context will be used. The caller obtains a reference to the returned node. */ struct vnode* get_root_vnode(bool kernel) { if (!kernel) { // Get current working directory from io context struct io_context* context = get_current_io_context(kernel); mutex_lock(&sIOContextRootLock); struct vnode* root = context->root; if (root != NULL) inc_vnode_ref_count(root); mutex_unlock(&sIOContextRootLock); if (root != NULL) return root; // That should never happen. dprintf("get_root_vnode(): IO context for team %ld doesn't have a " "root\n", team_get_current_team_id()); } inc_vnode_ref_count(sRoot); return sRoot; } /*! \brief Resolves a mount point vnode to the volume root vnode it is covered by. Given an arbitrary vnode, the function checks, whether the node is covered by the root of a volume. If it is the function obtains a reference to the volume root node and returns it. \param vnode The vnode in question. \return The volume root vnode the vnode cover is covered by, if it is indeed a mount point, or \c NULL otherwise. */ static struct vnode* resolve_mount_point_to_volume_root(struct vnode* vnode) { if (!vnode) return NULL; struct vnode* volumeRoot = NULL; rw_lock_read_lock(&sVnodeLock); if (vnode->covered_by) { volumeRoot = vnode->covered_by; inc_vnode_ref_count(volumeRoot); } rw_lock_read_unlock(&sVnodeLock); return volumeRoot; } /*! \brief Resolves a mount point vnode to the volume root vnode it is covered by. Given an arbitrary vnode (identified by mount and node ID), the function checks, whether the node is covered by the root of a volume. If it is the function returns the mount and node ID of the volume root node. Otherwise it simply returns the supplied mount and node ID. In case of error (e.g. the supplied node could not be found) the variables for storing the resolved mount and node ID remain untouched and an error code is returned. \param mountID The mount ID of the vnode in question. \param nodeID The node ID of the vnode in question. \param resolvedMountID Pointer to storage for the resolved mount ID. \param resolvedNodeID Pointer to storage for the resolved node ID. \return - \c B_OK, if everything went fine, - another error code, if something went wrong. */ status_t resolve_mount_point_to_volume_root(dev_t mountID, ino_t nodeID, dev_t* resolvedMountID, ino_t* resolvedNodeID) { // get the node struct vnode* node; status_t error = get_vnode(mountID, nodeID, &node, true, false); if (error != B_OK) return error; // resolve the node struct vnode* resolvedNode = resolve_mount_point_to_volume_root(node); if (resolvedNode) { put_vnode(node); node = resolvedNode; } // set the return values *resolvedMountID = node->device; *resolvedNodeID = node->id; put_vnode(node); return B_OK; } /*! \brief Resolves a volume root vnode to the underlying mount point vnode. Given an arbitrary vnode, the function checks, whether the node is the root of a volume. If it is (and if it is not "/"), the function obtains a reference to the underlying mount point node and returns it. \param vnode The vnode in question (caller must have a reference). \return The mount point vnode the vnode covers, if it is indeed a volume root and not "/", or \c NULL otherwise. */ static struct vnode* resolve_volume_root_to_mount_point(struct vnode* vnode) { if (!vnode) return NULL; struct vnode* mountPoint = NULL; struct fs_mount* mount = vnode->mount; if (vnode == mount->root_vnode && mount->covers_vnode) { mountPoint = mount->covers_vnode; inc_vnode_ref_count(mountPoint); } return mountPoint; } /*! \brief Gets the directory path and leaf name for a given path. The supplied \a path is transformed to refer to the directory part of the entry identified by the original path, and into the buffer \a filename the leaf name of the original entry is written. Neither the returned path nor the leaf name can be expected to be canonical. \param path The path to be analyzed. Must be able to store at least one additional character. \param filename The buffer into which the leaf name will be written. Must be of size B_FILE_NAME_LENGTH at least. \return \c B_OK, if everything went fine, \c B_NAME_TOO_LONG, if the leaf name is longer than \c B_FILE_NAME_LENGTH, or \c B_ENTRY_NOT_FOUND, if the given path name is empty. */ static status_t get_dir_path_and_leaf(char* path, char* filename) { if (*path == '\0') return B_ENTRY_NOT_FOUND; char* last = strrchr(path, '/'); // '/' are not allowed in file names! FUNCTION(("get_dir_path_and_leaf(path = %s)\n", path)); if (last == NULL) { // this path is single segment with no '/' in it // ex. "foo" if (strlcpy(filename, path, B_FILE_NAME_LENGTH) >= B_FILE_NAME_LENGTH) return B_NAME_TOO_LONG; strcpy(path, "."); } else { last++; if (last[0] == '\0') { // special case: the path ends in one or more '/' - remove them while (*--last == '/' && last != path); last[1] = '\0'; if (last == path && last[0] == '/') { // This path points to the root of the file system strcpy(filename, "."); return B_OK; } for (; last != path && *(last - 1) != '/'; last--); // rewind to the start of the leaf before the '/' } // normal leaf: replace the leaf portion of the path with a '.' if (strlcpy(filename, last, B_FILE_NAME_LENGTH) >= B_FILE_NAME_LENGTH) return B_NAME_TOO_LONG; last[0] = '.'; last[1] = '\0'; } return B_OK; } static status_t entry_ref_to_vnode(dev_t mountID, ino_t directoryID, const char* name, bool traverse, bool kernel, struct vnode** _vnode) { char clonedName[B_FILE_NAME_LENGTH + 1]; if (strlcpy(clonedName, name, B_FILE_NAME_LENGTH) >= B_FILE_NAME_LENGTH) return B_NAME_TOO_LONG; // get the directory vnode and let vnode_path_to_vnode() do the rest struct vnode* directory; status_t status = get_vnode(mountID, directoryID, &directory, true, false); if (status < 0) return status; return vnode_path_to_vnode(directory, clonedName, traverse, 0, kernel, _vnode, NULL); } /*! Looks up the entry with name \a name in the directory represented by \a dir and returns the respective vnode. On success a reference to the vnode is acquired for the caller. */ static status_t lookup_dir_entry(struct vnode* dir, const char* name, struct vnode** _vnode) { ino_t id; if (dir->mount->entry_cache.Lookup(dir->id, name, id)) return get_vnode(dir->device, id, _vnode, true, false); status_t status = FS_CALL(dir, lookup, name, &id); if (status != B_OK) return status; // The lookup() hook call get_vnode() or publish_vnode(), so we do already // have a reference and just need to look the node up. rw_lock_read_lock(&sVnodeLock); *_vnode = lookup_vnode(dir->device, id); rw_lock_read_unlock(&sVnodeLock); if (*_vnode == NULL) { panic("lookup_dir_entry(): could not lookup vnode (mountid 0x%lx vnid " "0x%Lx)\n", dir->device, id); return B_ENTRY_NOT_FOUND; } // ktrace_printf("lookup_dir_entry(): dir: %p (%ld, %lld), name: \"%s\" -> " // "%p (%ld, %lld)", dir, dir->mount->id, dir->id, name, *_vnode, // (*_vnode)->mount->id, (*_vnode)->id); return B_OK; } /*! Returns the vnode for the relative path starting at the specified \a vnode. \a path must not be NULL. If it returns successfully, \a path contains the name of the last path component. This function clobbers the buffer pointed to by \a path only if it does contain more than one component. Note, this reduces the ref_count of the starting \a vnode, no matter if it is successful or not! */ static status_t vnode_path_to_vnode(struct vnode* vnode, char* path, bool traverseLeafLink, int count, struct io_context* ioContext, struct vnode** _vnode, ino_t* _parentID) { status_t status = B_OK; ino_t lastParentID = vnode->id; FUNCTION(("vnode_path_to_vnode(vnode = %p, path = %s)\n", vnode, path)); if (path == NULL) { put_vnode(vnode); return B_BAD_VALUE; } if (*path == '\0') { put_vnode(vnode); return B_ENTRY_NOT_FOUND; } while (true) { struct vnode* nextVnode; char* nextPath; TRACE(("vnode_path_to_vnode: top of loop. p = %p, p = '%s'\n", path, path)); // done? if (path[0] == '\0') break; // walk to find the next path component ("path" will point to a single // path component), and filter out multiple slashes for (nextPath = path + 1; *nextPath != '\0' && *nextPath != '/'; nextPath++); if (*nextPath == '/') { *nextPath = '\0'; do nextPath++; while (*nextPath == '/'); } // See if the '..' is at the root of a mount and move to the covered // vnode so we pass the '..' path to the underlying filesystem. // Also prevent breaking the root of the IO context. if (strcmp("..", path) == 0) { if (vnode == ioContext->root) { // Attempted prison break! Keep it contained. path = nextPath; continue; } else if (vnode->mount->root_vnode == vnode && vnode->mount->covers_vnode) { nextVnode = vnode->mount->covers_vnode; inc_vnode_ref_count(nextVnode); put_vnode(vnode); vnode = nextVnode; } } // check if vnode is really a directory if (status == B_OK && !S_ISDIR(vnode->Type())) status = B_NOT_A_DIRECTORY; // Check if we have the right to search the current directory vnode. // If a file system doesn't have the access() function, we assume that // searching a directory is always allowed if (status == B_OK && HAS_FS_CALL(vnode, access)) status = FS_CALL(vnode, access, X_OK); // Tell the filesystem to get the vnode of this path component (if we // got the permission from the call above) if (status == B_OK) status = lookup_dir_entry(vnode, path, &nextVnode); if (status != B_OK) { put_vnode(vnode); return status; } // If the new node is a symbolic link, resolve it (if we've been told // to do it) if (S_ISLNK(nextVnode->Type()) && (traverseLeafLink || nextPath[0] != '\0')) { size_t bufferSize; char* buffer; TRACE(("traverse link\n")); // it's not exactly nice style using goto in this way, but hey, // it works :-/ if (count + 1 > B_MAX_SYMLINKS) { status = B_LINK_LIMIT; goto resolve_link_error; } buffer = (char*)malloc(bufferSize = B_PATH_NAME_LENGTH); if (buffer == NULL) { status = B_NO_MEMORY; goto resolve_link_error; } if (HAS_FS_CALL(nextVnode, read_symlink)) { bufferSize--; status = FS_CALL(nextVnode, read_symlink, buffer, &bufferSize); // null-terminate if (status >= 0) buffer[bufferSize] = '\0'; } else status = B_BAD_VALUE; if (status != B_OK) { free(buffer); resolve_link_error: put_vnode(vnode); put_vnode(nextVnode); return status; } put_vnode(nextVnode); // Check if we start from the root directory or the current // directory ("vnode" still points to that one). // Cut off all leading slashes if it's the root directory path = buffer; bool absoluteSymlink = false; if (path[0] == '/') { // we don't need the old directory anymore put_vnode(vnode); while (*++path == '/') ; mutex_lock(&sIOContextRootLock); vnode = ioContext->root; inc_vnode_ref_count(vnode); mutex_unlock(&sIOContextRootLock); absoluteSymlink = true; } inc_vnode_ref_count(vnode); // balance the next recursion - we will decrement the // ref_count of the vnode, no matter if we succeeded or not if (absoluteSymlink && *path == '\0') { // symlink was just "/" nextVnode = vnode; } else { status = vnode_path_to_vnode(vnode, path, true, count + 1, ioContext, &nextVnode, &lastParentID); } free(buffer); if (status != B_OK) { put_vnode(vnode); return status; } } else lastParentID = vnode->id; // decrease the ref count on the old dir we just looked up into put_vnode(vnode); path = nextPath; vnode = nextVnode; // see if we hit a mount point struct vnode* mountPoint = resolve_mount_point_to_volume_root(vnode); if (mountPoint) { put_vnode(vnode); vnode = mountPoint; } } *_vnode = vnode; if (_parentID) *_parentID = lastParentID; return B_OK; } static status_t vnode_path_to_vnode(struct vnode* vnode, char* path, bool traverseLeafLink, int count, bool kernel, struct vnode** _vnode, ino_t* _parentID) { return vnode_path_to_vnode(vnode, path, traverseLeafLink, count, get_current_io_context(kernel), _vnode, _parentID); } static status_t path_to_vnode(char* path, bool traverseLink, struct vnode** _vnode, ino_t* _parentID, bool kernel) { struct vnode* start = NULL; FUNCTION(("path_to_vnode(path = \"%s\")\n", path)); if (!path) return B_BAD_VALUE; if (*path == '\0') return B_ENTRY_NOT_FOUND; // figure out if we need to start at root or at cwd if (*path == '/') { if (sRoot == NULL) { // we're a bit early, aren't we? return B_ERROR; } while (*++path == '/') ; start = get_root_vnode(kernel); if (*path == '\0') { *_vnode = start; return B_OK; } } else { struct io_context* context = get_current_io_context(kernel); mutex_lock(&context->io_mutex); start = context->cwd; if (start != NULL) inc_vnode_ref_count(start); mutex_unlock(&context->io_mutex); if (start == NULL) return B_ERROR; } return vnode_path_to_vnode(start, path, traverseLink, 0, kernel, _vnode, _parentID); } /*! Returns the vnode in the next to last segment of the path, and returns the last portion in filename. The path buffer must be able to store at least one additional character. */ static status_t path_to_dir_vnode(char* path, struct vnode** _vnode, char* filename, bool kernel) { status_t status = get_dir_path_and_leaf(path, filename); if (status != B_OK) return status; return path_to_vnode(path, true, _vnode, NULL, kernel); } /*! \brief Retrieves the directory vnode and the leaf name of an entry referred to by a FD + path pair. \a path must be given in either case. \a fd might be omitted, in which case \a path is either an absolute path or one relative to the current directory. If both a supplied and \a path is relative it is reckoned off of the directory referred to by \a fd. If \a path is absolute \a fd is ignored. The caller has the responsibility to call put_vnode() on the returned directory vnode. \param fd The FD. May be < 0. \param path The absolute or relative path. Must not be \c NULL. The buffer is modified by this function. It must have at least room for a string one character longer than the path it contains. \param _vnode A pointer to a variable the directory vnode shall be written into. \param filename A buffer of size B_FILE_NAME_LENGTH or larger into which the leaf name of the specified entry will be written. \param kernel \c true, if invoked from inside the kernel, \c false if invoked from userland. \return \c B_OK, if everything went fine, another error code otherwise. */ static status_t fd_and_path_to_dir_vnode(int fd, char* path, struct vnode** _vnode, char* filename, bool kernel) { if (!path) return B_BAD_VALUE; if (*path == '\0') return B_ENTRY_NOT_FOUND; if (fd < 0) return path_to_dir_vnode(path, _vnode, filename, kernel); status_t status = get_dir_path_and_leaf(path, filename); if (status != B_OK) return status; return fd_and_path_to_vnode(fd, path, true, _vnode, NULL, kernel); } /*! \brief Retrieves the directory vnode and the leaf name of an entry referred to by a vnode + path pair. \a path must be given in either case. \a vnode might be omitted, in which case \a path is either an absolute path or one relative to the current directory. If both a supplied and \a path is relative it is reckoned off of the directory referred to by \a vnode. If \a path is absolute \a vnode is ignored. The caller has the responsibility to call put_vnode() on the returned directory vnode. \param vnode The vnode. May be \c NULL. \param path The absolute or relative path. Must not be \c NULL. The buffer is modified by this function. It must have at least room for a string one character longer than the path it contains. \param _vnode A pointer to a variable the directory vnode shall be written into. \param filename A buffer of size B_FILE_NAME_LENGTH or larger into which the leaf name of the specified entry will be written. \param kernel \c true, if invoked from inside the kernel, \c false if invoked from userland. \return \c B_OK, if everything went fine, another error code otherwise. */ static status_t vnode_and_path_to_dir_vnode(struct vnode* vnode, char* path, struct vnode** _vnode, char* filename, bool kernel) { if (!path) return B_BAD_VALUE; if (*path == '\0') return B_ENTRY_NOT_FOUND; if (vnode == NULL || path[0] == '/') return path_to_dir_vnode(path, _vnode, filename, kernel); status_t status = get_dir_path_and_leaf(path, filename); if (status != B_OK) return status; inc_vnode_ref_count(vnode); // vnode_path_to_vnode() always decrements the ref count return vnode_path_to_vnode(vnode, path, true, 0, kernel, _vnode, NULL); } /*! Returns a vnode's name in the d_name field of a supplied dirent buffer. */ static status_t get_vnode_name(struct vnode* vnode, struct vnode* parent, struct dirent* buffer, size_t bufferSize, struct io_context* ioContext) { if (bufferSize < sizeof(struct dirent)) return B_BAD_VALUE; // See if vnode is the root of a mount and move to the covered // vnode so we get the underlying file system VNodePutter vnodePutter; if (vnode->mount->root_vnode == vnode && vnode->mount->covers_vnode != NULL) { vnode = vnode->mount->covers_vnode; inc_vnode_ref_count(vnode); vnodePutter.SetTo(vnode); } if (HAS_FS_CALL(vnode, get_vnode_name)) { // The FS supports getting the name of a vnode. if (FS_CALL(vnode, get_vnode_name, buffer->d_name, (char*)buffer + bufferSize - buffer->d_name) == B_OK) return B_OK; } // The FS doesn't support getting the name of a vnode. So we search the // parent directory for the vnode, if the caller let us. if (parent == NULL) return B_NOT_SUPPORTED; void* cookie; status_t status = FS_CALL(parent, open_dir, &cookie); if (status >= B_OK) { while (true) { uint32 num = 1; status = dir_read(ioContext, parent, cookie, buffer, bufferSize, &num); if (status != B_OK) break; if (num == 0) { status = B_ENTRY_NOT_FOUND; break; } if (vnode->id == buffer->d_ino) { // found correct entry! break; } } FS_CALL(vnode, close_dir, cookie); FS_CALL(vnode, free_dir_cookie, cookie); } return status; } static status_t get_vnode_name(struct vnode* vnode, struct vnode* parent, char* name, size_t nameSize, bool kernel) { char buffer[sizeof(struct dirent) + B_FILE_NAME_LENGTH]; struct dirent* dirent = (struct dirent*)buffer; status_t status = get_vnode_name(vnode, parent, dirent, sizeof(buffer), get_current_io_context(kernel)); if (status != B_OK) return status; if (strlcpy(name, dirent->d_name, nameSize) >= nameSize) return B_BUFFER_OVERFLOW; return B_OK; } /*! Gets the full path to a given directory vnode. It uses the fs_get_vnode_name() call to get the name of a vnode; if a file system doesn't support this call, it will fall back to iterating through the parent directory to get the name of the child. To protect against circular loops, it supports a maximum tree depth of 256 levels. Note that the path may not be correct the time this function returns! It doesn't use any locking to prevent returning the correct path, as paths aren't safe anyway: the path to a file can change at any time. It might be a good idea, though, to check if the returned path exists in the calling function (it's not done here because of efficiency) */ static status_t dir_vnode_to_path(struct vnode* vnode, char* buffer, size_t bufferSize, bool kernel) { FUNCTION(("dir_vnode_to_path(%p, %p, %lu)\n", vnode, buffer, bufferSize)); if (vnode == NULL || buffer == NULL || bufferSize == 0) return B_BAD_VALUE; if (!S_ISDIR(vnode->Type())) return B_NOT_A_DIRECTORY; char* path = buffer; int32 insert = bufferSize; int32 maxLevel = 256; int32 length; status_t status; struct io_context* ioContext = get_current_io_context(kernel); // we don't use get_vnode() here because this call is more // efficient and does all we need from get_vnode() inc_vnode_ref_count(vnode); if (vnode != ioContext->root) { // we don't hit the IO context root // resolve a volume root to its mount point struct vnode* mountPoint = resolve_volume_root_to_mount_point(vnode); if (mountPoint) { put_vnode(vnode); vnode = mountPoint; } } path[--insert] = '\0'; // the path is filled right to left while (true) { // the name buffer is also used for fs_read_dir() char nameBuffer[sizeof(struct dirent) + B_FILE_NAME_LENGTH]; char* name = &((struct dirent*)nameBuffer)->d_name[0]; struct vnode* parentVnode; ino_t parentID; // lookup the parent vnode if (vnode == ioContext->root) { // we hit the IO context root parentVnode = vnode; inc_vnode_ref_count(vnode); } else { status = lookup_dir_entry(vnode, "..", &parentVnode); if (status != B_OK) goto out; } // get the node's name status = get_vnode_name(vnode, parentVnode, (struct dirent*)nameBuffer, sizeof(nameBuffer), ioContext); if (vnode != ioContext->root) { // we don't hit the IO context root // resolve a volume root to its mount point struct vnode* mountPoint = resolve_volume_root_to_mount_point(parentVnode); if (mountPoint) { put_vnode(parentVnode); parentVnode = mountPoint; parentID = parentVnode->id; } } bool hitRoot = (parentVnode == vnode); // release the current vnode, we only need its parent from now on put_vnode(vnode); vnode = parentVnode; if (status != B_OK) goto out; if (hitRoot) { // we have reached "/", which means we have constructed the full // path break; } // TODO: add an explicit check for loops in about 10 levels to do // real loop detection // don't go deeper as 'maxLevel' to prevent circular loops if (maxLevel-- < 0) { status = B_LINK_LIMIT; goto out; } // add the name in front of the current path name[B_FILE_NAME_LENGTH - 1] = '\0'; length = strlen(name); insert -= length; if (insert <= 0) { status = B_RESULT_NOT_REPRESENTABLE; goto out; } memcpy(path + insert, name, length); path[--insert] = '/'; } // the root dir will result in an empty path: fix it if (path[insert] == '\0') path[--insert] = '/'; TRACE((" path is: %s\n", path + insert)); // move the path to the start of the buffer length = bufferSize - insert; memmove(buffer, path + insert, length); out: put_vnode(vnode); return status; } /*! Checks the length of every path component, and adds a '.' if the path ends in a slash. The given path buffer must be able to store at least one additional character. */ static status_t check_path(char* to) { int32 length = 0; // check length of every path component while (*to) { char* begin; if (*to == '/') to++, length++; begin = to; while (*to != '/' && *to) to++, length++; if (to - begin > B_FILE_NAME_LENGTH) return B_NAME_TOO_LONG; } if (length == 0) return B_ENTRY_NOT_FOUND; // complete path if there is a slash at the end if (*(to - 1) == '/') { if (length > B_PATH_NAME_LENGTH - 2) return B_NAME_TOO_LONG; to[0] = '.'; to[1] = '\0'; } return B_OK; } static struct file_descriptor* get_fd_and_vnode(int fd, struct vnode** _vnode, bool kernel) { struct file_descriptor* descriptor = get_fd(get_current_io_context(kernel), fd); if (descriptor == NULL) return NULL; struct vnode* vnode = fd_vnode(descriptor); if (vnode == NULL) { put_fd(descriptor); return NULL; } // ToDo: when we can close a file descriptor at any point, investigate // if this is still valid to do (accessing the vnode without ref_count // or locking) *_vnode = vnode; return descriptor; } static struct vnode* get_vnode_from_fd(int fd, bool kernel) { struct file_descriptor* descriptor; struct vnode* vnode; descriptor = get_fd(get_current_io_context(kernel), fd); if (descriptor == NULL) return NULL; vnode = fd_vnode(descriptor); if (vnode != NULL) inc_vnode_ref_count(vnode); put_fd(descriptor); return vnode; } /*! Gets the vnode from an FD + path combination. If \a fd is lower than zero, only the path will be considered. In this case, the \a path must not be NULL. If \a fd is a valid file descriptor, \a path may be NULL for directories, and should be NULL for files. */ static status_t fd_and_path_to_vnode(int fd, char* path, bool traverseLeafLink, struct vnode** _vnode, ino_t* _parentID, bool kernel) { if (fd < 0 && !path) return B_BAD_VALUE; if (path != NULL && *path == '\0') return B_ENTRY_NOT_FOUND; if (fd < 0 || (path != NULL && path[0] == '/')) { // no FD or absolute path return path_to_vnode(path, traverseLeafLink, _vnode, _parentID, kernel); } // FD only, or FD + relative path struct vnode* vnode = get_vnode_from_fd(fd, kernel); if (!vnode) return B_FILE_ERROR; if (path != NULL) { return vnode_path_to_vnode(vnode, path, traverseLeafLink, 0, kernel, _vnode, _parentID); } // there is no relative path to take into account *_vnode = vnode; if (_parentID) *_parentID = -1; return B_OK; } static int get_new_fd(int type, struct fs_mount* mount, struct vnode* vnode, void* cookie, int openMode, bool kernel) { struct file_descriptor* descriptor; int fd; // If the vnode is locked, we don't allow creating a new file/directory // file_descriptor for it if (vnode && vnode->mandatory_locked_by != NULL && (type == FDTYPE_FILE || type == FDTYPE_DIR)) return B_BUSY; descriptor = alloc_fd(); if (!descriptor) return B_NO_MEMORY; if (vnode) descriptor->u.vnode = vnode; else descriptor->u.mount = mount; descriptor->cookie = cookie; switch (type) { // vnode types case FDTYPE_FILE: descriptor->ops = &sFileOps; break; case FDTYPE_DIR: descriptor->ops = &sDirectoryOps; break; case FDTYPE_ATTR: descriptor->ops = &sAttributeOps; break; case FDTYPE_ATTR_DIR: descriptor->ops = &sAttributeDirectoryOps; break; // mount types case FDTYPE_INDEX_DIR: descriptor->ops = &sIndexDirectoryOps; break; case FDTYPE_QUERY: descriptor->ops = &sQueryOps; break; default: panic("get_new_fd() called with unknown type %d\n", type); break; } descriptor->type = type; descriptor->open_mode = openMode; io_context* context = get_current_io_context(kernel); fd = new_fd(context, descriptor); if (fd < 0) { free(descriptor); return B_NO_MORE_FDS; } mutex_lock(&context->io_mutex); fd_set_close_on_exec(context, fd, (openMode & O_CLOEXEC) != 0); mutex_unlock(&context->io_mutex); return fd; } /*! In-place normalizes \a path. It's otherwise semantically equivalent to vfs_normalize_path(). See there for more documentation. */ static status_t normalize_path(char* path, size_t pathSize, bool traverseLink, bool kernel) { VNodePutter dirPutter; struct vnode* dir = NULL; status_t error; for (int i = 0; i < B_MAX_SYMLINKS; i++) { // get dir vnode + leaf name struct vnode* nextDir; char leaf[B_FILE_NAME_LENGTH]; error = vnode_and_path_to_dir_vnode(dir, path, &nextDir, leaf, kernel); if (error != B_OK) return error; dir = nextDir; strcpy(path, leaf); dirPutter.SetTo(dir); // get file vnode, if we shall resolve links bool fileExists = false; struct vnode* fileVnode; VNodePutter fileVnodePutter; if (traverseLink) { inc_vnode_ref_count(dir); if (vnode_path_to_vnode(dir, path, false, 0, kernel, &fileVnode, NULL) == B_OK) { fileVnodePutter.SetTo(fileVnode); fileExists = true; } } if (!fileExists || !traverseLink || !S_ISLNK(fileVnode->Type())) { // we're done -- construct the path bool hasLeaf = true; if (strcmp(leaf, ".") == 0 || strcmp(leaf, "..") == 0) { // special cases "." and ".." -- get the dir, forget the leaf inc_vnode_ref_count(dir); error = vnode_path_to_vnode(dir, leaf, false, 0, kernel, &nextDir, NULL); if (error != B_OK) return error; dir = nextDir; dirPutter.SetTo(dir); hasLeaf = false; } // get the directory path error = dir_vnode_to_path(dir, path, B_PATH_NAME_LENGTH, kernel); if (error != B_OK) return error; // append the leaf name if (hasLeaf) { // insert a directory separator if this is not the file system // root if ((strcmp(path, "/") != 0 && strlcat(path, "/", pathSize) >= pathSize) || strlcat(path, leaf, pathSize) >= pathSize) { return B_NAME_TOO_LONG; } } return B_OK; } // read link if (HAS_FS_CALL(fileVnode, read_symlink)) { size_t bufferSize = B_PATH_NAME_LENGTH - 1; error = FS_CALL(fileVnode, read_symlink, path, &bufferSize); if (error != B_OK) return error; path[bufferSize] = '\0'; } else return B_BAD_VALUE; } return B_LINK_LIMIT; } #ifdef ADD_DEBUGGER_COMMANDS static void _dump_advisory_locking(advisory_locking* locking) { if (locking == NULL) return; kprintf(" lock: %ld", locking->lock); kprintf(" wait_sem: %ld", locking->wait_sem); int32 index = 0; LockList::Iterator iterator = locking->locks.GetIterator(); while (iterator.HasNext()) { struct advisory_lock* lock = iterator.Next(); kprintf(" [%2ld] team: %ld\n", index++, lock->team); kprintf(" start: %Ld\n", lock->start); kprintf(" end: %Ld\n", lock->end); kprintf(" shared? %s\n", lock->shared ? "yes" : "no"); } } static void _dump_mount(struct fs_mount* mount) { kprintf("MOUNT: %p\n", mount); kprintf(" id: %ld\n", mount->id); kprintf(" device_name: %s\n", mount->device_name); kprintf(" root_vnode: %p\n", mount->root_vnode); kprintf(" covers_vnode: %p\n", mount->covers_vnode); kprintf(" partition: %p\n", mount->partition); kprintf(" lock: %p\n", &mount->rlock); kprintf(" flags: %s%s\n", mount->unmounting ? " unmounting" : "", mount->owns_file_device ? " owns_file_device" : ""); fs_volume* volume = mount->volume; while (volume != NULL) { kprintf(" volume %p:\n", volume); kprintf(" layer: %ld\n", volume->layer); kprintf(" private_volume: %p\n", volume->private_volume); kprintf(" ops: %p\n", volume->ops); kprintf(" file_system: %p\n", volume->file_system); kprintf(" file_system_name: %s\n", volume->file_system_name); volume = volume->super_volume; } set_debug_variable("_volume", (addr_t)mount->volume->private_volume); set_debug_variable("_root", (addr_t)mount->root_vnode); set_debug_variable("_covers", (addr_t)mount->covers_vnode); set_debug_variable("_partition", (addr_t)mount->partition); } static bool debug_prepend_vnode_name_to_path(char* buffer, size_t& bufferSize, const char* name) { bool insertSlash = buffer[bufferSize] != '\0'; size_t nameLength = strlen(name); if (bufferSize < nameLength + (insertSlash ? 1 : 0)) return false; if (insertSlash) buffer[--bufferSize] = '/'; bufferSize -= nameLength; memcpy(buffer + bufferSize, name, nameLength); return true; } static bool debug_prepend_vnode_id_to_path(char* buffer, size_t& bufferSize, dev_t devID, ino_t nodeID) { if (bufferSize == 0) return false; bool insertSlash = buffer[bufferSize] != '\0'; if (insertSlash) buffer[--bufferSize] = '/'; size_t size = snprintf(buffer, bufferSize, "<%" B_PRIdDEV ",%" B_PRIdINO ">", devID, nodeID); if (size > bufferSize) { if (insertSlash) bufferSize++; return false; } if (size < bufferSize) memmove(buffer + bufferSize - size, buffer, size); bufferSize -= size; return true; } static char* debug_resolve_vnode_path(struct vnode* vnode, char* buffer, size_t bufferSize, bool& _truncated) { // null-terminate the path buffer[--bufferSize] = '\0'; while (true) { while (vnode->mount->root_vnode == vnode && vnode->mount->covers_vnode != NULL) { vnode = vnode->mount->covers_vnode; } if (vnode == sRoot) { _truncated = bufferSize == 0; if (!_truncated) buffer[--bufferSize] = '/'; return buffer + bufferSize; } // resolve the name ino_t dirID; const char* name = vnode->mount->entry_cache.DebugReverseLookup( vnode->id, dirID); if (name == NULL) { // Failed to resolve the name -- prepend "/". _truncated = !debug_prepend_vnode_id_to_path(buffer, bufferSize, vnode->mount->id, vnode->id); return buffer + bufferSize; } // prepend the name if (!debug_prepend_vnode_name_to_path(buffer, bufferSize, name)) { _truncated = true; return buffer + bufferSize; } // resolve the directory node struct vnode* nextVnode = lookup_vnode(vnode->mount->id, dirID); if (nextVnode == NULL) { _truncated = !debug_prepend_vnode_id_to_path(buffer, bufferSize, vnode->mount->id, dirID); return buffer + bufferSize; } vnode = nextVnode; } } static void _dump_vnode(struct vnode* vnode, bool printPath) { kprintf("VNODE: %p\n", vnode); kprintf(" device: %ld\n", vnode->device); kprintf(" id: %Ld\n", vnode->id); kprintf(" ref_count: %ld\n", vnode->ref_count); kprintf(" private_node: %p\n", vnode->private_node); kprintf(" mount: %p\n", vnode->mount); kprintf(" covered_by: %p\n", vnode->covered_by); kprintf(" cache: %p\n", vnode->cache); kprintf(" type: %#" B_PRIx32 "\n", vnode->Type()); kprintf(" flags: %s%s%s\n", vnode->IsRemoved() ? "r" : "-", vnode->IsBusy() ? "b" : "-", vnode->IsUnpublished() ? "u" : "-"); kprintf(" advisory_lock: %p\n", vnode->advisory_locking); _dump_advisory_locking(vnode->advisory_locking); if (printPath) { void* buffer = debug_malloc(B_PATH_NAME_LENGTH); if (buffer != NULL) { bool truncated; char* path = debug_resolve_vnode_path(vnode, (char*)buffer, B_PATH_NAME_LENGTH, truncated); if (path != NULL) { kprintf(" path: "); if (truncated) kputs("/"); kputs(path); kputs("\n"); } else kprintf("Failed to resolve vnode path.\n"); debug_free(buffer); } else kprintf("Failed to allocate memory for constructing the path.\n"); } set_debug_variable("_node", (addr_t)vnode->private_node); set_debug_variable("_mount", (addr_t)vnode->mount); set_debug_variable("_covered_by", (addr_t)vnode->covered_by); set_debug_variable("_adv_lock", (addr_t)vnode->advisory_locking); } static int dump_mount(int argc, char** argv) { if (argc != 2 || !strcmp(argv[1], "--help")) { kprintf("usage: %s [id|address]\n", argv[0]); return 0; } uint32 id = parse_expression(argv[1]); struct fs_mount* mount = NULL; mount = (fs_mount*)hash_lookup(sMountsTable, (void*)&id); if (mount == NULL) { if (IS_USER_ADDRESS(id)) { kprintf("fs_mount not found\n"); return 0; } mount = (fs_mount*)id; } _dump_mount(mount); return 0; } static int dump_mounts(int argc, char** argv) { if (argc != 1) { kprintf("usage: %s\n", argv[0]); return 0; } kprintf("address id root covers cookie fs_name\n"); struct hash_iterator iterator; struct fs_mount* mount; hash_open(sMountsTable, &iterator); while ((mount = (struct fs_mount*)hash_next(sMountsTable, &iterator)) != NULL) { kprintf("%p%4ld %p %p %p %s\n", mount, mount->id, mount->root_vnode, mount->covers_vnode, mount->volume->private_volume, mount->volume->file_system_name); fs_volume* volume = mount->volume; while (volume->super_volume != NULL) { volume = volume->super_volume; kprintf(" %p %s\n", volume->private_volume, volume->file_system_name); } } hash_close(sMountsTable, &iterator, false); return 0; } static int dump_vnode(int argc, char** argv) { bool printPath = false; int argi = 1; if (argc >= 2 && strcmp(argv[argi], "-p") == 0) { printPath = true; argi++; } if (argi >= argc || argi + 2 < argc) { print_debugger_command_usage(argv[0]); return 0; } struct vnode* vnode = NULL; if (argi + 1 == argc) { vnode = (struct vnode*)parse_expression(argv[argi]); if (IS_USER_ADDRESS(vnode)) { kprintf("invalid vnode address\n"); return 0; } _dump_vnode(vnode, printPath); return 0; } struct hash_iterator iterator; dev_t device = parse_expression(argv[argi]); ino_t id = parse_expression(argv[argi + 1]); hash_open(sVnodeTable, &iterator); while ((vnode = (struct vnode*)hash_next(sVnodeTable, &iterator)) != NULL) { if (vnode->id != id || vnode->device != device) continue; _dump_vnode(vnode, printPath); } hash_close(sVnodeTable, &iterator, false); return 0; } static int dump_vnodes(int argc, char** argv) { if (argc != 2 || !strcmp(argv[1], "--help")) { kprintf("usage: %s [device]\n", argv[0]); return 0; } // restrict dumped nodes to a certain device if requested dev_t device = parse_expression(argv[1]); struct hash_iterator iterator; struct vnode* vnode; kprintf("address dev inode ref cache fs-node locking " "flags\n"); hash_open(sVnodeTable, &iterator); while ((vnode = (struct vnode*)hash_next(sVnodeTable, &iterator)) != NULL) { if (vnode->device != device) continue; kprintf("%p%4ld%10Ld%5ld %p %p %p %s%s%s\n", vnode, vnode->device, vnode->id, vnode->ref_count, vnode->cache, vnode->private_node, vnode->advisory_locking, vnode->IsRemoved() ? "r" : "-", vnode->IsBusy() ? "b" : "-", vnode->IsUnpublished() ? "u" : "-"); } hash_close(sVnodeTable, &iterator, false); return 0; } static int dump_vnode_caches(int argc, char** argv) { struct hash_iterator iterator; struct vnode* vnode; if (argc > 2 || !strcmp(argv[1], "--help")) { kprintf("usage: %s [device]\n", argv[0]); return 0; } // restrict dumped nodes to a certain device if requested dev_t device = -1; if (argc > 1) device = parse_expression(argv[1]); kprintf("address dev inode cache size pages\n"); hash_open(sVnodeTable, &iterator); while ((vnode = (struct vnode*)hash_next(sVnodeTable, &iterator)) != NULL) { if (vnode->cache == NULL) continue; if (device != -1 && vnode->device != device) continue; kprintf("%p%4ld%10Ld %p %8Ld%8ld\n", vnode, vnode->device, vnode->id, vnode->cache, (vnode->cache->virtual_end + B_PAGE_SIZE - 1) / B_PAGE_SIZE, vnode->cache->page_count); } hash_close(sVnodeTable, &iterator, false); return 0; } int dump_io_context(int argc, char** argv) { if (argc > 2 || !strcmp(argv[1], "--help")) { kprintf("usage: %s [team-id|address]\n", argv[0]); return 0; } struct io_context* context = NULL; if (argc > 1) { uint32 num = parse_expression(argv[1]); if (IS_KERNEL_ADDRESS(num)) context = (struct io_context*)num; else { Team* team = team_get_team_struct_locked(num); if (team == NULL) { kprintf("could not find team with ID %ld\n", num); return 0; } context = (struct io_context*)team->io_context; } } else context = get_current_io_context(true); kprintf("I/O CONTEXT: %p\n", context); kprintf(" root vnode:\t%p\n", context->root); kprintf(" cwd vnode:\t%p\n", context->cwd); kprintf(" used fds:\t%lu\n", context->num_used_fds); kprintf(" max fds:\t%lu\n", context->table_size); if (context->num_used_fds) kprintf(" no. type ops ref open mode pos" " cookie\n"); for (uint32 i = 0; i < context->table_size; i++) { struct file_descriptor* fd = context->fds[i]; if (fd == NULL) continue; kprintf(" %3" B_PRIu32 ": %4" B_PRId32 " %p %3" B_PRId32 " %4" B_PRIu32 " %4" B_PRIx32 " %10" B_PRIdOFF " %p %s %p\n", i, fd->type, fd->ops, fd->ref_count, fd->open_count, fd->open_mode, fd->pos, fd->cookie, fd->type >= FDTYPE_INDEX && fd->type <= FDTYPE_QUERY ? "mount" : "vnode", fd->u.vnode); } kprintf(" used monitors:\t%lu\n", context->num_monitors); kprintf(" max monitors:\t%lu\n", context->max_monitors); set_debug_variable("_cwd", (addr_t)context->cwd); return 0; } int dump_vnode_usage(int argc, char** argv) { if (argc != 1) { kprintf("usage: %s\n", argv[0]); return 0; } kprintf("Unused vnodes: %ld (max unused %ld)\n", sUnusedVnodes, kMaxUnusedVnodes); struct hash_iterator iterator; hash_open(sVnodeTable, &iterator); uint32 count = 0; struct vnode* vnode; while ((vnode = (struct vnode*)hash_next(sVnodeTable, &iterator)) != NULL) { count++; } hash_close(sVnodeTable, &iterator, false); kprintf("%lu vnodes total (%ld in use).\n", count, count - sUnusedVnodes); return 0; } #endif // ADD_DEBUGGER_COMMANDS /*! Clears an iovec array of physical pages. Returns in \a _bytes the number of bytes successfully cleared. */ static status_t zero_pages(const iovec* vecs, size_t vecCount, size_t* _bytes) { size_t bytes = *_bytes; size_t index = 0; while (bytes > 0) { size_t length = min_c(vecs[index].iov_len, bytes); status_t status = vm_memset_physical((addr_t)vecs[index].iov_base, 0, length); if (status != B_OK) { *_bytes -= bytes; return status; } bytes -= length; } return B_OK; } /*! Does the dirty work of combining the file_io_vecs with the iovecs and calls the file system hooks to read/write the request to disk. */ static status_t common_file_io_vec_pages(struct vnode* vnode, void* cookie, const file_io_vec* fileVecs, size_t fileVecCount, const iovec* vecs, size_t vecCount, uint32* _vecIndex, size_t* _vecOffset, size_t* _numBytes, bool doWrite) { if (fileVecCount == 0) { // There are no file vecs at this offset, so we're obviously trying // to access the file outside of its bounds return B_BAD_VALUE; } size_t numBytes = *_numBytes; uint32 fileVecIndex; size_t vecOffset = *_vecOffset; uint32 vecIndex = *_vecIndex; status_t status; size_t size; if (!doWrite && vecOffset == 0) { // now directly read the data from the device // the first file_io_vec can be read directly if (fileVecs[0].length < numBytes) size = fileVecs[0].length; else size = numBytes; if (fileVecs[0].offset >= 0) { status = FS_CALL(vnode, read_pages, cookie, fileVecs[0].offset, &vecs[vecIndex], vecCount - vecIndex, &size); } else { // sparse read status = zero_pages(&vecs[vecIndex], vecCount - vecIndex, &size); } if (status != B_OK) return status; // TODO: this is a work-around for buggy device drivers! // When our own drivers honour the length, we can: // a) also use this direct I/O for writes (otherwise, it would // overwrite precious data) // b) panic if the term below is true (at least for writes) if (size > fileVecs[0].length) { //dprintf("warning: device driver %p doesn't respect total length " // "in read_pages() call!\n", ref->device); size = fileVecs[0].length; } ASSERT(size <= fileVecs[0].length); // If the file portion was contiguous, we're already done now if (size == numBytes) return B_OK; // if we reached the end of the file, we can return as well if (size != fileVecs[0].length) { *_numBytes = size; return B_OK; } fileVecIndex = 1; // first, find out where we have to continue in our iovecs for (; vecIndex < vecCount; vecIndex++) { if (size < vecs[vecIndex].iov_len) break; size -= vecs[vecIndex].iov_len; } vecOffset = size; } else { fileVecIndex = 0; size = 0; } // Too bad, let's process the rest of the file_io_vecs size_t totalSize = size; size_t bytesLeft = numBytes - size; for (; fileVecIndex < fileVecCount; fileVecIndex++) { const file_io_vec &fileVec = fileVecs[fileVecIndex]; off_t fileOffset = fileVec.offset; off_t fileLeft = min_c(fileVec.length, bytesLeft); TRACE(("FILE VEC [%lu] length %Ld\n", fileVecIndex, fileLeft)); // process the complete fileVec while (fileLeft > 0) { iovec tempVecs[MAX_TEMP_IO_VECS]; uint32 tempCount = 0; // size tracks how much of what is left of the current fileVec // (fileLeft) has been assigned to tempVecs size = 0; // assign what is left of the current fileVec to the tempVecs for (size = 0; size < fileLeft && vecIndex < vecCount && tempCount < MAX_TEMP_IO_VECS;) { // try to satisfy one iovec per iteration (or as much as // possible) // bytes left of the current iovec size_t vecLeft = vecs[vecIndex].iov_len - vecOffset; if (vecLeft == 0) { vecOffset = 0; vecIndex++; continue; } TRACE(("fill vec %ld, offset = %lu, size = %lu\n", vecIndex, vecOffset, size)); // actually available bytes size_t tempVecSize = min_c(vecLeft, fileLeft - size); tempVecs[tempCount].iov_base = (void*)((addr_t)vecs[vecIndex].iov_base + vecOffset); tempVecs[tempCount].iov_len = tempVecSize; tempCount++; size += tempVecSize; vecOffset += tempVecSize; } size_t bytes = size; if (fileOffset == -1) { if (doWrite) { panic("sparse write attempt: vnode %p", vnode); status = B_IO_ERROR; } else { // sparse read status = zero_pages(tempVecs, tempCount, &bytes); } } else if (doWrite) { status = FS_CALL(vnode, write_pages, cookie, fileOffset, tempVecs, tempCount, &bytes); } else { status = FS_CALL(vnode, read_pages, cookie, fileOffset, tempVecs, tempCount, &bytes); } if (status != B_OK) return status; totalSize += bytes; bytesLeft -= size; if (fileOffset >= 0) fileOffset += size; fileLeft -= size; //dprintf("-> file left = %Lu\n", fileLeft); if (size != bytes || vecIndex >= vecCount) { // there are no more bytes or iovecs, let's bail out *_numBytes = totalSize; return B_OK; } } } *_vecIndex = vecIndex; *_vecOffset = vecOffset; *_numBytes = totalSize; return B_OK; } // #pragma mark - public API for file systems extern "C" status_t new_vnode(fs_volume* volume, ino_t vnodeID, void* privateNode, fs_vnode_ops* ops) { FUNCTION(("new_vnode(volume = %p (%ld), vnodeID = %Ld, node = %p)\n", volume, volume->id, vnodeID, privateNode)); if (privateNode == NULL) return B_BAD_VALUE; // create the node bool nodeCreated; struct vnode* vnode; status_t status = create_new_vnode_and_lock(volume->id, vnodeID, vnode, nodeCreated); if (status != B_OK) return status; WriteLocker nodeLocker(sVnodeLock, true); // create_new_vnode_and_lock() has locked for us // file system integrity check: // test if the vnode already exists and bail out if this is the case! if (!nodeCreated) { panic("vnode %ld:%Ld already exists (node = %p, vnode->node = %p)!", volume->id, vnodeID, privateNode, vnode->private_node); return B_ERROR; } vnode->private_node = privateNode; vnode->ops = ops; vnode->SetUnpublished(true); TRACE(("returns: %s\n", strerror(status))); return status; } extern "C" status_t publish_vnode(fs_volume* volume, ino_t vnodeID, void* privateNode, fs_vnode_ops* ops, int type, uint32 flags) { FUNCTION(("publish_vnode()\n")); WriteLocker locker(sVnodeLock); struct vnode* vnode = lookup_vnode(volume->id, vnodeID); bool nodeCreated = false; if (vnode == NULL) { if (privateNode == NULL) return B_BAD_VALUE; // create the node locker.Unlock(); // create_new_vnode_and_lock() will re-lock for us on success status_t status = create_new_vnode_and_lock(volume->id, vnodeID, vnode, nodeCreated); if (status != B_OK) return status; locker.SetTo(sVnodeLock, true); } if (nodeCreated) { vnode->private_node = privateNode; vnode->ops = ops; vnode->SetUnpublished(true); } else if (vnode->IsBusy() && vnode->IsUnpublished() && vnode->private_node == privateNode && vnode->ops == ops) { // already known, but not published } else return B_BAD_VALUE; bool publishSpecialSubNode = false; vnode->SetType(type); vnode->SetRemoved((flags & B_VNODE_PUBLISH_REMOVED) != 0); publishSpecialSubNode = is_special_node_type(type) && (flags & B_VNODE_DONT_CREATE_SPECIAL_SUB_NODE) == 0; status_t status = B_OK; // create sub vnodes, if necessary if (volume->sub_volume != NULL || publishSpecialSubNode) { locker.Unlock(); fs_volume* subVolume = volume; if (volume->sub_volume != NULL) { while (status == B_OK && subVolume->sub_volume != NULL) { subVolume = subVolume->sub_volume; status = subVolume->ops->create_sub_vnode(subVolume, vnodeID, vnode); } } if (status == B_OK && publishSpecialSubNode) status = create_special_sub_node(vnode, flags); if (status != B_OK) { // error -- clean up the created sub vnodes while (subVolume->super_volume != volume) { subVolume = subVolume->super_volume; subVolume->ops->delete_sub_vnode(subVolume, vnode); } } if (status == B_OK) { ReadLocker vnodesReadLocker(sVnodeLock); AutoLocker nodeLocker(vnode); vnode->SetBusy(false); vnode->SetUnpublished(false); } else { locker.Lock(); hash_remove(sVnodeTable, vnode); remove_vnode_from_mount_list(vnode, vnode->mount); free(vnode); } } else { // we still hold the write lock -- mark the node unbusy and published vnode->SetBusy(false); vnode->SetUnpublished(false); } TRACE(("returns: %s\n", strerror(status))); return status; } extern "C" status_t get_vnode(fs_volume* volume, ino_t vnodeID, void** _privateNode) { struct vnode* vnode; if (volume == NULL) return B_BAD_VALUE; status_t status = get_vnode(volume->id, vnodeID, &vnode, true, true); if (status != B_OK) return status; // If this is a layered FS, we need to get the node cookie for the requested // layer. if (HAS_FS_CALL(vnode, get_super_vnode)) { fs_vnode resolvedNode; status_t status = FS_CALL(vnode, get_super_vnode, volume, &resolvedNode); if (status != B_OK) { panic("get_vnode(): Failed to get super node for vnode %p, " "volume: %p", vnode, volume); put_vnode(vnode); return status; } if (_privateNode != NULL) *_privateNode = resolvedNode.private_node; } else if (_privateNode != NULL) *_privateNode = vnode->private_node; return B_OK; } extern "C" status_t acquire_vnode(fs_volume* volume, ino_t vnodeID) { struct vnode* vnode; rw_lock_read_lock(&sVnodeLock); vnode = lookup_vnode(volume->id, vnodeID); rw_lock_read_unlock(&sVnodeLock); if (vnode == NULL) return B_BAD_VALUE; inc_vnode_ref_count(vnode); return B_OK; } extern "C" status_t put_vnode(fs_volume* volume, ino_t vnodeID) { struct vnode* vnode; rw_lock_read_lock(&sVnodeLock); vnode = lookup_vnode(volume->id, vnodeID); rw_lock_read_unlock(&sVnodeLock); if (vnode == NULL) return B_BAD_VALUE; dec_vnode_ref_count(vnode, false, true); return B_OK; } extern "C" status_t remove_vnode(fs_volume* volume, ino_t vnodeID) { ReadLocker locker(sVnodeLock); struct vnode* vnode = lookup_vnode(volume->id, vnodeID); if (vnode == NULL) return B_ENTRY_NOT_FOUND; if (vnode->covered_by != NULL) { // this vnode is in use return B_BUSY; } vnode->Lock(); vnode->SetRemoved(true); bool removeUnpublished = false; if (vnode->IsUnpublished()) { // prepare the vnode for deletion removeUnpublished = true; vnode->SetBusy(true); } vnode->Unlock(); locker.Unlock(); if (removeUnpublished) { // If the vnode hasn't been published yet, we delete it here atomic_add(&vnode->ref_count, -1); free_vnode(vnode, true); } return B_OK; } extern "C" status_t unremove_vnode(fs_volume* volume, ino_t vnodeID) { struct vnode* vnode; rw_lock_read_lock(&sVnodeLock); vnode = lookup_vnode(volume->id, vnodeID); if (vnode) { AutoLocker nodeLocker(vnode); vnode->SetRemoved(false); } rw_lock_read_unlock(&sVnodeLock); return B_OK; } extern "C" status_t get_vnode_removed(fs_volume* volume, ino_t vnodeID, bool* _removed) { ReadLocker _(sVnodeLock); if (struct vnode* vnode = lookup_vnode(volume->id, vnodeID)) { if (_removed != NULL) *_removed = vnode->IsRemoved(); return B_OK; } return B_BAD_VALUE; } extern "C" fs_volume* volume_for_vnode(fs_vnode* _vnode) { if (_vnode == NULL) return NULL; struct vnode* vnode = static_cast(_vnode); return vnode->mount->volume; } #if 0 extern "C" status_t read_pages(int fd, off_t pos, const iovec* vecs, size_t count, size_t* _numBytes) { struct file_descriptor* descriptor; struct vnode* vnode; descriptor = get_fd_and_vnode(fd, &vnode, true); if (descriptor == NULL) return B_FILE_ERROR; status_t status = vfs_read_pages(vnode, descriptor->cookie, pos, vecs, count, 0, _numBytes); put_fd(descriptor); return status; } extern "C" status_t write_pages(int fd, off_t pos, const iovec* vecs, size_t count, size_t* _numBytes) { struct file_descriptor* descriptor; struct vnode* vnode; descriptor = get_fd_and_vnode(fd, &vnode, true); if (descriptor == NULL) return B_FILE_ERROR; status_t status = vfs_write_pages(vnode, descriptor->cookie, pos, vecs, count, 0, _numBytes); put_fd(descriptor); return status; } #endif extern "C" status_t read_file_io_vec_pages(int fd, const file_io_vec* fileVecs, size_t fileVecCount, const iovec* vecs, size_t vecCount, uint32* _vecIndex, size_t* _vecOffset, size_t* _bytes) { struct file_descriptor* descriptor; struct vnode* vnode; descriptor = get_fd_and_vnode(fd, &vnode, true); if (descriptor == NULL) return B_FILE_ERROR; status_t status = common_file_io_vec_pages(vnode, descriptor->cookie, fileVecs, fileVecCount, vecs, vecCount, _vecIndex, _vecOffset, _bytes, false); put_fd(descriptor); return status; } extern "C" status_t write_file_io_vec_pages(int fd, const file_io_vec* fileVecs, size_t fileVecCount, const iovec* vecs, size_t vecCount, uint32* _vecIndex, size_t* _vecOffset, size_t* _bytes) { struct file_descriptor* descriptor; struct vnode* vnode; descriptor = get_fd_and_vnode(fd, &vnode, true); if (descriptor == NULL) return B_FILE_ERROR; status_t status = common_file_io_vec_pages(vnode, descriptor->cookie, fileVecs, fileVecCount, vecs, vecCount, _vecIndex, _vecOffset, _bytes, true); put_fd(descriptor); return status; } extern "C" status_t entry_cache_add(dev_t mountID, ino_t dirID, const char* name, ino_t nodeID) { // lookup mount -- the caller is required to make sure that the mount // won't go away MutexLocker locker(sMountMutex); struct fs_mount* mount = find_mount(mountID); if (mount == NULL) return B_BAD_VALUE; locker.Unlock(); return mount->entry_cache.Add(dirID, name, nodeID); } extern "C" status_t entry_cache_remove(dev_t mountID, ino_t dirID, const char* name) { // lookup mount -- the caller is required to make sure that the mount // won't go away MutexLocker locker(sMountMutex); struct fs_mount* mount = find_mount(mountID); if (mount == NULL) return B_BAD_VALUE; locker.Unlock(); return mount->entry_cache.Remove(dirID, name); } // #pragma mark - private VFS API // Functions the VFS exports for other parts of the kernel /*! Acquires another reference to the vnode that has to be released by calling vfs_put_vnode(). */ void vfs_acquire_vnode(struct vnode* vnode) { inc_vnode_ref_count(vnode); } /*! This is currently called from file_cache_create() only. It's probably a temporary solution as long as devfs requires that fs_read_pages()/fs_write_pages() are called with the standard open cookie and not with a device cookie. If that's done differently, remove this call; it has no other purpose. */ extern "C" status_t vfs_get_cookie_from_fd(int fd, void** _cookie) { struct file_descriptor* descriptor; descriptor = get_fd(get_current_io_context(true), fd); if (descriptor == NULL) return B_FILE_ERROR; *_cookie = descriptor->cookie; return B_OK; } extern "C" status_t vfs_get_vnode_from_fd(int fd, bool kernel, struct vnode** vnode) { *vnode = get_vnode_from_fd(fd, kernel); if (*vnode == NULL) return B_FILE_ERROR; return B_NO_ERROR; } extern "C" status_t vfs_get_vnode_from_path(const char* path, bool kernel, struct vnode** _vnode) { TRACE(("vfs_get_vnode_from_path: entry. path = '%s', kernel %d\n", path, kernel)); KPath pathBuffer(B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* buffer = pathBuffer.LockBuffer(); strlcpy(buffer, path, pathBuffer.BufferSize()); struct vnode* vnode; status_t status = path_to_vnode(buffer, true, &vnode, NULL, kernel); if (status != B_OK) return status; *_vnode = vnode; return B_OK; } extern "C" status_t vfs_get_vnode(dev_t mountID, ino_t vnodeID, bool canWait, struct vnode** _vnode) { struct vnode* vnode; status_t status = get_vnode(mountID, vnodeID, &vnode, canWait, false); if (status != B_OK) return status; *_vnode = vnode; return B_OK; } extern "C" status_t vfs_entry_ref_to_vnode(dev_t mountID, ino_t directoryID, const char* name, struct vnode** _vnode) { return entry_ref_to_vnode(mountID, directoryID, name, false, true, _vnode); } extern "C" void vfs_vnode_to_node_ref(struct vnode* vnode, dev_t* _mountID, ino_t* _vnodeID) { *_mountID = vnode->device; *_vnodeID = vnode->id; } /*! Helper function abstracting the process of "converting" a given vnode-pointer to a fs_vnode-pointer. Currently only used in bindfs. */ extern "C" fs_vnode* vfs_fsnode_for_vnode(struct vnode* vnode) { return vnode; } /*! Calls fs_open() on the given vnode and returns a new file descriptor for it */ int vfs_open_vnode(struct vnode* vnode, int openMode, bool kernel) { return open_vnode(vnode, openMode, kernel); } /*! Looks up a vnode with the given mount and vnode ID. Must only be used with "in-use" vnodes as it doesn't grab a reference to the node. It's currently only be used by file_cache_create(). */ extern "C" status_t vfs_lookup_vnode(dev_t mountID, ino_t vnodeID, struct vnode** _vnode) { rw_lock_read_lock(&sVnodeLock); struct vnode* vnode = lookup_vnode(mountID, vnodeID); rw_lock_read_unlock(&sVnodeLock); if (vnode == NULL) return B_ERROR; *_vnode = vnode; return B_OK; } extern "C" status_t vfs_get_fs_node_from_path(fs_volume* volume, const char* path, bool traverseLeafLink, bool kernel, void** _node) { TRACE(("vfs_get_fs_node_from_path(volume = %p, path = \"%s\", kernel %d)\n", volume, path, kernel)); KPath pathBuffer(B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; fs_mount* mount; status_t status = get_mount(volume->id, &mount); if (status != B_OK) return status; char* buffer = pathBuffer.LockBuffer(); strlcpy(buffer, path, pathBuffer.BufferSize()); struct vnode* vnode = mount->root_vnode; if (buffer[0] == '/') status = path_to_vnode(buffer, traverseLeafLink, &vnode, NULL, kernel); else { inc_vnode_ref_count(vnode); // vnode_path_to_vnode() releases a reference to the starting vnode status = vnode_path_to_vnode(vnode, buffer, traverseLeafLink, 0, kernel, &vnode, NULL); } put_mount(mount); if (status != B_OK) return status; if (vnode->device != volume->id) { // wrong mount ID - must not gain access on foreign file system nodes put_vnode(vnode); return B_BAD_VALUE; } // Use get_vnode() to resolve the cookie for the right layer. status = get_vnode(volume, vnode->id, _node); put_vnode(vnode); return status; } status_t vfs_read_stat(int fd, const char* path, bool traverseLeafLink, struct stat* stat, bool kernel) { status_t status; if (path) { // path given: get the stat of the node referred to by (fd, path) KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; status = common_path_read_stat(fd, pathBuffer.LockBuffer(), traverseLeafLink, stat, kernel); } else { // no path given: get the FD and use the FD operation struct file_descriptor* descriptor = get_fd(get_current_io_context(kernel), fd); if (descriptor == NULL) return B_FILE_ERROR; if (descriptor->ops->fd_read_stat) status = descriptor->ops->fd_read_stat(descriptor, stat); else status = B_NOT_SUPPORTED; put_fd(descriptor); } return status; } /*! Finds the full path to the file that contains the module \a moduleName, puts it into \a pathBuffer, and returns B_OK for success. If \a pathBuffer was too small, it returns \c B_BUFFER_OVERFLOW, \c B_ENTRY_NOT_FOUNT if no file could be found. \a pathBuffer is clobbered in any case and must not be relied on if this functions returns unsuccessfully. \a basePath and \a pathBuffer must not point to the same space. */ status_t vfs_get_module_path(const char* basePath, const char* moduleName, char* pathBuffer, size_t bufferSize) { struct vnode* dir; struct vnode* file; status_t status; size_t length; char* path; if (bufferSize == 0 || strlcpy(pathBuffer, basePath, bufferSize) >= bufferSize) return B_BUFFER_OVERFLOW; status = path_to_vnode(pathBuffer, true, &dir, NULL, true); if (status != B_OK) return status; // the path buffer had been clobbered by the above call length = strlcpy(pathBuffer, basePath, bufferSize); if (pathBuffer[length - 1] != '/') pathBuffer[length++] = '/'; path = pathBuffer + length; bufferSize -= length; while (moduleName) { char* nextPath = strchr(moduleName, '/'); if (nextPath == NULL) length = strlen(moduleName); else { length = nextPath - moduleName; nextPath++; } if (length + 1 >= bufferSize) { status = B_BUFFER_OVERFLOW; goto err; } memcpy(path, moduleName, length); path[length] = '\0'; moduleName = nextPath; status = vnode_path_to_vnode(dir, path, true, 0, true, &file, NULL); if (status != B_OK) { // vnode_path_to_vnode() has already released the reference to dir return status; } if (S_ISDIR(file->Type())) { // goto the next directory path[length] = '/'; path[length + 1] = '\0'; path += length + 1; bufferSize -= length + 1; dir = file; } else if (S_ISREG(file->Type())) { // it's a file so it should be what we've searched for put_vnode(file); return B_OK; } else { TRACE(("vfs_get_module_path(): something is strange here: " "0x%08lx...\n", file->Type())); status = B_ERROR; dir = file; goto err; } } // if we got here, the moduleName just pointed to a directory, not to // a real module - what should we do in this case? status = B_ENTRY_NOT_FOUND; err: put_vnode(dir); return status; } /*! \brief Normalizes a given path. The path must refer to an existing or non-existing entry in an existing directory, that is chopping off the leaf component the remaining path must refer to an existing directory. The returned will be canonical in that it will be absolute, will not contain any "." or ".." components or duplicate occurrences of '/'s, and none of the directory components will by symbolic links. Any two paths referring to the same entry, will result in the same normalized path (well, that is pretty much the definition of `normalized', isn't it :-). \param path The path to be normalized. \param buffer The buffer into which the normalized path will be written. May be the same one as \a path. \param bufferSize The size of \a buffer. \param traverseLink If \c true, the function also resolves leaf symlinks. \param kernel \c true, if the IO context of the kernel shall be used, otherwise that of the team this thread belongs to. Only relevant, if the path is relative (to get the CWD). \return \c B_OK if everything went fine, another error code otherwise. */ status_t vfs_normalize_path(const char* path, char* buffer, size_t bufferSize, bool traverseLink, bool kernel) { if (!path || !buffer || bufferSize < 1) return B_BAD_VALUE; if (path != buffer) { if (strlcpy(buffer, path, bufferSize) >= bufferSize) return B_BUFFER_OVERFLOW; } return normalize_path(buffer, bufferSize, traverseLink, kernel); } /*! \brief Creates a special node in the file system. The caller gets a reference to the newly created node (which is passed back through \a _createdVnode) and is responsible for releasing it. \param path The path where to create the entry for the node. Can be \c NULL, in which case the node is created without an entry in the root FS -- it will automatically be deleted when the last reference has been released. \param subVnode The definition of the subnode. Can be \c NULL, in which case the target file system will just create the node with its standard operations. Depending on the type of the node a subnode might be created automatically, though. \param mode The type and permissions for the node to be created. \param flags Flags to be passed to the creating FS. \param kernel \c true, if called in the kernel context (relevant only if \a path is not \c NULL and not absolute). \param _superVnode Pointer to a pre-allocated structure to be filled by the file system creating the node, with the private data pointer and operations for the super node. Can be \c NULL. \param _createVnode Pointer to pre-allocated storage where to store the pointer to the newly created node. \return \c B_OK, if everything went fine, another error code otherwise. */ status_t vfs_create_special_node(const char* path, fs_vnode* subVnode, mode_t mode, uint32 flags, bool kernel, fs_vnode* _superVnode, struct vnode** _createdVnode) { struct vnode* dirNode; char _leaf[B_FILE_NAME_LENGTH]; char* leaf = NULL; if (path) { // We've got a path. Get the dir vnode and the leaf name. KPath tmpPathBuffer(B_PATH_NAME_LENGTH + 1); if (tmpPathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* tmpPath = tmpPathBuffer.LockBuffer(); if (strlcpy(tmpPath, path, B_PATH_NAME_LENGTH) >= B_PATH_NAME_LENGTH) return B_NAME_TOO_LONG; // get the dir vnode and the leaf name leaf = _leaf; status_t error = path_to_dir_vnode(tmpPath, &dirNode, leaf, kernel); if (error != B_OK) return error; } else { // No path. Create the node in the root FS. dirNode = sRoot; inc_vnode_ref_count(dirNode); } VNodePutter _(dirNode); // check support for creating special nodes if (!HAS_FS_CALL(dirNode, create_special_node)) return B_UNSUPPORTED; // create the node fs_vnode superVnode; ino_t nodeID; status_t status = FS_CALL(dirNode, create_special_node, leaf, subVnode, mode, flags, _superVnode != NULL ? _superVnode : &superVnode, &nodeID); if (status != B_OK) return status; // lookup the node rw_lock_read_lock(&sVnodeLock); *_createdVnode = lookup_vnode(dirNode->mount->id, nodeID); rw_lock_read_unlock(&sVnodeLock); if (*_createdVnode == NULL) { panic("vfs_create_special_node(): lookup of node failed"); return B_ERROR; } return B_OK; } extern "C" void vfs_put_vnode(struct vnode* vnode) { put_vnode(vnode); } extern "C" status_t vfs_get_cwd(dev_t* _mountID, ino_t* _vnodeID) { // Get current working directory from io context struct io_context* context = get_current_io_context(false); status_t status = B_OK; mutex_lock(&context->io_mutex); if (context->cwd != NULL) { *_mountID = context->cwd->device; *_vnodeID = context->cwd->id; } else status = B_ERROR; mutex_unlock(&context->io_mutex); return status; } status_t vfs_unmount(dev_t mountID, uint32 flags) { return fs_unmount(NULL, mountID, flags, true); } extern "C" status_t vfs_disconnect_vnode(dev_t mountID, ino_t vnodeID) { struct vnode* vnode; status_t status = get_vnode(mountID, vnodeID, &vnode, true, true); if (status != B_OK) return status; disconnect_mount_or_vnode_fds(vnode->mount, vnode); put_vnode(vnode); return B_OK; } extern "C" void vfs_free_unused_vnodes(int32 level) { vnode_low_resource_handler(NULL, B_KERNEL_RESOURCE_PAGES | B_KERNEL_RESOURCE_MEMORY | B_KERNEL_RESOURCE_ADDRESS_SPACE, level); } extern "C" bool vfs_can_page(struct vnode* vnode, void* cookie) { FUNCTION(("vfs_canpage: vnode 0x%p\n", vnode)); if (HAS_FS_CALL(vnode, can_page)) return FS_CALL(vnode, can_page, cookie); return false; } extern "C" status_t vfs_read_pages(struct vnode* vnode, void* cookie, off_t pos, const generic_io_vec* vecs, size_t count, uint32 flags, generic_size_t* _numBytes) { FUNCTION(("vfs_read_pages: vnode %p, vecs %p, pos %Ld\n", vnode, vecs, pos)); #if VFS_PAGES_IO_TRACING generic_size_t bytesRequested = *_numBytes; #endif IORequest request; status_t status = request.Init(pos, vecs, count, *_numBytes, false, flags); if (status == B_OK) { status = vfs_vnode_io(vnode, cookie, &request); if (status == B_OK) status = request.Wait(); *_numBytes = request.TransferredBytes(); } TPIO(ReadPages(vnode, cookie, pos, vecs, count, flags, bytesRequested, status, *_numBytes)); return status; } extern "C" status_t vfs_write_pages(struct vnode* vnode, void* cookie, off_t pos, const generic_io_vec* vecs, size_t count, uint32 flags, generic_size_t* _numBytes) { FUNCTION(("vfs_write_pages: vnode %p, vecs %p, pos %Ld\n", vnode, vecs, pos)); #if VFS_PAGES_IO_TRACING generic_size_t bytesRequested = *_numBytes; #endif IORequest request; status_t status = request.Init(pos, vecs, count, *_numBytes, true, flags); if (status == B_OK) { status = vfs_vnode_io(vnode, cookie, &request); if (status == B_OK) status = request.Wait(); *_numBytes = request.TransferredBytes(); } TPIO(WritePages(vnode, cookie, pos, vecs, count, flags, bytesRequested, status, *_numBytes)); return status; } /*! Gets the vnode's VMCache object. If it didn't have one, it will be created if \a allocate is \c true. In case it's successful, it will also grab a reference to the cache it returns. */ extern "C" status_t vfs_get_vnode_cache(struct vnode* vnode, VMCache** _cache, bool allocate) { if (vnode->cache != NULL) { vnode->cache->AcquireRef(); *_cache = vnode->cache; return B_OK; } rw_lock_read_lock(&sVnodeLock); vnode->Lock(); status_t status = B_OK; // The cache could have been created in the meantime if (vnode->cache == NULL) { if (allocate) { // TODO: actually the vnode needs to be busy already here, or // else this won't work... bool wasBusy = vnode->IsBusy(); vnode->SetBusy(true); vnode->Unlock(); rw_lock_read_unlock(&sVnodeLock); status = vm_create_vnode_cache(vnode, &vnode->cache); rw_lock_read_lock(&sVnodeLock); vnode->Lock(); vnode->SetBusy(wasBusy); } else status = B_BAD_VALUE; } vnode->Unlock(); rw_lock_read_unlock(&sVnodeLock); if (status == B_OK) { vnode->cache->AcquireRef(); *_cache = vnode->cache; } return status; } status_t vfs_get_file_map(struct vnode* vnode, off_t offset, size_t size, file_io_vec* vecs, size_t* _count) { FUNCTION(("vfs_get_file_map: vnode %p, vecs %p, offset %Ld, size = %lu\n", vnode, vecs, offset, size)); return FS_CALL(vnode, get_file_map, offset, size, vecs, _count); } status_t vfs_stat_vnode(struct vnode* vnode, struct stat* stat) { status_t status = FS_CALL(vnode, read_stat, stat); // fill in the st_dev and st_ino fields if (status == B_OK) { stat->st_dev = vnode->device; stat->st_ino = vnode->id; stat->st_rdev = -1; } return status; } status_t vfs_stat_node_ref(dev_t device, ino_t inode, struct stat* stat) { struct vnode* vnode; status_t status = get_vnode(device, inode, &vnode, true, false); if (status != B_OK) return status; status = FS_CALL(vnode, read_stat, stat); // fill in the st_dev and st_ino fields if (status == B_OK) { stat->st_dev = vnode->device; stat->st_ino = vnode->id; stat->st_rdev = -1; } put_vnode(vnode); return status; } status_t vfs_get_vnode_name(struct vnode* vnode, char* name, size_t nameSize) { return get_vnode_name(vnode, NULL, name, nameSize, true); } status_t vfs_entry_ref_to_path(dev_t device, ino_t inode, const char* leaf, char* path, size_t pathLength) { struct vnode* vnode; status_t status; // filter invalid leaf names if (leaf != NULL && (leaf[0] == '\0' || strchr(leaf, '/'))) return B_BAD_VALUE; // get the vnode matching the dir's node_ref if (leaf && (strcmp(leaf, ".") == 0 || strcmp(leaf, "..") == 0)) { // special cases "." and "..": we can directly get the vnode of the // referenced directory status = entry_ref_to_vnode(device, inode, leaf, false, true, &vnode); leaf = NULL; } else status = get_vnode(device, inode, &vnode, true, false); if (status != B_OK) return status; // get the directory path status = dir_vnode_to_path(vnode, path, pathLength, true); put_vnode(vnode); // we don't need the vnode anymore if (status != B_OK) return status; // append the leaf name if (leaf) { // insert a directory separator if this is not the file system root if ((strcmp(path, "/") && strlcat(path, "/", pathLength) >= pathLength) || strlcat(path, leaf, pathLength) >= pathLength) { return B_NAME_TOO_LONG; } } return B_OK; } /*! If the given descriptor locked its vnode, that lock will be released. */ void vfs_unlock_vnode_if_locked(struct file_descriptor* descriptor) { struct vnode* vnode = fd_vnode(descriptor); if (vnode != NULL && vnode->mandatory_locked_by == descriptor) vnode->mandatory_locked_by = NULL; } /*! Closes all file descriptors of the specified I/O context that have the O_CLOEXEC flag set. */ void vfs_exec_io_context(io_context* context) { uint32 i; for (i = 0; i < context->table_size; i++) { mutex_lock(&context->io_mutex); struct file_descriptor* descriptor = context->fds[i]; bool remove = false; if (descriptor != NULL && fd_close_on_exec(context, i)) { context->fds[i] = NULL; context->num_used_fds--; remove = true; } mutex_unlock(&context->io_mutex); if (remove) { close_fd(descriptor); put_fd(descriptor); } } } /*! Sets up a new io_control structure, and inherits the properties of the parent io_control if it is given. */ io_context* vfs_new_io_context(io_context* parentContext, bool purgeCloseOnExec) { io_context* context = (io_context*)malloc(sizeof(io_context)); if (context == NULL) return NULL; TIOC(NewIOContext(context, parentContext)); memset(context, 0, sizeof(io_context)); context->ref_count = 1; MutexLocker parentLocker; size_t tableSize; if (parentContext) { parentLocker.SetTo(parentContext->io_mutex, false); tableSize = parentContext->table_size; } else tableSize = DEFAULT_FD_TABLE_SIZE; // allocate space for FDs and their close-on-exec flag context->fds = (file_descriptor**)malloc( sizeof(struct file_descriptor*) * tableSize + sizeof(struct select_sync*) * tableSize + (tableSize + 7) / 8); if (context->fds == NULL) { free(context); return NULL; } context->select_infos = (select_info**)(context->fds + tableSize); context->fds_close_on_exec = (uint8*)(context->select_infos + tableSize); memset(context->fds, 0, sizeof(struct file_descriptor*) * tableSize + sizeof(struct select_sync*) * tableSize + (tableSize + 7) / 8); mutex_init(&context->io_mutex, "I/O context"); // Copy all parent file descriptors if (parentContext) { size_t i; mutex_lock(&sIOContextRootLock); context->root = parentContext->root; if (context->root) inc_vnode_ref_count(context->root); mutex_unlock(&sIOContextRootLock); context->cwd = parentContext->cwd; if (context->cwd) inc_vnode_ref_count(context->cwd); for (i = 0; i < tableSize; i++) { struct file_descriptor* descriptor = parentContext->fds[i]; if (descriptor != NULL) { bool closeOnExec = fd_close_on_exec(parentContext, i); if (closeOnExec && purgeCloseOnExec) continue; TFD(InheritFD(context, i, descriptor, parentContext)); context->fds[i] = descriptor; context->num_used_fds++; atomic_add(&descriptor->ref_count, 1); atomic_add(&descriptor->open_count, 1); if (closeOnExec) fd_set_close_on_exec(context, i, true); } } parentLocker.Unlock(); } else { context->root = sRoot; context->cwd = sRoot; if (context->root) inc_vnode_ref_count(context->root); if (context->cwd) inc_vnode_ref_count(context->cwd); } context->table_size = tableSize; list_init(&context->node_monitors); context->max_monitors = DEFAULT_NODE_MONITORS; return context; } static status_t vfs_free_io_context(io_context* context) { uint32 i; TIOC(FreeIOContext(context)); if (context->root) put_vnode(context->root); if (context->cwd) put_vnode(context->cwd); mutex_lock(&context->io_mutex); for (i = 0; i < context->table_size; i++) { if (struct file_descriptor* descriptor = context->fds[i]) { close_fd(descriptor); put_fd(descriptor); } } mutex_destroy(&context->io_mutex); remove_node_monitors(context); free(context->fds); free(context); return B_OK; } void vfs_get_io_context(io_context* context) { atomic_add(&context->ref_count, 1); } void vfs_put_io_context(io_context* context) { if (atomic_add(&context->ref_count, -1) == 1) vfs_free_io_context(context); } static status_t vfs_resize_fd_table(struct io_context* context, const int newSize) { if (newSize <= 0 || newSize > MAX_FD_TABLE_SIZE) return B_BAD_VALUE; TIOC(ResizeIOContext(context, newSize)); MutexLocker _(context->io_mutex); int oldSize = context->table_size; int oldCloseOnExitBitmapSize = (oldSize + 7) / 8; int newCloseOnExitBitmapSize = (newSize + 7) / 8; // If the tables shrink, make sure none of the fds being dropped are in use. if (newSize < oldSize) { for (int i = oldSize; i-- > newSize;) { if (context->fds[i]) return B_BUSY; } } // store pointers to the old tables file_descriptor** oldFDs = context->fds; select_info** oldSelectInfos = context->select_infos; uint8* oldCloseOnExecTable = context->fds_close_on_exec; // allocate new tables file_descriptor** newFDs = (file_descriptor**)malloc( sizeof(struct file_descriptor*) * newSize + sizeof(struct select_sync*) * newSize + newCloseOnExitBitmapSize); if (newFDs == NULL) return B_NO_MEMORY; context->fds = newFDs; context->select_infos = (select_info**)(context->fds + newSize); context->fds_close_on_exec = (uint8*)(context->select_infos + newSize); context->table_size = newSize; // copy entries from old tables int toCopy = min_c(oldSize, newSize); memcpy(context->fds, oldFDs, sizeof(void*) * toCopy); memcpy(context->select_infos, oldSelectInfos, sizeof(void*) * toCopy); memcpy(context->fds_close_on_exec, oldCloseOnExecTable, min_c(oldCloseOnExitBitmapSize, newCloseOnExitBitmapSize)); // clear additional entries, if the tables grow if (newSize > oldSize) { memset(context->fds + oldSize, 0, sizeof(void*) * (newSize - oldSize)); memset(context->select_infos + oldSize, 0, sizeof(void*) * (newSize - oldSize)); memset(context->fds_close_on_exec + oldCloseOnExitBitmapSize, 0, newCloseOnExitBitmapSize - oldCloseOnExitBitmapSize); } free(oldFDs); return B_OK; } static status_t vfs_resize_monitor_table(struct io_context* context, const int newSize) { int status = B_OK; if (newSize <= 0 || newSize > MAX_NODE_MONITORS) return B_BAD_VALUE; mutex_lock(&context->io_mutex); if ((size_t)newSize < context->num_monitors) { status = B_BUSY; goto out; } context->max_monitors = newSize; out: mutex_unlock(&context->io_mutex); return status; } int vfs_getrlimit(int resource, struct rlimit* rlp) { if (!rlp) return B_BAD_ADDRESS; switch (resource) { case RLIMIT_NOFILE: { struct io_context* context = get_current_io_context(false); MutexLocker _(context->io_mutex); rlp->rlim_cur = context->table_size; rlp->rlim_max = MAX_FD_TABLE_SIZE; return 0; } case RLIMIT_NOVMON: { struct io_context* context = get_current_io_context(false); MutexLocker _(context->io_mutex); rlp->rlim_cur = context->max_monitors; rlp->rlim_max = MAX_NODE_MONITORS; return 0; } default: return B_BAD_VALUE; } } int vfs_setrlimit(int resource, const struct rlimit* rlp) { if (!rlp) return B_BAD_ADDRESS; switch (resource) { case RLIMIT_NOFILE: /* TODO: check getuid() */ if (rlp->rlim_max != RLIM_SAVED_MAX && rlp->rlim_max != MAX_FD_TABLE_SIZE) return B_NOT_ALLOWED; return vfs_resize_fd_table(get_current_io_context(false), rlp->rlim_cur); case RLIMIT_NOVMON: /* TODO: check getuid() */ if (rlp->rlim_max != RLIM_SAVED_MAX && rlp->rlim_max != MAX_NODE_MONITORS) return B_NOT_ALLOWED; return vfs_resize_monitor_table(get_current_io_context(false), rlp->rlim_cur); default: return B_BAD_VALUE; } } status_t vfs_init(kernel_args* args) { vnode::StaticInit(); struct vnode dummyVnode; sVnodeTable = hash_init(VNODE_HASH_TABLE_SIZE, offset_of_member(dummyVnode, next), &vnode_compare, &vnode_hash); if (sVnodeTable == NULL) panic("vfs_init: error creating vnode hash table\n"); list_init_etc(&sUnusedVnodeList, offset_of_member(dummyVnode, unused_link)); struct fs_mount dummyMount; sMountsTable = hash_init(MOUNTS_HASH_TABLE_SIZE, offset_of_member(dummyMount, next), &mount_compare, &mount_hash); if (sMountsTable == NULL) panic("vfs_init: error creating mounts hash table\n"); node_monitor_init(); sRoot = NULL; recursive_lock_init(&sMountOpLock, "vfs_mount_op_lock"); if (block_cache_init() != B_OK) return B_ERROR; #ifdef ADD_DEBUGGER_COMMANDS // add some debugger commands add_debugger_command_etc("vnode", &dump_vnode, "Print info about the specified vnode", "[ \"-p\" ] ( | )\n" "Prints information about the vnode specified by address or\n" ", pair. If \"-p\" is given, a path of the vnode is\n" "constructed and printed. It might not be possible to construct a\n" "complete path, though.\n", 0); add_debugger_command("vnodes", &dump_vnodes, "list all vnodes (from the specified device)"); add_debugger_command("vnode_caches", &dump_vnode_caches, "list all vnode caches"); add_debugger_command("mount", &dump_mount, "info about the specified fs_mount"); add_debugger_command("mounts", &dump_mounts, "list all fs_mounts"); add_debugger_command("io_context", &dump_io_context, "info about the I/O context"); add_debugger_command("vnode_usage", &dump_vnode_usage, "info about vnode usage"); #endif register_low_resource_handler(&vnode_low_resource_handler, NULL, B_KERNEL_RESOURCE_PAGES | B_KERNEL_RESOURCE_MEMORY | B_KERNEL_RESOURCE_ADDRESS_SPACE, 0); file_map_init(); return file_cache_init(); } // #pragma mark - fd_ops implementations /*! Calls fs_open() on the given vnode and returns a new file descriptor for it */ static int open_vnode(struct vnode* vnode, int openMode, bool kernel) { void* cookie; status_t status = FS_CALL(vnode, open, openMode, &cookie); if (status != B_OK) return status; int fd = get_new_fd(FDTYPE_FILE, NULL, vnode, cookie, openMode, kernel); if (fd < 0) { FS_CALL(vnode, close, cookie); FS_CALL(vnode, free_cookie, cookie); } return fd; } /*! Calls fs_open() on the given vnode and returns a new file descriptor for it */ static int create_vnode(struct vnode* directory, const char* name, int openMode, int perms, bool kernel) { bool traverse = ((openMode & (O_NOTRAVERSE | O_NOFOLLOW)) == 0); status_t status = B_ERROR; struct vnode* vnode; void* cookie; ino_t newID; // This is somewhat tricky: If the entry already exists, the FS responsible // for the directory might not necessarily also be the one responsible for // the node the entry refers to (e.g. in case of mount points or FIFOs). So // we can actually never call the create() hook without O_EXCL. Instead we // try to look the entry up first. If it already exists, we just open the // node (unless O_EXCL), otherwise we call create() with O_EXCL. This // introduces a race condition, since someone else might have created the // entry in the meantime. We hope the respective FS returns the correct // error code and retry (up to 3 times) again. for (int i = 0; i < 3 && status != B_OK; i++) { // look the node up status = lookup_dir_entry(directory, name, &vnode); if (status == B_OK) { VNodePutter putter(vnode); if ((openMode & O_EXCL) != 0) return B_FILE_EXISTS; // If the node is a symlink, we have to follow it, unless // O_NOTRAVERSE is set. if (S_ISLNK(vnode->Type()) && traverse) { putter.Put(); char clonedName[B_FILE_NAME_LENGTH + 1]; if (strlcpy(clonedName, name, B_FILE_NAME_LENGTH) >= B_FILE_NAME_LENGTH) { return B_NAME_TOO_LONG; } inc_vnode_ref_count(directory); status = vnode_path_to_vnode(directory, clonedName, true, 0, kernel, &vnode, NULL); if (status != B_OK) return status; putter.SetTo(vnode); } if ((openMode & O_NOFOLLOW) != 0 && S_ISLNK(vnode->Type())) { put_vnode(vnode); return B_LINK_LIMIT; } int fd = open_vnode(vnode, openMode & ~O_CREAT, kernel); // on success keep the vnode reference for the FD if (fd >= 0) putter.Detach(); return fd; } // it doesn't exist yet -- try to create it if (!HAS_FS_CALL(directory, create)) return B_READ_ONLY_DEVICE; status = FS_CALL(directory, create, name, openMode | O_EXCL, perms, &cookie, &newID); if (status != B_OK && ((openMode & O_EXCL) != 0 || status != B_FILE_EXISTS)) { return status; } } if (status != B_OK) return status; // the node has been created successfully rw_lock_read_lock(&sVnodeLock); vnode = lookup_vnode(directory->device, newID); rw_lock_read_unlock(&sVnodeLock); if (vnode == NULL) { panic("vfs: fs_create() returned success but there is no vnode, " "mount ID %ld!\n", directory->device); return B_BAD_VALUE; } int fd = get_new_fd(FDTYPE_FILE, NULL, vnode, cookie, openMode, kernel); if (fd >= 0) return fd; status = fd; // something went wrong, clean up FS_CALL(vnode, close, cookie); FS_CALL(vnode, free_cookie, cookie); put_vnode(vnode); FS_CALL(directory, unlink, name); return status; } /*! Calls fs open_dir() on the given vnode and returns a new file descriptor for it */ static int open_dir_vnode(struct vnode* vnode, bool kernel) { void* cookie; int status; status = FS_CALL(vnode, open_dir, &cookie); if (status != B_OK) return status; // directory is opened, create a fd status = get_new_fd(FDTYPE_DIR, NULL, vnode, cookie, O_CLOEXEC, kernel); if (status >= 0) return status; FS_CALL(vnode, close_dir, cookie); FS_CALL(vnode, free_dir_cookie, cookie); return status; } /*! Calls fs open_attr_dir() on the given vnode and returns a new file descriptor for it. Used by attr_dir_open(), and attr_dir_open_fd(). */ static int open_attr_dir_vnode(struct vnode* vnode, bool kernel) { void* cookie; int status; if (!HAS_FS_CALL(vnode, open_attr_dir)) return B_NOT_SUPPORTED; status = FS_CALL(vnode, open_attr_dir, &cookie); if (status != B_OK) return status; // directory is opened, create a fd status = get_new_fd(FDTYPE_ATTR_DIR, NULL, vnode, cookie, O_CLOEXEC, kernel); if (status >= 0) return status; FS_CALL(vnode, close_attr_dir, cookie); FS_CALL(vnode, free_attr_dir_cookie, cookie); return status; } static int file_create_entry_ref(dev_t mountID, ino_t directoryID, const char* name, int openMode, int perms, bool kernel) { struct vnode* directory; int status; FUNCTION(("file_create_entry_ref: name = '%s', omode %x, perms %d, " "kernel %d\n", name, openMode, perms, kernel)); // get directory to put the new file in status = get_vnode(mountID, directoryID, &directory, true, false); if (status != B_OK) return status; status = create_vnode(directory, name, openMode, perms, kernel); put_vnode(directory); return status; } static int file_create(int fd, char* path, int openMode, int perms, bool kernel) { char name[B_FILE_NAME_LENGTH]; struct vnode* directory; int status; FUNCTION(("file_create: path '%s', omode %x, perms %d, kernel %d\n", path, openMode, perms, kernel)); // get directory to put the new file in status = fd_and_path_to_dir_vnode(fd, path, &directory, name, kernel); if (status < 0) return status; status = create_vnode(directory, name, openMode, perms, kernel); put_vnode(directory); return status; } static int file_open_entry_ref(dev_t mountID, ino_t directoryID, const char* name, int openMode, bool kernel) { if (name == NULL || *name == '\0') return B_BAD_VALUE; FUNCTION(("file_open_entry_ref(ref = (%ld, %Ld, %s), openMode = %d)\n", mountID, directoryID, name, openMode)); bool traverse = ((openMode & (O_NOTRAVERSE | O_NOFOLLOW)) == 0); // get the vnode matching the entry_ref struct vnode* vnode; status_t status = entry_ref_to_vnode(mountID, directoryID, name, traverse, kernel, &vnode); if (status != B_OK) return status; if ((openMode & O_NOFOLLOW) != 0 && S_ISLNK(vnode->Type())) { put_vnode(vnode); return B_LINK_LIMIT; } int newFD = open_vnode(vnode, openMode, kernel); if (newFD >= 0) { // The vnode reference has been transferred to the FD cache_node_opened(vnode, FDTYPE_FILE, vnode->cache, mountID, directoryID, vnode->id, name); } else put_vnode(vnode); return newFD; } static int file_open(int fd, char* path, int openMode, bool kernel) { bool traverse = ((openMode & (O_NOTRAVERSE | O_NOFOLLOW)) == 0); FUNCTION(("file_open: fd: %d, entry path = '%s', omode %d, kernel %d\n", fd, path, openMode, kernel)); // get the vnode matching the vnode + path combination struct vnode* vnode; ino_t parentID; status_t status = fd_and_path_to_vnode(fd, path, traverse, &vnode, &parentID, kernel); if (status != B_OK) return status; if ((openMode & O_NOFOLLOW) != 0 && S_ISLNK(vnode->Type())) { put_vnode(vnode); return B_LINK_LIMIT; } // open the vnode int newFD = open_vnode(vnode, openMode, kernel); if (newFD >= 0) { // The vnode reference has been transferred to the FD cache_node_opened(vnode, FDTYPE_FILE, vnode->cache, vnode->device, parentID, vnode->id, NULL); } else put_vnode(vnode); return newFD; } static status_t file_close(struct file_descriptor* descriptor) { struct vnode* vnode = descriptor->u.vnode; status_t status = B_OK; FUNCTION(("file_close(descriptor = %p)\n", descriptor)); cache_node_closed(vnode, FDTYPE_FILE, vnode->cache, vnode->device, vnode->id); if (HAS_FS_CALL(vnode, close)) { status = FS_CALL(vnode, close, descriptor->cookie); } if (status == B_OK) { // remove all outstanding locks for this team release_advisory_lock(vnode, NULL); } return status; } static void file_free_fd(struct file_descriptor* descriptor) { struct vnode* vnode = descriptor->u.vnode; if (vnode != NULL) { FS_CALL(vnode, free_cookie, descriptor->cookie); put_vnode(vnode); } } static status_t file_read(struct file_descriptor* descriptor, off_t pos, void* buffer, size_t* length) { struct vnode* vnode = descriptor->u.vnode; FUNCTION(("file_read: buf %p, pos %Ld, len %p = %ld\n", buffer, pos, length, *length)); if (S_ISDIR(vnode->Type())) return B_IS_A_DIRECTORY; return FS_CALL(vnode, read, descriptor->cookie, pos, buffer, length); } static status_t file_write(struct file_descriptor* descriptor, off_t pos, const void* buffer, size_t* length) { struct vnode* vnode = descriptor->u.vnode; FUNCTION(("file_write: buf %p, pos %Ld, len %p\n", buffer, pos, length)); if (S_ISDIR(vnode->Type())) return B_IS_A_DIRECTORY; if (!HAS_FS_CALL(vnode, write)) return B_READ_ONLY_DEVICE; return FS_CALL(vnode, write, descriptor->cookie, pos, buffer, length); } static off_t file_seek(struct file_descriptor* descriptor, off_t pos, int seekType) { struct vnode* vnode = descriptor->u.vnode; off_t offset; FUNCTION(("file_seek(pos = %Ld, seekType = %d)\n", pos, seekType)); // some kinds of files are not seekable switch (vnode->Type() & S_IFMT) { case S_IFIFO: case S_IFSOCK: return ESPIPE; // The Open Group Base Specs don't mention any file types besides pipes, // fifos, and sockets specially, so we allow seeking them. case S_IFREG: case S_IFBLK: case S_IFDIR: case S_IFLNK: case S_IFCHR: break; } switch (seekType) { case SEEK_SET: offset = 0; break; case SEEK_CUR: offset = descriptor->pos; break; case SEEK_END: { // stat() the node if (!HAS_FS_CALL(vnode, read_stat)) return B_NOT_SUPPORTED; struct stat stat; status_t status = FS_CALL(vnode, read_stat, &stat); if (status != B_OK) return status; offset = stat.st_size; break; } default: return B_BAD_VALUE; } // assumes off_t is 64 bits wide if (offset > 0 && LONGLONG_MAX - offset < pos) return B_BUFFER_OVERFLOW; pos += offset; if (pos < 0) return B_BAD_VALUE; return descriptor->pos = pos; } static status_t file_select(struct file_descriptor* descriptor, uint8 event, struct selectsync* sync) { FUNCTION(("file_select(%p, %u, %p)\n", descriptor, event, sync)); struct vnode* vnode = descriptor->u.vnode; // If the FS has no select() hook, notify select() now. if (!HAS_FS_CALL(vnode, select)) return notify_select_event(sync, event); return FS_CALL(vnode, select, descriptor->cookie, event, sync); } static status_t file_deselect(struct file_descriptor* descriptor, uint8 event, struct selectsync* sync) { struct vnode* vnode = descriptor->u.vnode; if (!HAS_FS_CALL(vnode, deselect)) return B_OK; return FS_CALL(vnode, deselect, descriptor->cookie, event, sync); } static status_t dir_create_entry_ref(dev_t mountID, ino_t parentID, const char* name, int perms, bool kernel) { struct vnode* vnode; status_t status; if (name == NULL || *name == '\0') return B_BAD_VALUE; FUNCTION(("dir_create_entry_ref(dev = %ld, ino = %Ld, name = '%s', " "perms = %d)\n", mountID, parentID, name, perms)); status = get_vnode(mountID, parentID, &vnode, true, false); if (status != B_OK) return status; if (HAS_FS_CALL(vnode, create_dir)) status = FS_CALL(vnode, create_dir, name, perms); else status = B_READ_ONLY_DEVICE; put_vnode(vnode); return status; } static status_t dir_create(int fd, char* path, int perms, bool kernel) { char filename[B_FILE_NAME_LENGTH]; struct vnode* vnode; status_t status; FUNCTION(("dir_create: path '%s', perms %d, kernel %d\n", path, perms, kernel)); status = fd_and_path_to_dir_vnode(fd, path, &vnode, filename, kernel); if (status < 0) return status; if (HAS_FS_CALL(vnode, create_dir)) { status = FS_CALL(vnode, create_dir, filename, perms); } else status = B_READ_ONLY_DEVICE; put_vnode(vnode); return status; } static int dir_open_entry_ref(dev_t mountID, ino_t parentID, const char* name, bool kernel) { struct vnode* vnode; int status; FUNCTION(("dir_open_entry_ref()\n")); if (name && *name == '\0') return B_BAD_VALUE; // get the vnode matching the entry_ref/node_ref if (name) { status = entry_ref_to_vnode(mountID, parentID, name, true, kernel, &vnode); } else status = get_vnode(mountID, parentID, &vnode, true, false); if (status != B_OK) return status; int newFD = open_dir_vnode(vnode, kernel); if (newFD >= 0) { // The vnode reference has been transferred to the FD cache_node_opened(vnode, FDTYPE_DIR, vnode->cache, mountID, parentID, vnode->id, name); } else put_vnode(vnode); return newFD; } static int dir_open(int fd, char* path, bool kernel) { FUNCTION(("dir_open: fd: %d, entry path = '%s', kernel %d\n", fd, path, kernel)); // get the vnode matching the vnode + path combination struct vnode* vnode = NULL; ino_t parentID; status_t status = fd_and_path_to_vnode(fd, path, true, &vnode, &parentID, kernel); if (status != B_OK) return status; // open the dir int newFD = open_dir_vnode(vnode, kernel); if (newFD >= 0) { // The vnode reference has been transferred to the FD cache_node_opened(vnode, FDTYPE_DIR, vnode->cache, vnode->device, parentID, vnode->id, NULL); } else put_vnode(vnode); return newFD; } static status_t dir_close(struct file_descriptor* descriptor) { struct vnode* vnode = descriptor->u.vnode; FUNCTION(("dir_close(descriptor = %p)\n", descriptor)); cache_node_closed(vnode, FDTYPE_DIR, vnode->cache, vnode->device, vnode->id); if (HAS_FS_CALL(vnode, close_dir)) return FS_CALL(vnode, close_dir, descriptor->cookie); return B_OK; } static void dir_free_fd(struct file_descriptor* descriptor) { struct vnode* vnode = descriptor->u.vnode; if (vnode != NULL) { FS_CALL(vnode, free_dir_cookie, descriptor->cookie); put_vnode(vnode); } } static status_t dir_read(struct io_context* ioContext, struct file_descriptor* descriptor, struct dirent* buffer, size_t bufferSize, uint32* _count) { return dir_read(ioContext, descriptor->u.vnode, descriptor->cookie, buffer, bufferSize, _count); } static status_t fix_dirent(struct vnode* parent, struct dirent* entry, struct io_context* ioContext) { // set d_pdev and d_pino entry->d_pdev = parent->device; entry->d_pino = parent->id; // If this is the ".." entry and the directory is the root of a FS, // we need to replace d_dev and d_ino with the actual values. if (strcmp(entry->d_name, "..") == 0 && parent->mount->root_vnode == parent && parent->mount->covers_vnode) { inc_vnode_ref_count(parent); // vnode_path_to_vnode() puts the node // Make sure the IO context root is not bypassed. if (parent == ioContext->root) { entry->d_dev = parent->device; entry->d_ino = parent->id; } else { // ".." is guaranteed not to be clobbered by this call struct vnode* vnode; status_t status = vnode_path_to_vnode(parent, (char*)"..", false, 0, ioContext, &vnode, NULL); if (status == B_OK) { entry->d_dev = vnode->device; entry->d_ino = vnode->id; } } } else { // resolve mount points ReadLocker _(&sVnodeLock); struct vnode* vnode = lookup_vnode(entry->d_dev, entry->d_ino); if (vnode != NULL) { if (vnode->covered_by != NULL) { entry->d_dev = vnode->covered_by->device; entry->d_ino = vnode->covered_by->id; } } } return B_OK; } static status_t dir_read(struct io_context* ioContext, struct vnode* vnode, void* cookie, struct dirent* buffer, size_t bufferSize, uint32* _count) { if (!HAS_FS_CALL(vnode, read_dir)) return B_NOT_SUPPORTED; status_t error = FS_CALL(vnode, read_dir, cookie, buffer, bufferSize, _count); if (error != B_OK) return error; // we need to adjust the read dirents uint32 count = *_count; for (uint32 i = 0; i < count; i++) { error = fix_dirent(vnode, buffer, ioContext); if (error != B_OK) return error; buffer = (struct dirent*)((uint8*)buffer + buffer->d_reclen); } return error; } static status_t dir_rewind(struct file_descriptor* descriptor) { struct vnode* vnode = descriptor->u.vnode; if (HAS_FS_CALL(vnode, rewind_dir)) { return FS_CALL(vnode, rewind_dir, descriptor->cookie); } return B_NOT_SUPPORTED; } static status_t dir_remove(int fd, char* path, bool kernel) { char name[B_FILE_NAME_LENGTH]; struct vnode* directory; status_t status; if (path != NULL) { // we need to make sure our path name doesn't stop with "/", ".", // or ".." char* lastSlash; while ((lastSlash = strrchr(path, '/')) != NULL) { char* leaf = lastSlash + 1; if (!strcmp(leaf, "..")) return B_NOT_ALLOWED; // omit multiple slashes while (lastSlash > path && lastSlash[-1] == '/') lastSlash--; if (leaf[0] && strcmp(leaf, ".")) { break; } // "name/" -> "name", or "name/." -> "name" lastSlash[0] = '\0'; } if (!strcmp(path, ".") || !strcmp(path, "..")) return B_NOT_ALLOWED; } status = fd_and_path_to_dir_vnode(fd, path, &directory, name, kernel); if (status != B_OK) return status; if (HAS_FS_CALL(directory, remove_dir)) status = FS_CALL(directory, remove_dir, name); else status = B_READ_ONLY_DEVICE; put_vnode(directory); return status; } static status_t common_ioctl(struct file_descriptor* descriptor, uint32 op, void* buffer, size_t length) { struct vnode* vnode = descriptor->u.vnode; if (HAS_FS_CALL(vnode, ioctl)) return FS_CALL(vnode, ioctl, descriptor->cookie, op, buffer, length); return B_DEV_INVALID_IOCTL; } static status_t common_fcntl(int fd, int op, uint32 argument, bool kernel) { struct flock flock; FUNCTION(("common_fcntl(fd = %d, op = %d, argument = %lx, %s)\n", fd, op, argument, kernel ? "kernel" : "user")); struct file_descriptor* descriptor = get_fd(get_current_io_context(kernel), fd); if (descriptor == NULL) return B_FILE_ERROR; struct vnode* vnode = fd_vnode(descriptor); status_t status = B_OK; if (op == F_SETLK || op == F_SETLKW || op == F_GETLK) { if (descriptor->type != FDTYPE_FILE) status = B_BAD_VALUE; else if (user_memcpy(&flock, (struct flock*)argument, sizeof(struct flock)) != B_OK) status = B_BAD_ADDRESS; if (status != B_OK) { put_fd(descriptor); return status; } } switch (op) { case F_SETFD: { struct io_context* context = get_current_io_context(kernel); // Set file descriptor flags // O_CLOEXEC is the only flag available at this time mutex_lock(&context->io_mutex); fd_set_close_on_exec(context, fd, (argument & FD_CLOEXEC) != 0); mutex_unlock(&context->io_mutex); status = B_OK; break; } case F_GETFD: { struct io_context* context = get_current_io_context(kernel); // Get file descriptor flags mutex_lock(&context->io_mutex); status = fd_close_on_exec(context, fd) ? FD_CLOEXEC : 0; mutex_unlock(&context->io_mutex); break; } case F_SETFL: // Set file descriptor open mode // we only accept changes to O_APPEND and O_NONBLOCK argument &= O_APPEND | O_NONBLOCK; if (descriptor->ops->fd_set_flags != NULL) { status = descriptor->ops->fd_set_flags(descriptor, argument); } else if (vnode != NULL && HAS_FS_CALL(vnode, set_flags)) { status = FS_CALL(vnode, set_flags, descriptor->cookie, (int)argument); } else status = B_NOT_SUPPORTED; if (status == B_OK) { // update this descriptor's open_mode field descriptor->open_mode = (descriptor->open_mode & ~(O_APPEND | O_NONBLOCK)) | argument; } break; case F_GETFL: // Get file descriptor open mode status = descriptor->open_mode; break; case F_DUPFD: { struct io_context* context = get_current_io_context(kernel); status = new_fd_etc(context, descriptor, (int)argument); if (status >= 0) { mutex_lock(&context->io_mutex); fd_set_close_on_exec(context, fd, false); mutex_unlock(&context->io_mutex); atomic_add(&descriptor->ref_count, 1); } break; } case F_GETLK: if (vnode != NULL) { status = get_advisory_lock(vnode, &flock); if (status == B_OK) { // copy back flock structure status = user_memcpy((struct flock*)argument, &flock, sizeof(struct flock)); } } else status = B_BAD_VALUE; break; case F_SETLK: case F_SETLKW: status = normalize_flock(descriptor, &flock); if (status != B_OK) break; if (vnode == NULL) { status = B_BAD_VALUE; } else if (flock.l_type == F_UNLCK) { status = release_advisory_lock(vnode, &flock); } else { // the open mode must match the lock type if (((descriptor->open_mode & O_RWMASK) == O_RDONLY && flock.l_type == F_WRLCK) || ((descriptor->open_mode & O_RWMASK) == O_WRONLY && flock.l_type == F_RDLCK)) status = B_FILE_ERROR; else { status = acquire_advisory_lock(vnode, -1, &flock, op == F_SETLKW); } } break; // ToDo: add support for more ops? default: status = B_BAD_VALUE; } put_fd(descriptor); return status; } static status_t common_sync(int fd, bool kernel) { struct file_descriptor* descriptor; struct vnode* vnode; status_t status; FUNCTION(("common_fsync: entry. fd %d kernel %d\n", fd, kernel)); descriptor = get_fd_and_vnode(fd, &vnode, kernel); if (descriptor == NULL) return B_FILE_ERROR; if (HAS_FS_CALL(vnode, fsync)) status = FS_CALL_NO_PARAMS(vnode, fsync); else status = B_NOT_SUPPORTED; put_fd(descriptor); return status; } static status_t common_lock_node(int fd, bool kernel) { struct file_descriptor* descriptor; struct vnode* vnode; descriptor = get_fd_and_vnode(fd, &vnode, kernel); if (descriptor == NULL) return B_FILE_ERROR; status_t status = B_OK; // We need to set the locking atomically - someone // else might set one at the same time if (atomic_pointer_test_and_set(&vnode->mandatory_locked_by, descriptor, (file_descriptor*)NULL) != NULL) status = B_BUSY; put_fd(descriptor); return status; } static status_t common_unlock_node(int fd, bool kernel) { struct file_descriptor* descriptor; struct vnode* vnode; descriptor = get_fd_and_vnode(fd, &vnode, kernel); if (descriptor == NULL) return B_FILE_ERROR; status_t status = B_OK; // We need to set the locking atomically - someone // else might set one at the same time if (atomic_pointer_test_and_set(&vnode->mandatory_locked_by, (file_descriptor*)NULL, descriptor) != descriptor) status = B_BAD_VALUE; put_fd(descriptor); return status; } static status_t common_read_link(int fd, char* path, char* buffer, size_t* _bufferSize, bool kernel) { struct vnode* vnode; status_t status; status = fd_and_path_to_vnode(fd, path, false, &vnode, NULL, kernel); if (status != B_OK) return status; if (HAS_FS_CALL(vnode, read_symlink)) { status = FS_CALL(vnode, read_symlink, buffer, _bufferSize); } else status = B_BAD_VALUE; put_vnode(vnode); return status; } static status_t common_create_symlink(int fd, char* path, const char* toPath, int mode, bool kernel) { // path validity checks have to be in the calling function! char name[B_FILE_NAME_LENGTH]; struct vnode* vnode; status_t status; FUNCTION(("common_create_symlink(fd = %d, path = %s, toPath = %s, " "mode = %d, kernel = %d)\n", fd, path, toPath, mode, kernel)); status = fd_and_path_to_dir_vnode(fd, path, &vnode, name, kernel); if (status != B_OK) return status; if (HAS_FS_CALL(vnode, create_symlink)) status = FS_CALL(vnode, create_symlink, name, toPath, mode); else { status = HAS_FS_CALL(vnode, write) ? B_NOT_SUPPORTED : B_READ_ONLY_DEVICE; } put_vnode(vnode); return status; } static status_t common_create_link(int pathFD, char* path, int toFD, char* toPath, bool traverseLeafLink, bool kernel) { // path validity checks have to be in the calling function! FUNCTION(("common_create_link(path = %s, toPath = %s, kernel = %d)\n", path, toPath, kernel)); char name[B_FILE_NAME_LENGTH]; struct vnode* directory; status_t status = fd_and_path_to_dir_vnode(pathFD, path, &directory, name, kernel); if (status != B_OK) return status; struct vnode* vnode; status = fd_and_path_to_vnode(toFD, toPath, traverseLeafLink, &vnode, NULL, kernel); if (status != B_OK) goto err; if (directory->mount != vnode->mount) { status = B_CROSS_DEVICE_LINK; goto err1; } if (HAS_FS_CALL(directory, link)) status = FS_CALL(directory, link, name, vnode); else status = B_READ_ONLY_DEVICE; err1: put_vnode(vnode); err: put_vnode(directory); return status; } static status_t common_unlink(int fd, char* path, bool kernel) { char filename[B_FILE_NAME_LENGTH]; struct vnode* vnode; status_t status; FUNCTION(("common_unlink: fd: %d, path '%s', kernel %d\n", fd, path, kernel)); status = fd_and_path_to_dir_vnode(fd, path, &vnode, filename, kernel); if (status < 0) return status; if (HAS_FS_CALL(vnode, unlink)) status = FS_CALL(vnode, unlink, filename); else status = B_READ_ONLY_DEVICE; put_vnode(vnode); return status; } static status_t common_access(int fd, char* path, int mode, bool effectiveUserGroup, bool kernel) { struct vnode* vnode; status_t status; // TODO: honor effectiveUserGroup argument status = fd_and_path_to_vnode(fd, path, true, &vnode, NULL, kernel); if (status != B_OK) return status; if (HAS_FS_CALL(vnode, access)) status = FS_CALL(vnode, access, mode); else status = B_OK; put_vnode(vnode); return status; } static status_t common_rename(int fd, char* path, int newFD, char* newPath, bool kernel) { struct vnode* fromVnode; struct vnode* toVnode; char fromName[B_FILE_NAME_LENGTH]; char toName[B_FILE_NAME_LENGTH]; status_t status; FUNCTION(("common_rename(fd = %d, path = %s, newFD = %d, newPath = %s, " "kernel = %d)\n", fd, path, newFD, newPath, kernel)); status = fd_and_path_to_dir_vnode(fd, path, &fromVnode, fromName, kernel); if (status != B_OK) return status; status = fd_and_path_to_dir_vnode(newFD, newPath, &toVnode, toName, kernel); if (status != B_OK) goto err1; if (fromVnode->device != toVnode->device) { status = B_CROSS_DEVICE_LINK; goto err2; } if (fromName[0] == '\0' || toName[0] == '\0' || !strcmp(fromName, ".") || !strcmp(fromName, "..") || !strcmp(toName, ".") || !strcmp(toName, "..") || (fromVnode == toVnode && !strcmp(fromName, toName))) { status = B_BAD_VALUE; goto err2; } if (HAS_FS_CALL(fromVnode, rename)) status = FS_CALL(fromVnode, rename, fromName, toVnode, toName); else status = B_READ_ONLY_DEVICE; err2: put_vnode(toVnode); err1: put_vnode(fromVnode); return status; } static status_t common_read_stat(struct file_descriptor* descriptor, struct stat* stat) { struct vnode* vnode = descriptor->u.vnode; FUNCTION(("common_read_stat: stat %p\n", stat)); // TODO: remove this once all file systems properly set them! stat->st_crtim.tv_nsec = 0; stat->st_ctim.tv_nsec = 0; stat->st_mtim.tv_nsec = 0; stat->st_atim.tv_nsec = 0; status_t status = FS_CALL(vnode, read_stat, stat); // fill in the st_dev and st_ino fields if (status == B_OK) { stat->st_dev = vnode->device; stat->st_ino = vnode->id; stat->st_rdev = -1; } return status; } static status_t common_write_stat(struct file_descriptor* descriptor, const struct stat* stat, int statMask) { struct vnode* vnode = descriptor->u.vnode; FUNCTION(("common_write_stat(vnode = %p, stat = %p, statMask = %d)\n", vnode, stat, statMask)); if (!HAS_FS_CALL(vnode, write_stat)) return B_READ_ONLY_DEVICE; return FS_CALL(vnode, write_stat, stat, statMask); } static status_t common_path_read_stat(int fd, char* path, bool traverseLeafLink, struct stat* stat, bool kernel) { struct vnode* vnode; status_t status; FUNCTION(("common_path_read_stat: fd: %d, path '%s', stat %p,\n", fd, path, stat)); status = fd_and_path_to_vnode(fd, path, traverseLeafLink, &vnode, NULL, kernel); if (status < 0) return status; status = FS_CALL(vnode, read_stat, stat); // fill in the st_dev and st_ino fields if (status == B_OK) { stat->st_dev = vnode->device; stat->st_ino = vnode->id; stat->st_rdev = -1; } put_vnode(vnode); return status; } static status_t common_path_write_stat(int fd, char* path, bool traverseLeafLink, const struct stat* stat, int statMask, bool kernel) { struct vnode* vnode; status_t status; FUNCTION(("common_write_stat: fd: %d, path '%s', stat %p, stat_mask %d, " "kernel %d\n", fd, path, stat, statMask, kernel)); status = fd_and_path_to_vnode(fd, path, traverseLeafLink, &vnode, NULL, kernel); if (status < 0) return status; if (HAS_FS_CALL(vnode, write_stat)) status = FS_CALL(vnode, write_stat, stat, statMask); else status = B_READ_ONLY_DEVICE; put_vnode(vnode); return status; } static int attr_dir_open(int fd, char* path, bool kernel) { struct vnode* vnode; int status; FUNCTION(("attr_dir_open(fd = %d, path = '%s', kernel = %d)\n", fd, path, kernel)); status = fd_and_path_to_vnode(fd, path, true, &vnode, NULL, kernel); if (status != B_OK) return status; status = open_attr_dir_vnode(vnode, kernel); if (status < 0) put_vnode(vnode); return status; } static status_t attr_dir_close(struct file_descriptor* descriptor) { struct vnode* vnode = descriptor->u.vnode; FUNCTION(("attr_dir_close(descriptor = %p)\n", descriptor)); if (HAS_FS_CALL(vnode, close_attr_dir)) return FS_CALL(vnode, close_attr_dir, descriptor->cookie); return B_OK; } static void attr_dir_free_fd(struct file_descriptor* descriptor) { struct vnode* vnode = descriptor->u.vnode; if (vnode != NULL) { FS_CALL(vnode, free_attr_dir_cookie, descriptor->cookie); put_vnode(vnode); } } static status_t attr_dir_read(struct io_context* ioContext, struct file_descriptor* descriptor, struct dirent* buffer, size_t bufferSize, uint32* _count) { struct vnode* vnode = descriptor->u.vnode; FUNCTION(("attr_dir_read(descriptor = %p)\n", descriptor)); if (HAS_FS_CALL(vnode, read_attr_dir)) return FS_CALL(vnode, read_attr_dir, descriptor->cookie, buffer, bufferSize, _count); return B_NOT_SUPPORTED; } static status_t attr_dir_rewind(struct file_descriptor* descriptor) { struct vnode* vnode = descriptor->u.vnode; FUNCTION(("attr_dir_rewind(descriptor = %p)\n", descriptor)); if (HAS_FS_CALL(vnode, rewind_attr_dir)) return FS_CALL(vnode, rewind_attr_dir, descriptor->cookie); return B_NOT_SUPPORTED; } static int attr_create(int fd, char* path, const char* name, uint32 type, int openMode, bool kernel) { if (name == NULL || *name == '\0') return B_BAD_VALUE; struct vnode* vnode; status_t status = fd_and_path_to_vnode(fd, path, (openMode & O_NOTRAVERSE) != 0, &vnode, NULL, kernel); if (status != B_OK) return status; if (!HAS_FS_CALL(vnode, create_attr)) { status = B_READ_ONLY_DEVICE; goto err; } void* cookie; status = FS_CALL(vnode, create_attr, name, type, openMode, &cookie); if (status != B_OK) goto err; fd = get_new_fd(FDTYPE_ATTR, NULL, vnode, cookie, openMode, kernel); if (fd >= 0) return fd; status = fd; FS_CALL(vnode, close_attr, cookie); FS_CALL(vnode, free_attr_cookie, cookie); FS_CALL(vnode, remove_attr, name); err: put_vnode(vnode); return status; } static int attr_open(int fd, char* path, const char* name, int openMode, bool kernel) { if (name == NULL || *name == '\0') return B_BAD_VALUE; struct vnode* vnode; status_t status = fd_and_path_to_vnode(fd, path, (openMode & O_NOTRAVERSE) != 0, &vnode, NULL, kernel); if (status != B_OK) return status; if (!HAS_FS_CALL(vnode, open_attr)) { status = B_NOT_SUPPORTED; goto err; } void* cookie; status = FS_CALL(vnode, open_attr, name, openMode, &cookie); if (status != B_OK) goto err; // now we only need a file descriptor for this attribute and we're done fd = get_new_fd(FDTYPE_ATTR, NULL, vnode, cookie, openMode, kernel); if (fd >= 0) return fd; status = fd; FS_CALL(vnode, close_attr, cookie); FS_CALL(vnode, free_attr_cookie, cookie); err: put_vnode(vnode); return status; } static status_t attr_close(struct file_descriptor* descriptor) { struct vnode* vnode = descriptor->u.vnode; FUNCTION(("attr_close(descriptor = %p)\n", descriptor)); if (HAS_FS_CALL(vnode, close_attr)) return FS_CALL(vnode, close_attr, descriptor->cookie); return B_OK; } static void attr_free_fd(struct file_descriptor* descriptor) { struct vnode* vnode = descriptor->u.vnode; if (vnode != NULL) { FS_CALL(vnode, free_attr_cookie, descriptor->cookie); put_vnode(vnode); } } static status_t attr_read(struct file_descriptor* descriptor, off_t pos, void* buffer, size_t* length) { struct vnode* vnode = descriptor->u.vnode; FUNCTION(("attr_read: buf %p, pos %Ld, len %p = %ld\n", buffer, pos, length, *length)); if (!HAS_FS_CALL(vnode, read_attr)) return B_NOT_SUPPORTED; return FS_CALL(vnode, read_attr, descriptor->cookie, pos, buffer, length); } static status_t attr_write(struct file_descriptor* descriptor, off_t pos, const void* buffer, size_t* length) { struct vnode* vnode = descriptor->u.vnode; FUNCTION(("attr_write: buf %p, pos %Ld, len %p\n", buffer, pos, length)); if (!HAS_FS_CALL(vnode, write_attr)) return B_NOT_SUPPORTED; return FS_CALL(vnode, write_attr, descriptor->cookie, pos, buffer, length); } static off_t attr_seek(struct file_descriptor* descriptor, off_t pos, int seekType) { off_t offset; switch (seekType) { case SEEK_SET: offset = 0; break; case SEEK_CUR: offset = descriptor->pos; break; case SEEK_END: { struct vnode* vnode = descriptor->u.vnode; if (!HAS_FS_CALL(vnode, read_stat)) return B_NOT_SUPPORTED; struct stat stat; status_t status = FS_CALL(vnode, read_attr_stat, descriptor->cookie, &stat); if (status != B_OK) return status; offset = stat.st_size; break; } default: return B_BAD_VALUE; } // assumes off_t is 64 bits wide if (offset > 0 && LONGLONG_MAX - offset < pos) return B_BUFFER_OVERFLOW; pos += offset; if (pos < 0) return B_BAD_VALUE; return descriptor->pos = pos; } static status_t attr_read_stat(struct file_descriptor* descriptor, struct stat* stat) { struct vnode* vnode = descriptor->u.vnode; FUNCTION(("attr_read_stat: stat 0x%p\n", stat)); if (!HAS_FS_CALL(vnode, read_attr_stat)) return B_NOT_SUPPORTED; return FS_CALL(vnode, read_attr_stat, descriptor->cookie, stat); } static status_t attr_write_stat(struct file_descriptor* descriptor, const struct stat* stat, int statMask) { struct vnode* vnode = descriptor->u.vnode; FUNCTION(("attr_write_stat: stat = %p, statMask %d\n", stat, statMask)); if (!HAS_FS_CALL(vnode, write_attr_stat)) return B_READ_ONLY_DEVICE; return FS_CALL(vnode, write_attr_stat, descriptor->cookie, stat, statMask); } static status_t attr_remove(int fd, const char* name, bool kernel) { struct file_descriptor* descriptor; struct vnode* vnode; status_t status; if (name == NULL || *name == '\0') return B_BAD_VALUE; FUNCTION(("attr_remove: fd = %d, name = \"%s\", kernel %d\n", fd, name, kernel)); descriptor = get_fd_and_vnode(fd, &vnode, kernel); if (descriptor == NULL) return B_FILE_ERROR; if (HAS_FS_CALL(vnode, remove_attr)) status = FS_CALL(vnode, remove_attr, name); else status = B_READ_ONLY_DEVICE; put_fd(descriptor); return status; } static status_t attr_rename(int fromFD, const char* fromName, int toFD, const char* toName, bool kernel) { struct file_descriptor* fromDescriptor; struct file_descriptor* toDescriptor; struct vnode* fromVnode; struct vnode* toVnode; status_t status; if (fromName == NULL || *fromName == '\0' || toName == NULL || *toName == '\0') return B_BAD_VALUE; FUNCTION(("attr_rename: from fd = %d, from name = \"%s\", to fd = %d, to " "name = \"%s\", kernel %d\n", fromFD, fromName, toFD, toName, kernel)); fromDescriptor = get_fd_and_vnode(fromFD, &fromVnode, kernel); if (fromDescriptor == NULL) return B_FILE_ERROR; toDescriptor = get_fd_and_vnode(toFD, &toVnode, kernel); if (toDescriptor == NULL) { status = B_FILE_ERROR; goto err; } // are the files on the same volume? if (fromVnode->device != toVnode->device) { status = B_CROSS_DEVICE_LINK; goto err1; } if (HAS_FS_CALL(fromVnode, rename_attr)) { status = FS_CALL(fromVnode, rename_attr, fromName, toVnode, toName); } else status = B_READ_ONLY_DEVICE; err1: put_fd(toDescriptor); err: put_fd(fromDescriptor); return status; } static int index_dir_open(dev_t mountID, bool kernel) { struct fs_mount* mount; void* cookie; FUNCTION(("index_dir_open(mountID = %ld, kernel = %d)\n", mountID, kernel)); status_t status = get_mount(mountID, &mount); if (status != B_OK) return status; if (!HAS_FS_MOUNT_CALL(mount, open_index_dir)) { status = B_NOT_SUPPORTED; goto error; } status = FS_MOUNT_CALL(mount, open_index_dir, &cookie); if (status != B_OK) goto error; // get fd for the index directory int fd; fd = get_new_fd(FDTYPE_INDEX_DIR, mount, NULL, cookie, O_CLOEXEC, kernel); if (fd >= 0) return fd; // something went wrong FS_MOUNT_CALL(mount, close_index_dir, cookie); FS_MOUNT_CALL(mount, free_index_dir_cookie, cookie); status = fd; error: put_mount(mount); return status; } static status_t index_dir_close(struct file_descriptor* descriptor) { struct fs_mount* mount = descriptor->u.mount; FUNCTION(("index_dir_close(descriptor = %p)\n", descriptor)); if (HAS_FS_MOUNT_CALL(mount, close_index_dir)) return FS_MOUNT_CALL(mount, close_index_dir, descriptor->cookie); return B_OK; } static void index_dir_free_fd(struct file_descriptor* descriptor) { struct fs_mount* mount = descriptor->u.mount; if (mount != NULL) { FS_MOUNT_CALL(mount, free_index_dir_cookie, descriptor->cookie); put_mount(mount); } } static status_t index_dir_read(struct io_context* ioContext, struct file_descriptor* descriptor, struct dirent* buffer, size_t bufferSize, uint32* _count) { struct fs_mount* mount = descriptor->u.mount; if (HAS_FS_MOUNT_CALL(mount, read_index_dir)) { return FS_MOUNT_CALL(mount, read_index_dir, descriptor->cookie, buffer, bufferSize, _count); } return B_NOT_SUPPORTED; } static status_t index_dir_rewind(struct file_descriptor* descriptor) { struct fs_mount* mount = descriptor->u.mount; if (HAS_FS_MOUNT_CALL(mount, rewind_index_dir)) return FS_MOUNT_CALL(mount, rewind_index_dir, descriptor->cookie); return B_NOT_SUPPORTED; } static status_t index_create(dev_t mountID, const char* name, uint32 type, uint32 flags, bool kernel) { FUNCTION(("index_create(mountID = %ld, name = %s, kernel = %d)\n", mountID, name, kernel)); struct fs_mount* mount; status_t status = get_mount(mountID, &mount); if (status != B_OK) return status; if (!HAS_FS_MOUNT_CALL(mount, create_index)) { status = B_READ_ONLY_DEVICE; goto out; } status = FS_MOUNT_CALL(mount, create_index, name, type, flags); out: put_mount(mount); return status; } #if 0 static status_t index_read_stat(struct file_descriptor* descriptor, struct stat* stat) { struct vnode* vnode = descriptor->u.vnode; // ToDo: currently unused! FUNCTION(("index_read_stat: stat 0x%p\n", stat)); if (!HAS_FS_CALL(vnode, read_index_stat)) return B_NOT_SUPPORTED; return B_NOT_SUPPORTED; //return FS_CALL(vnode, read_index_stat, descriptor->cookie, stat); } static void index_free_fd(struct file_descriptor* descriptor) { struct vnode* vnode = descriptor->u.vnode; if (vnode != NULL) { FS_CALL(vnode, free_index_cookie, descriptor->cookie); put_vnode(vnode); } } #endif static status_t index_name_read_stat(dev_t mountID, const char* name, struct stat* stat, bool kernel) { FUNCTION(("index_remove(mountID = %ld, name = %s, kernel = %d)\n", mountID, name, kernel)); struct fs_mount* mount; status_t status = get_mount(mountID, &mount); if (status != B_OK) return status; if (!HAS_FS_MOUNT_CALL(mount, read_index_stat)) { status = B_NOT_SUPPORTED; goto out; } status = FS_MOUNT_CALL(mount, read_index_stat, name, stat); out: put_mount(mount); return status; } static status_t index_remove(dev_t mountID, const char* name, bool kernel) { FUNCTION(("index_remove(mountID = %ld, name = %s, kernel = %d)\n", mountID, name, kernel)); struct fs_mount* mount; status_t status = get_mount(mountID, &mount); if (status != B_OK) return status; if (!HAS_FS_MOUNT_CALL(mount, remove_index)) { status = B_READ_ONLY_DEVICE; goto out; } status = FS_MOUNT_CALL(mount, remove_index, name); out: put_mount(mount); return status; } /*! TODO: the query FS API is still the pretty much the same as in R5. It would be nice if the FS would find some more kernel support for them. For example, query parsing should be moved into the kernel. */ static int query_open(dev_t device, const char* query, uint32 flags, port_id port, int32 token, bool kernel) { struct fs_mount* mount; void* cookie; FUNCTION(("query_open(device = %ld, query = \"%s\", kernel = %d)\n", device, query, kernel)); status_t status = get_mount(device, &mount); if (status != B_OK) return status; if (!HAS_FS_MOUNT_CALL(mount, open_query)) { status = B_NOT_SUPPORTED; goto error; } status = FS_MOUNT_CALL(mount, open_query, query, flags, port, token, &cookie); if (status != B_OK) goto error; // get fd for the index directory int fd; fd = get_new_fd(FDTYPE_QUERY, mount, NULL, cookie, O_CLOEXEC, kernel); if (fd >= 0) return fd; status = fd; // something went wrong FS_MOUNT_CALL(mount, close_query, cookie); FS_MOUNT_CALL(mount, free_query_cookie, cookie); error: put_mount(mount); return status; } static status_t query_close(struct file_descriptor* descriptor) { struct fs_mount* mount = descriptor->u.mount; FUNCTION(("query_close(descriptor = %p)\n", descriptor)); if (HAS_FS_MOUNT_CALL(mount, close_query)) return FS_MOUNT_CALL(mount, close_query, descriptor->cookie); return B_OK; } static void query_free_fd(struct file_descriptor* descriptor) { struct fs_mount* mount = descriptor->u.mount; if (mount != NULL) { FS_MOUNT_CALL(mount, free_query_cookie, descriptor->cookie); put_mount(mount); } } static status_t query_read(struct io_context* ioContext, struct file_descriptor* descriptor, struct dirent* buffer, size_t bufferSize, uint32* _count) { struct fs_mount* mount = descriptor->u.mount; if (HAS_FS_MOUNT_CALL(mount, read_query)) { return FS_MOUNT_CALL(mount, read_query, descriptor->cookie, buffer, bufferSize, _count); } return B_NOT_SUPPORTED; } static status_t query_rewind(struct file_descriptor* descriptor) { struct fs_mount* mount = descriptor->u.mount; if (HAS_FS_MOUNT_CALL(mount, rewind_query)) return FS_MOUNT_CALL(mount, rewind_query, descriptor->cookie); return B_NOT_SUPPORTED; } // #pragma mark - General File System functions static dev_t fs_mount(char* path, const char* device, const char* fsName, uint32 flags, const char* args, bool kernel) { struct ::fs_mount* mount; status_t status = B_OK; fs_volume* volume = NULL; int32 layer = 0; FUNCTION(("fs_mount: entry. path = '%s', fs_name = '%s'\n", path, fsName)); // The path is always safe, we just have to make sure that fsName is // almost valid - we can't make any assumptions about args, though. // A NULL fsName is OK, if a device was given and the FS is not virtual. // We'll get it from the DDM later. if (fsName == NULL) { if (!device || flags & B_MOUNT_VIRTUAL_DEVICE) return B_BAD_VALUE; } else if (fsName[0] == '\0') return B_BAD_VALUE; RecursiveLocker mountOpLocker(sMountOpLock); // Helper to delete a newly created file device on failure. // Not exactly beautiful, but helps to keep the code below cleaner. struct FileDeviceDeleter { FileDeviceDeleter() : id(-1) {} ~FileDeviceDeleter() { KDiskDeviceManager::Default()->DeleteFileDevice(id); } partition_id id; } fileDeviceDeleter; // If the file system is not a "virtual" one, the device argument should // point to a real file/device (if given at all). // get the partition KDiskDeviceManager* ddm = KDiskDeviceManager::Default(); KPartition* partition = NULL; KPath normalizedDevice; bool newlyCreatedFileDevice = false; if (!(flags & B_MOUNT_VIRTUAL_DEVICE) && device != NULL) { // normalize the device path status = normalizedDevice.SetTo(device, true); if (status != B_OK) return status; // get a corresponding partition from the DDM partition = ddm->RegisterPartition(normalizedDevice.Path()); if (partition == NULL) { // Partition not found: This either means, the user supplied // an invalid path, or the path refers to an image file. We try // to let the DDM create a file device for the path. partition_id deviceID = ddm->CreateFileDevice( normalizedDevice.Path(), &newlyCreatedFileDevice); if (deviceID >= 0) { partition = ddm->RegisterPartition(deviceID); if (newlyCreatedFileDevice) fileDeviceDeleter.id = deviceID; } } if (!partition) { TRACE(("fs_mount(): Partition `%s' not found.\n", normalizedDevice.Path())); return B_ENTRY_NOT_FOUND; } device = normalizedDevice.Path(); // correct path to file device } PartitionRegistrar partitionRegistrar(partition, true); // Write lock the partition's device. For the time being, we keep the lock // until we're done mounting -- not nice, but ensure, that no-one is // interfering. // TODO: Just mark the partition busy while mounting! KDiskDevice* diskDevice = NULL; if (partition) { diskDevice = ddm->WriteLockDevice(partition->Device()->ID()); if (!diskDevice) { TRACE(("fs_mount(): Failed to lock disk device!\n")); return B_ERROR; } } DeviceWriteLocker writeLocker(diskDevice, true); // this takes over the write lock acquired before if (partition != NULL) { // make sure, that the partition is not busy if (partition->IsBusy()) { TRACE(("fs_mount(): Partition is busy.\n")); return B_BUSY; } // if no FS name had been supplied, we get it from the partition if (fsName == NULL) { KDiskSystem* diskSystem = partition->DiskSystem(); if (!diskSystem) { TRACE(("fs_mount(): No FS name was given, and the DDM didn't " "recognize it.\n")); return B_BAD_VALUE; } if (!diskSystem->IsFileSystem()) { TRACE(("fs_mount(): No FS name was given, and the DDM found a " "partitioning system.\n")); return B_BAD_VALUE; } // The disk system name will not change, and the KDiskSystem // object will not go away while the disk device is locked (and // the partition has a reference to it), so this is safe. fsName = diskSystem->Name(); } } mount = new(std::nothrow) (struct ::fs_mount); if (mount == NULL) return B_NO_MEMORY; mount->device_name = strdup(device); // "device" can be NULL status = mount->entry_cache.Init(); if (status != B_OK) goto err1; // initialize structure mount->id = sNextMountID++; mount->partition = NULL; mount->root_vnode = NULL; mount->covers_vnode = NULL; mount->unmounting = false; mount->owns_file_device = false; mount->volume = NULL; // build up the volume(s) while (true) { char* layerFSName = get_file_system_name_for_layer(fsName, layer); if (layerFSName == NULL) { if (layer == 0) { status = B_NO_MEMORY; goto err1; } break; } volume = (fs_volume*)malloc(sizeof(fs_volume)); if (volume == NULL) { status = B_NO_MEMORY; free(layerFSName); goto err1; } volume->id = mount->id; volume->partition = partition != NULL ? partition->ID() : -1; volume->layer = layer++; volume->private_volume = NULL; volume->ops = NULL; volume->sub_volume = NULL; volume->super_volume = NULL; volume->file_system = NULL; volume->file_system_name = NULL; volume->file_system_name = get_file_system_name(layerFSName); if (volume->file_system_name == NULL) { status = B_NO_MEMORY; free(layerFSName); free(volume); goto err1; } volume->file_system = get_file_system(layerFSName); if (volume->file_system == NULL) { status = B_DEVICE_NOT_FOUND; free(layerFSName); free(volume->file_system_name); free(volume); goto err1; } if (mount->volume == NULL) mount->volume = volume; else { volume->super_volume = mount->volume; mount->volume->sub_volume = volume; mount->volume = volume; } } // insert mount struct into list before we call FS's mount() function // so that vnodes can be created for this mount mutex_lock(&sMountMutex); hash_insert(sMountsTable, mount); mutex_unlock(&sMountMutex); ino_t rootID; if (!sRoot) { // we haven't mounted anything yet if (strcmp(path, "/") != 0) { status = B_ERROR; goto err2; } status = mount->volume->file_system->mount(mount->volume, device, flags, args, &rootID); if (status != 0) goto err2; } else { status = path_to_vnode(path, true, &mount->covers_vnode, NULL, kernel); if (status != B_OK) goto err2; // make sure covered_vnode is a directory if (!S_ISDIR(mount->covers_vnode->Type())) { status = B_NOT_A_DIRECTORY; goto err3; } if (mount->covers_vnode->mount->root_vnode == mount->covers_vnode) { // this is already a mount point status = B_BUSY; goto err3; } // mount it/them fs_volume* volume = mount->volume; while (volume) { status = volume->file_system->mount(volume, device, flags, args, &rootID); if (status != B_OK) { if (volume->sub_volume) goto err4; goto err3; } volume = volume->super_volume; } volume = mount->volume; while (volume) { if (volume->ops->all_layers_mounted != NULL) volume->ops->all_layers_mounted(volume); volume = volume->super_volume; } } // the root node is supposed to be owned by the file system - it must // exist at this point mount->root_vnode = lookup_vnode(mount->id, rootID); if (mount->root_vnode == NULL || mount->root_vnode->ref_count != 1) { panic("fs_mount: file system does not own its root node!\n"); status = B_ERROR; goto err4; } // No race here, since fs_mount() is the only function changing // covers_vnode (and holds sMountOpLock at that time). rw_lock_write_lock(&sVnodeLock); if (mount->covers_vnode) mount->covers_vnode->covered_by = mount->root_vnode; rw_lock_write_unlock(&sVnodeLock); if (!sRoot) { sRoot = mount->root_vnode; mutex_lock(&sIOContextRootLock); get_current_io_context(true)->root = sRoot; mutex_unlock(&sIOContextRootLock); inc_vnode_ref_count(sRoot); } // supply the partition (if any) with the mount cookie and mark it mounted if (partition) { partition->SetMountCookie(mount->volume->private_volume); partition->SetVolumeID(mount->id); // keep a partition reference as long as the partition is mounted partitionRegistrar.Detach(); mount->partition = partition; mount->owns_file_device = newlyCreatedFileDevice; fileDeviceDeleter.id = -1; } notify_mount(mount->id, mount->covers_vnode ? mount->covers_vnode->device : -1, mount->covers_vnode ? mount->covers_vnode->id : -1); return mount->id; err4: FS_MOUNT_CALL_NO_PARAMS(mount, unmount); err3: if (mount->covers_vnode != NULL) put_vnode(mount->covers_vnode); err2: mutex_lock(&sMountMutex); hash_remove(sMountsTable, mount); mutex_unlock(&sMountMutex); err1: delete mount; return status; } static status_t fs_unmount(char* path, dev_t mountID, uint32 flags, bool kernel) { struct fs_mount* mount; status_t err; FUNCTION(("fs_unmount(path '%s', dev %ld, kernel %d\n", path, mountID, kernel)); struct vnode* pathVnode = NULL; if (path != NULL) { err = path_to_vnode(path, true, &pathVnode, NULL, kernel); if (err != B_OK) return B_ENTRY_NOT_FOUND; } RecursiveLocker mountOpLocker(sMountOpLock); // this lock is not strictly necessary, but here in case of KDEBUG // to keep the ASSERT in find_mount() working. KDEBUG_ONLY(mutex_lock(&sMountMutex)); mount = find_mount(path != NULL ? pathVnode->device : mountID); KDEBUG_ONLY(mutex_unlock(&sMountMutex)); if (mount == NULL) { panic("fs_unmount: find_mount() failed on root vnode @%p of mount\n", pathVnode); } if (path != NULL) { put_vnode(pathVnode); if (mount->root_vnode != pathVnode) { // not mountpoint return B_BAD_VALUE; } } // if the volume is associated with a partition, lock the device of the // partition as long as we are unmounting KDiskDeviceManager* ddm = KDiskDeviceManager::Default(); KPartition* partition = mount->partition; KDiskDevice* diskDevice = NULL; if (partition != NULL) { if (partition->Device() == NULL) { dprintf("fs_unmount(): There is no device!\n"); return B_ERROR; } diskDevice = ddm->WriteLockDevice(partition->Device()->ID()); if (!diskDevice) { TRACE(("fs_unmount(): Failed to lock disk device!\n")); return B_ERROR; } } DeviceWriteLocker writeLocker(diskDevice, true); // make sure, that the partition is not busy if (partition != NULL) { if ((flags & B_UNMOUNT_BUSY_PARTITION) == 0 && partition->IsBusy()) { TRACE(("fs_unmount(): Partition is busy.\n")); return B_BUSY; } } // grab the vnode master mutex to keep someone from creating // a vnode while we're figuring out if we can continue WriteLocker vnodesWriteLocker(&sVnodeLock); bool disconnectedDescriptors = false; while (true) { bool busy = false; // cycle through the list of vnodes associated with this mount and // make sure all of them are not busy or have refs on them VnodeList::Iterator iterator = mount->vnodes.GetIterator(); while (struct vnode* vnode = iterator.Next()) { // The root vnode ref_count needs to be 1 here (the mount has a // reference). if (vnode->IsBusy() || ((vnode->ref_count != 0 && mount->root_vnode != vnode) || (vnode->ref_count != 1 && mount->root_vnode == vnode))) { // there are still vnodes in use on this mount, so we cannot // unmount yet busy = true; break; } } if (!busy) break; if ((flags & B_FORCE_UNMOUNT) == 0) return B_BUSY; if (disconnectedDescriptors) { // wait a bit until the last access is finished, and then try again vnodesWriteLocker.Unlock(); snooze(100000); // TODO: if there is some kind of bug that prevents the ref counts // from getting back to zero, this will fall into an endless loop... vnodesWriteLocker.Lock(); continue; } // the file system is still busy - but we're forced to unmount it, // so let's disconnect all open file descriptors mount->unmounting = true; // prevent new vnodes from being created vnodesWriteLocker.Unlock(); disconnect_mount_or_vnode_fds(mount, NULL); disconnectedDescriptors = true; vnodesWriteLocker.Lock(); } // we can safely continue, mark all of the vnodes busy and this mount // structure in unmounting state mount->unmounting = true; VnodeList::Iterator iterator = mount->vnodes.GetIterator(); while (struct vnode* vnode = iterator.Next()) { vnode->SetBusy(true); vnode_to_be_freed(vnode); } // The ref_count of the root node is 1 at this point, see above why this is mount->root_vnode->ref_count--; vnode_to_be_freed(mount->root_vnode); mount->covers_vnode->covered_by = NULL; vnodesWriteLocker.Unlock(); put_vnode(mount->covers_vnode); // Free all vnodes associated with this mount. // They will be removed from the mount list by free_vnode(), so // we don't have to do this. while (struct vnode* vnode = mount->vnodes.Head()) free_vnode(vnode, false); // remove the mount structure from the hash table mutex_lock(&sMountMutex); hash_remove(sMountsTable, mount); mutex_unlock(&sMountMutex); mountOpLocker.Unlock(); FS_MOUNT_CALL_NO_PARAMS(mount, unmount); notify_unmount(mount->id); // dereference the partition and mark it unmounted if (partition) { partition->SetVolumeID(-1); partition->SetMountCookie(NULL); if (mount->owns_file_device) KDiskDeviceManager::Default()->DeleteFileDevice(partition->ID()); partition->Unregister(); } delete mount; return B_OK; } static status_t fs_sync(dev_t device) { struct fs_mount* mount; status_t status = get_mount(device, &mount); if (status != B_OK) return status; struct vnode marker; memset(&marker, 0, sizeof(marker)); marker.SetBusy(true); marker.SetRemoved(true); // First, synchronize all file caches while (true) { WriteLocker locker(sVnodeLock); // Note: That's the easy way. Which is probably OK for sync(), // since it's a relatively rare call and doesn't need to allow for // a lot of concurrency. Using a read lock would be possible, but // also more involved, since we had to lock the individual nodes // and take care of the locking order, which we might not want to // do while holding fs_mount::rlock. // synchronize access to vnode list recursive_lock_lock(&mount->rlock); struct vnode* vnode; if (!marker.IsRemoved()) { vnode = mount->vnodes.GetNext(&marker); mount->vnodes.Remove(&marker); marker.SetRemoved(true); } else vnode = mount->vnodes.First(); while (vnode != NULL && (vnode->cache == NULL || vnode->IsRemoved() || vnode->IsBusy())) { // TODO: we could track writes (and writable mapped vnodes) // and have a simple flag that we could test for here vnode = mount->vnodes.GetNext(vnode); } if (vnode != NULL) { // insert marker vnode again mount->vnodes.Insert(mount->vnodes.GetNext(vnode), &marker); marker.SetRemoved(false); } recursive_lock_unlock(&mount->rlock); if (vnode == NULL) break; vnode = lookup_vnode(mount->id, vnode->id); if (vnode == NULL || vnode->IsBusy()) continue; if (vnode->ref_count == 0) { // this vnode has been unused before vnode_used(vnode); } inc_vnode_ref_count(vnode); locker.Unlock(); if (vnode->cache != NULL && !vnode->IsRemoved()) vnode->cache->WriteModified(); put_vnode(vnode); } // And then, let the file systems do their synchronizing work if (HAS_FS_MOUNT_CALL(mount, sync)) status = FS_MOUNT_CALL_NO_PARAMS(mount, sync); put_mount(mount); return status; } static status_t fs_read_info(dev_t device, struct fs_info* info) { struct fs_mount* mount; status_t status = get_mount(device, &mount); if (status != B_OK) return status; memset(info, 0, sizeof(struct fs_info)); if (HAS_FS_MOUNT_CALL(mount, read_fs_info)) status = FS_MOUNT_CALL(mount, read_fs_info, info); // fill in info the file system doesn't (have to) know about if (status == B_OK) { info->dev = mount->id; info->root = mount->root_vnode->id; fs_volume* volume = mount->volume; while (volume->super_volume != NULL) volume = volume->super_volume; strlcpy(info->fsh_name, volume->file_system_name, sizeof(info->fsh_name)); if (mount->device_name != NULL) { strlcpy(info->device_name, mount->device_name, sizeof(info->device_name)); } } // if the call is not supported by the file system, there are still // the parts that we filled out ourselves put_mount(mount); return status; } static status_t fs_write_info(dev_t device, const struct fs_info* info, int mask) { struct fs_mount* mount; status_t status = get_mount(device, &mount); if (status != B_OK) return status; if (HAS_FS_MOUNT_CALL(mount, write_fs_info)) status = FS_MOUNT_CALL(mount, write_fs_info, info, mask); else status = B_READ_ONLY_DEVICE; put_mount(mount); return status; } static dev_t fs_next_device(int32* _cookie) { struct fs_mount* mount = NULL; dev_t device = *_cookie; mutex_lock(&sMountMutex); // Since device IDs are assigned sequentially, this algorithm // does work good enough. It makes sure that the device list // returned is sorted, and that no device is skipped when an // already visited device got unmounted. while (device < sNextMountID) { mount = find_mount(device++); if (mount != NULL && mount->volume->private_volume != NULL) break; } *_cookie = device; if (mount != NULL) device = mount->id; else device = B_BAD_VALUE; mutex_unlock(&sMountMutex); return device; } ssize_t fs_read_attr(int fd, const char *attribute, uint32 type, off_t pos, void *buffer, size_t readBytes) { int attrFD = attr_open(fd, NULL, attribute, O_RDONLY, true); if (attrFD < 0) return attrFD; ssize_t bytesRead = _kern_read(attrFD, pos, buffer, readBytes); _kern_close(attrFD); return bytesRead; } static status_t get_cwd(char* buffer, size_t size, bool kernel) { // Get current working directory from io context struct io_context* context = get_current_io_context(kernel); status_t status; FUNCTION(("vfs_get_cwd: buf %p, size %ld\n", buffer, size)); mutex_lock(&context->io_mutex); struct vnode* vnode = context->cwd; if (vnode) inc_vnode_ref_count(vnode); mutex_unlock(&context->io_mutex); if (vnode) { status = dir_vnode_to_path(vnode, buffer, size, kernel); put_vnode(vnode); } else status = B_ERROR; return status; } static status_t set_cwd(int fd, char* path, bool kernel) { struct io_context* context; struct vnode* vnode = NULL; struct vnode* oldDirectory; status_t status; FUNCTION(("set_cwd: path = \'%s\'\n", path)); // Get vnode for passed path, and bail if it failed status = fd_and_path_to_vnode(fd, path, true, &vnode, NULL, kernel); if (status < 0) return status; if (!S_ISDIR(vnode->Type())) { // nope, can't cwd to here status = B_NOT_A_DIRECTORY; goto err; } // Get current io context and lock context = get_current_io_context(kernel); mutex_lock(&context->io_mutex); // save the old current working directory first oldDirectory = context->cwd; context->cwd = vnode; mutex_unlock(&context->io_mutex); if (oldDirectory) put_vnode(oldDirectory); return B_NO_ERROR; err: put_vnode(vnode); return status; } // #pragma mark - kernel mirrored syscalls dev_t _kern_mount(const char* path, const char* device, const char* fsName, uint32 flags, const char* args, size_t argsLength) { KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; return fs_mount(pathBuffer.LockBuffer(), device, fsName, flags, args, true); } status_t _kern_unmount(const char* path, uint32 flags) { KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; return fs_unmount(pathBuffer.LockBuffer(), -1, flags, true); } status_t _kern_read_fs_info(dev_t device, struct fs_info* info) { if (info == NULL) return B_BAD_VALUE; return fs_read_info(device, info); } status_t _kern_write_fs_info(dev_t device, const struct fs_info* info, int mask) { if (info == NULL) return B_BAD_VALUE; return fs_write_info(device, info, mask); } status_t _kern_sync(void) { // Note: _kern_sync() is also called from _user_sync() int32 cookie = 0; dev_t device; while ((device = next_dev(&cookie)) >= 0) { status_t status = fs_sync(device); if (status != B_OK && status != B_BAD_VALUE) { dprintf("sync: device %ld couldn't sync: %s\n", device, strerror(status)); } } return B_OK; } dev_t _kern_next_device(int32* _cookie) { return fs_next_device(_cookie); } status_t _kern_get_next_fd_info(team_id teamID, uint32* _cookie, fd_info* info, size_t infoSize) { if (infoSize != sizeof(fd_info)) return B_BAD_VALUE; struct io_context* context = NULL; Team* team = NULL; cpu_status state = disable_interrupts(); GRAB_TEAM_LOCK(); bool contextLocked = false; team = team_get_team_struct_locked(teamID); if (team) { // We cannot lock the IO context while holding the team lock, nor can // we just drop the team lock, since it might be deleted in the // meantime. team_remove_team() acquires the thread lock when removing // the team from the team hash table, though. Hence we switch to the // thread lock and use mutex_lock_threads_locked(). context = (io_context*)team->io_context; GRAB_THREAD_LOCK(); RELEASE_TEAM_LOCK(); contextLocked = mutex_lock_threads_locked(&context->io_mutex) == B_OK; RELEASE_THREAD_LOCK(); } else RELEASE_TEAM_LOCK(); restore_interrupts(state); if (!contextLocked) { // team doesn't exit or seems to be gone return B_BAD_TEAM_ID; } // the team cannot be deleted completely while we're owning its // io_context mutex, so we can safely play with it now uint32 slot = *_cookie; struct file_descriptor* descriptor; while (slot < context->table_size && (descriptor = context->fds[slot]) == NULL) { slot++; } if (slot >= context->table_size) { mutex_unlock(&context->io_mutex); return B_ENTRY_NOT_FOUND; } info->number = slot; info->open_mode = descriptor->open_mode; struct vnode* vnode = fd_vnode(descriptor); if (vnode != NULL) { info->device = vnode->device; info->node = vnode->id; } else if (descriptor->u.mount != NULL) { info->device = descriptor->u.mount->id; info->node = -1; } mutex_unlock(&context->io_mutex); *_cookie = slot + 1; return B_OK; } int _kern_open_entry_ref(dev_t device, ino_t inode, const char* name, int openMode, int perms) { if ((openMode & O_CREAT) != 0) { return file_create_entry_ref(device, inode, name, openMode, perms, true); } return file_open_entry_ref(device, inode, name, openMode, true); } /*! \brief Opens a node specified by a FD + path pair. At least one of \a fd and \a path must be specified. If only \a fd is given, the function opens the node identified by this FD. If only a path is given, this path is opened. If both are given and the path is absolute, \a fd is ignored; a relative path is reckoned off of the directory (!) identified by \a fd. \param fd The FD. May be < 0. \param path The absolute or relative path. May be \c NULL. \param openMode The open mode. \return A FD referring to the newly opened node, or an error code, if an error occurs. */ int _kern_open(int fd, const char* path, int openMode, int perms) { KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; if (openMode & O_CREAT) return file_create(fd, pathBuffer.LockBuffer(), openMode, perms, true); return file_open(fd, pathBuffer.LockBuffer(), openMode, true); } /*! \brief Opens a directory specified by entry_ref or node_ref. The supplied name may be \c NULL, in which case directory identified by \a device and \a inode will be opened. Otherwise \a device and \a inode identify the parent directory of the directory to be opened and \a name its entry name. \param device If \a name is specified the ID of the device the parent directory of the directory to be opened resides on, otherwise the device of the directory itself. \param inode If \a name is specified the node ID of the parent directory of the directory to be opened, otherwise node ID of the directory itself. \param name The entry name of the directory to be opened. If \c NULL, the \a device + \a inode pair identify the node to be opened. \return The FD of the newly opened directory or an error code, if something went wrong. */ int _kern_open_dir_entry_ref(dev_t device, ino_t inode, const char* name) { return dir_open_entry_ref(device, inode, name, true); } /*! \brief Opens a directory specified by a FD + path pair. At least one of \a fd and \a path must be specified. If only \a fd is given, the function opens the directory identified by this FD. If only a path is given, this path is opened. If both are given and the path is absolute, \a fd is ignored; a relative path is reckoned off of the directory (!) identified by \a fd. \param fd The FD. May be < 0. \param path The absolute or relative path. May be \c NULL. \return A FD referring to the newly opened directory, or an error code, if an error occurs. */ int _kern_open_dir(int fd, const char* path) { KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; return dir_open(fd, pathBuffer.LockBuffer(), true); } status_t _kern_fcntl(int fd, int op, uint32 argument) { return common_fcntl(fd, op, argument, true); } status_t _kern_fsync(int fd) { return common_sync(fd, true); } status_t _kern_lock_node(int fd) { return common_lock_node(fd, true); } status_t _kern_unlock_node(int fd) { return common_unlock_node(fd, true); } status_t _kern_create_dir_entry_ref(dev_t device, ino_t inode, const char* name, int perms) { return dir_create_entry_ref(device, inode, name, perms, true); } /*! \brief Creates a directory specified by a FD + path pair. \a path must always be specified (it contains the name of the new directory at least). If only a path is given, this path identifies the location at which the directory shall be created. If both \a fd and \a path are given and the path is absolute, \a fd is ignored; a relative path is reckoned off of the directory (!) identified by \a fd. \param fd The FD. May be < 0. \param path The absolute or relative path. Must not be \c NULL. \param perms The access permissions the new directory shall have. \return \c B_OK, if the directory has been created successfully, another error code otherwise. */ status_t _kern_create_dir(int fd, const char* path, int perms) { KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; return dir_create(fd, pathBuffer.LockBuffer(), perms, true); } status_t _kern_remove_dir(int fd, const char* path) { if (path) { KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; return dir_remove(fd, pathBuffer.LockBuffer(), true); } return dir_remove(fd, NULL, true); } /*! \brief Reads the contents of a symlink referred to by a FD + path pair. At least one of \a fd and \a path must be specified. If only \a fd is given, the function the symlink to be read is the node identified by this FD. If only a path is given, this path identifies the symlink to be read. If both are given and the path is absolute, \a fd is ignored; a relative path is reckoned off of the directory (!) identified by \a fd. If this function fails with B_BUFFER_OVERFLOW, the \a _bufferSize pointer will still be updated to reflect the required buffer size. \param fd The FD. May be < 0. \param path The absolute or relative path. May be \c NULL. \param buffer The buffer into which the contents of the symlink shall be written. \param _bufferSize A pointer to the size of the supplied buffer. \return The length of the link on success or an appropriate error code */ status_t _kern_read_link(int fd, const char* path, char* buffer, size_t* _bufferSize) { if (path) { KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; return common_read_link(fd, pathBuffer.LockBuffer(), buffer, _bufferSize, true); } return common_read_link(fd, NULL, buffer, _bufferSize, true); } /*! \brief Creates a symlink specified by a FD + path pair. \a path must always be specified (it contains the name of the new symlink at least). If only a path is given, this path identifies the location at which the symlink shall be created. If both \a fd and \a path are given and the path is absolute, \a fd is ignored; a relative path is reckoned off of the directory (!) identified by \a fd. \param fd The FD. May be < 0. \param toPath The absolute or relative path. Must not be \c NULL. \param mode The access permissions the new symlink shall have. \return \c B_OK, if the symlink has been created successfully, another error code otherwise. */ status_t _kern_create_symlink(int fd, const char* path, const char* toPath, int mode) { KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; return common_create_symlink(fd, pathBuffer.LockBuffer(), toPath, mode, true); } status_t _kern_create_link(int pathFD, const char* path, int toFD, const char* toPath, bool traverseLeafLink) { KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1); KPath toPathBuffer(toPath, false, B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK || toPathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; return common_create_link(pathFD, pathBuffer.LockBuffer(), toFD, toPathBuffer.LockBuffer(), traverseLeafLink, true); } /*! \brief Removes an entry specified by a FD + path pair from its directory. \a path must always be specified (it contains at least the name of the entry to be deleted). If only a path is given, this path identifies the entry directly. If both \a fd and \a path are given and the path is absolute, \a fd is ignored; a relative path is reckoned off of the directory (!) identified by \a fd. \param fd The FD. May be < 0. \param path The absolute or relative path. Must not be \c NULL. \return \c B_OK, if the entry has been removed successfully, another error code otherwise. */ status_t _kern_unlink(int fd, const char* path) { KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; return common_unlink(fd, pathBuffer.LockBuffer(), true); } /*! \brief Moves an entry specified by a FD + path pair to a an entry specified by another FD + path pair. \a oldPath and \a newPath must always be specified (they contain at least the name of the entry). If only a path is given, this path identifies the entry directly. If both a FD and a path are given and the path is absolute, the FD is ignored; a relative path is reckoned off of the directory (!) identified by the respective FD. \param oldFD The FD of the old location. May be < 0. \param oldPath The absolute or relative path of the old location. Must not be \c NULL. \param newFD The FD of the new location. May be < 0. \param newPath The absolute or relative path of the new location. Must not be \c NULL. \return \c B_OK, if the entry has been moved successfully, another error code otherwise. */ status_t _kern_rename(int oldFD, const char* oldPath, int newFD, const char* newPath) { KPath oldPathBuffer(oldPath, false, B_PATH_NAME_LENGTH + 1); KPath newPathBuffer(newPath, false, B_PATH_NAME_LENGTH + 1); if (oldPathBuffer.InitCheck() != B_OK || newPathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; return common_rename(oldFD, oldPathBuffer.LockBuffer(), newFD, newPathBuffer.LockBuffer(), true); } status_t _kern_access(int fd, const char* path, int mode, bool effectiveUserGroup) { KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; return common_access(fd, pathBuffer.LockBuffer(), mode, effectiveUserGroup, true); } /*! \brief Reads stat data of an entity specified by a FD + path pair. If only \a fd is given, the stat operation associated with the type of the FD (node, attr, attr dir etc.) is performed. If only \a path is given, this path identifies the entry for whose node to retrieve the stat data. If both \a fd and \a path are given and the path is absolute, \a fd is ignored; a relative path is reckoned off of the directory (!) identified by \a fd and specifies the entry whose stat data shall be retrieved. \param fd The FD. May be < 0. \param path The absolute or relative path. Must not be \c NULL. \param traverseLeafLink If \a path is given, \c true specifies that the function shall not stick to symlinks, but traverse them. \param stat The buffer the stat data shall be written into. \param statSize The size of the supplied stat buffer. \return \c B_OK, if the the stat data have been read successfully, another error code otherwise. */ status_t _kern_read_stat(int fd, const char* path, bool traverseLeafLink, struct stat* stat, size_t statSize) { struct stat completeStat; struct stat* originalStat = NULL; status_t status; if (statSize > sizeof(struct stat)) return B_BAD_VALUE; // this supports different stat extensions if (statSize < sizeof(struct stat)) { originalStat = stat; stat = &completeStat; } status = vfs_read_stat(fd, path, traverseLeafLink, stat, true); if (status == B_OK && originalStat != NULL) memcpy(originalStat, stat, statSize); return status; } /*! \brief Writes stat data of an entity specified by a FD + path pair. If only \a fd is given, the stat operation associated with the type of the FD (node, attr, attr dir etc.) is performed. If only \a path is given, this path identifies the entry for whose node to write the stat data. If both \a fd and \a path are given and the path is absolute, \a fd is ignored; a relative path is reckoned off of the directory (!) identified by \a fd and specifies the entry whose stat data shall be written. \param fd The FD. May be < 0. \param path The absolute or relative path. Must not be \c NULL. \param traverseLeafLink If \a path is given, \c true specifies that the function shall not stick to symlinks, but traverse them. \param stat The buffer containing the stat data to be written. \param statSize The size of the supplied stat buffer. \param statMask A mask specifying which parts of the stat data shall be written. \return \c B_OK, if the the stat data have been written successfully, another error code otherwise. */ status_t _kern_write_stat(int fd, const char* path, bool traverseLeafLink, const struct stat* stat, size_t statSize, int statMask) { struct stat completeStat; if (statSize > sizeof(struct stat)) return B_BAD_VALUE; // this supports different stat extensions if (statSize < sizeof(struct stat)) { memset((uint8*)&completeStat + statSize, 0, sizeof(struct stat) - statSize); memcpy(&completeStat, stat, statSize); stat = &completeStat; } status_t status; if (path) { // path given: write the stat of the node referred to by (fd, path) KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; status = common_path_write_stat(fd, pathBuffer.LockBuffer(), traverseLeafLink, stat, statMask, true); } else { // no path given: get the FD and use the FD operation struct file_descriptor* descriptor = get_fd(get_current_io_context(true), fd); if (descriptor == NULL) return B_FILE_ERROR; if (descriptor->ops->fd_write_stat) status = descriptor->ops->fd_write_stat(descriptor, stat, statMask); else status = B_NOT_SUPPORTED; put_fd(descriptor); } return status; } int _kern_open_attr_dir(int fd, const char* path) { KPath pathBuffer(B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; if (path != NULL) pathBuffer.SetTo(path); return attr_dir_open(fd, path ? pathBuffer.LockBuffer() : NULL, true); } int _kern_open_attr(int fd, const char* path, const char* name, uint32 type, int openMode) { KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; if ((openMode & O_CREAT) != 0) { return attr_create(fd, pathBuffer.LockBuffer(), name, type, openMode, true); } return attr_open(fd, pathBuffer.LockBuffer(), name, openMode, true); } status_t _kern_remove_attr(int fd, const char* name) { return attr_remove(fd, name, true); } status_t _kern_rename_attr(int fromFile, const char* fromName, int toFile, const char* toName) { return attr_rename(fromFile, fromName, toFile, toName, true); } int _kern_open_index_dir(dev_t device) { return index_dir_open(device, true); } status_t _kern_create_index(dev_t device, const char* name, uint32 type, uint32 flags) { return index_create(device, name, type, flags, true); } status_t _kern_read_index_stat(dev_t device, const char* name, struct stat* stat) { return index_name_read_stat(device, name, stat, true); } status_t _kern_remove_index(dev_t device, const char* name) { return index_remove(device, name, true); } status_t _kern_getcwd(char* buffer, size_t size) { TRACE(("_kern_getcwd: buf %p, %ld\n", buffer, size)); // Call vfs to get current working directory return get_cwd(buffer, size, true); } status_t _kern_setcwd(int fd, const char* path) { KPath pathBuffer(B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; if (path != NULL) pathBuffer.SetTo(path); return set_cwd(fd, path != NULL ? pathBuffer.LockBuffer() : NULL, true); } // #pragma mark - userland syscalls dev_t _user_mount(const char* userPath, const char* userDevice, const char* userFileSystem, uint32 flags, const char* userArgs, size_t argsLength) { char fileSystem[B_FILE_NAME_LENGTH]; KPath path, device; char* args = NULL; status_t status; if (!IS_USER_ADDRESS(userPath) || !IS_USER_ADDRESS(userFileSystem) || !IS_USER_ADDRESS(userDevice)) return B_BAD_ADDRESS; if (path.InitCheck() != B_OK || device.InitCheck() != B_OK) return B_NO_MEMORY; if (user_strlcpy(path.LockBuffer(), userPath, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; if (userFileSystem != NULL && user_strlcpy(fileSystem, userFileSystem, sizeof(fileSystem)) < B_OK) return B_BAD_ADDRESS; if (userDevice != NULL && user_strlcpy(device.LockBuffer(), userDevice, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; if (userArgs != NULL && argsLength > 0) { // this is a safety restriction if (argsLength >= 65536) return B_NAME_TOO_LONG; args = (char*)malloc(argsLength + 1); if (args == NULL) return B_NO_MEMORY; if (user_strlcpy(args, userArgs, argsLength + 1) < B_OK) { free(args); return B_BAD_ADDRESS; } } path.UnlockBuffer(); device.UnlockBuffer(); status = fs_mount(path.LockBuffer(), userDevice != NULL ? device.Path() : NULL, userFileSystem ? fileSystem : NULL, flags, args, false); free(args); return status; } status_t _user_unmount(const char* userPath, uint32 flags) { KPath pathBuffer(B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* path = pathBuffer.LockBuffer(); if (user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; return fs_unmount(path, -1, flags & ~B_UNMOUNT_BUSY_PARTITION, false); } status_t _user_read_fs_info(dev_t device, struct fs_info* userInfo) { struct fs_info info; status_t status; if (userInfo == NULL) return B_BAD_VALUE; if (!IS_USER_ADDRESS(userInfo)) return B_BAD_ADDRESS; status = fs_read_info(device, &info); if (status != B_OK) return status; if (user_memcpy(userInfo, &info, sizeof(struct fs_info)) != B_OK) return B_BAD_ADDRESS; return B_OK; } status_t _user_write_fs_info(dev_t device, const struct fs_info* userInfo, int mask) { struct fs_info info; if (userInfo == NULL) return B_BAD_VALUE; if (!IS_USER_ADDRESS(userInfo) || user_memcpy(&info, userInfo, sizeof(struct fs_info)) != B_OK) return B_BAD_ADDRESS; return fs_write_info(device, &info, mask); } dev_t _user_next_device(int32* _userCookie) { int32 cookie; dev_t device; if (!IS_USER_ADDRESS(_userCookie) || user_memcpy(&cookie, _userCookie, sizeof(int32)) != B_OK) return B_BAD_ADDRESS; device = fs_next_device(&cookie); if (device >= B_OK) { // update user cookie if (user_memcpy(_userCookie, &cookie, sizeof(int32)) != B_OK) return B_BAD_ADDRESS; } return device; } status_t _user_sync(void) { return _kern_sync(); } status_t _user_get_next_fd_info(team_id team, uint32* userCookie, fd_info* userInfo, size_t infoSize) { struct fd_info info; uint32 cookie; // only root can do this (or should root's group be enough?) if (geteuid() != 0) return B_NOT_ALLOWED; if (infoSize != sizeof(fd_info)) return B_BAD_VALUE; if (!IS_USER_ADDRESS(userCookie) || !IS_USER_ADDRESS(userInfo) || user_memcpy(&cookie, userCookie, sizeof(uint32)) != B_OK) return B_BAD_ADDRESS; status_t status = _kern_get_next_fd_info(team, &cookie, &info, infoSize); if (status != B_OK) return status; if (user_memcpy(userCookie, &cookie, sizeof(uint32)) != B_OK || user_memcpy(userInfo, &info, infoSize) != B_OK) return B_BAD_ADDRESS; return status; } status_t _user_entry_ref_to_path(dev_t device, ino_t inode, const char* leaf, char* userPath, size_t pathLength) { if (!IS_USER_ADDRESS(userPath)) return B_BAD_ADDRESS; KPath path(B_PATH_NAME_LENGTH + 1); if (path.InitCheck() != B_OK) return B_NO_MEMORY; // copy the leaf name onto the stack char stackLeaf[B_FILE_NAME_LENGTH]; if (leaf) { if (!IS_USER_ADDRESS(leaf)) return B_BAD_ADDRESS; int length = user_strlcpy(stackLeaf, leaf, B_FILE_NAME_LENGTH); if (length < 0) return length; if (length >= B_FILE_NAME_LENGTH) return B_NAME_TOO_LONG; leaf = stackLeaf; } status_t status = vfs_entry_ref_to_path(device, inode, leaf, path.LockBuffer(), path.BufferSize()); if (status != B_OK) return status; path.UnlockBuffer(); int length = user_strlcpy(userPath, path.Path(), pathLength); if (length < 0) return length; if (length >= (int)pathLength) return B_BUFFER_OVERFLOW; return B_OK; } status_t _user_normalize_path(const char* userPath, bool traverseLink, char* buffer) { if (userPath == NULL || buffer == NULL) return B_BAD_VALUE; if (!IS_USER_ADDRESS(userPath) || !IS_USER_ADDRESS(buffer)) return B_BAD_ADDRESS; // copy path from userland KPath pathBuffer(B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* path = pathBuffer.LockBuffer(); if (user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; status_t error = normalize_path(path, pathBuffer.BufferSize(), traverseLink, false); if (error != B_OK) return error; // copy back to userland int len = user_strlcpy(buffer, path, B_PATH_NAME_LENGTH); if (len < 0) return len; if (len >= B_PATH_NAME_LENGTH) return B_BUFFER_OVERFLOW; return B_OK; } int _user_open_entry_ref(dev_t device, ino_t inode, const char* userName, int openMode, int perms) { char name[B_FILE_NAME_LENGTH]; if (userName == NULL || device < 0 || inode < 0) return B_BAD_VALUE; if (!IS_USER_ADDRESS(userName) || user_strlcpy(name, userName, sizeof(name)) < B_OK) return B_BAD_ADDRESS; if ((openMode & O_CREAT) != 0) { return file_create_entry_ref(device, inode, name, openMode, perms, false); } return file_open_entry_ref(device, inode, name, openMode, false); } int _user_open(int fd, const char* userPath, int openMode, int perms) { KPath path(B_PATH_NAME_LENGTH + 1); if (path.InitCheck() != B_OK) return B_NO_MEMORY; char* buffer = path.LockBuffer(); if (!IS_USER_ADDRESS(userPath) || user_strlcpy(buffer, userPath, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; if ((openMode & O_CREAT) != 0) return file_create(fd, buffer, openMode, perms, false); return file_open(fd, buffer, openMode, false); } int _user_open_dir_entry_ref(dev_t device, ino_t inode, const char* userName) { if (userName != NULL) { char name[B_FILE_NAME_LENGTH]; if (!IS_USER_ADDRESS(userName) || user_strlcpy(name, userName, sizeof(name)) < B_OK) return B_BAD_ADDRESS; return dir_open_entry_ref(device, inode, name, false); } return dir_open_entry_ref(device, inode, NULL, false); } int _user_open_dir(int fd, const char* userPath) { if (userPath == NULL) return dir_open(fd, NULL, false); KPath path(B_PATH_NAME_LENGTH + 1); if (path.InitCheck() != B_OK) return B_NO_MEMORY; char* buffer = path.LockBuffer(); if (!IS_USER_ADDRESS(userPath) || user_strlcpy(buffer, userPath, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; return dir_open(fd, buffer, false); } /*! \brief Opens a directory's parent directory and returns the entry name of the former. Aside from that is returns the directory's entry name, this method is equivalent to \code _user_open_dir(fd, "..") \endcode. It really is equivalent, if \a userName is \c NULL. If a name buffer is supplied and the name does not fit the buffer, the function fails. A buffer of size \c B_FILE_NAME_LENGTH should be safe. \param fd A FD referring to a directory. \param userName Buffer the directory's entry name shall be written into. May be \c NULL. \param nameLength Size of the name buffer. \return The file descriptor of the opened parent directory, if everything went fine, an error code otherwise. */ int _user_open_parent_dir(int fd, char* userName, size_t nameLength) { bool kernel = false; if (userName && !IS_USER_ADDRESS(userName)) return B_BAD_ADDRESS; // open the parent dir int parentFD = dir_open(fd, (char*)"..", kernel); if (parentFD < 0) return parentFD; FDCloser fdCloser(parentFD, kernel); if (userName) { // get the vnodes struct vnode* parentVNode = get_vnode_from_fd(parentFD, kernel); struct vnode* dirVNode = get_vnode_from_fd(fd, kernel); VNodePutter parentVNodePutter(parentVNode); VNodePutter dirVNodePutter(dirVNode); if (!parentVNode || !dirVNode) return B_FILE_ERROR; // get the vnode name char _buffer[sizeof(struct dirent) + B_FILE_NAME_LENGTH]; struct dirent* buffer = (struct dirent*)_buffer; status_t status = get_vnode_name(dirVNode, parentVNode, buffer, sizeof(_buffer), get_current_io_context(false)); if (status != B_OK) return status; // copy the name to the userland buffer int len = user_strlcpy(userName, buffer->d_name, nameLength); if (len < 0) return len; if (len >= (int)nameLength) return B_BUFFER_OVERFLOW; } return fdCloser.Detach(); } status_t _user_fcntl(int fd, int op, uint32 argument) { status_t status = common_fcntl(fd, op, argument, false); if (op == F_SETLKW) syscall_restart_handle_post(status); return status; } status_t _user_fsync(int fd) { return common_sync(fd, false); } status_t _user_flock(int fd, int operation) { FUNCTION(("_user_fcntl(fd = %d, op = %d)\n", fd, operation)); // Check if the operation is valid switch (operation & ~LOCK_NB) { case LOCK_UN: case LOCK_SH: case LOCK_EX: break; default: return B_BAD_VALUE; } struct file_descriptor* descriptor; struct vnode* vnode; descriptor = get_fd_and_vnode(fd, &vnode, false); if (descriptor == NULL) return B_FILE_ERROR; if (descriptor->type != FDTYPE_FILE) { put_fd(descriptor); return B_BAD_VALUE; } struct flock flock; flock.l_start = 0; flock.l_len = OFF_MAX; flock.l_whence = 0; flock.l_type = (operation & LOCK_SH) != 0 ? F_RDLCK : F_WRLCK; status_t status; if ((operation & LOCK_UN) != 0) status = release_advisory_lock(vnode, &flock); else { status = acquire_advisory_lock(vnode, thread_get_current_thread()->team->session_id, &flock, (operation & LOCK_NB) == 0); } syscall_restart_handle_post(status); put_fd(descriptor); return status; } status_t _user_lock_node(int fd) { return common_lock_node(fd, false); } status_t _user_unlock_node(int fd) { return common_unlock_node(fd, false); } status_t _user_create_dir_entry_ref(dev_t device, ino_t inode, const char* userName, int perms) { char name[B_FILE_NAME_LENGTH]; status_t status; if (!IS_USER_ADDRESS(userName)) return B_BAD_ADDRESS; status = user_strlcpy(name, userName, sizeof(name)); if (status < 0) return status; return dir_create_entry_ref(device, inode, name, perms, false); } status_t _user_create_dir(int fd, const char* userPath, int perms) { KPath pathBuffer(B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* path = pathBuffer.LockBuffer(); if (!IS_USER_ADDRESS(userPath) || user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; return dir_create(fd, path, perms, false); } status_t _user_remove_dir(int fd, const char* userPath) { KPath pathBuffer(B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* path = pathBuffer.LockBuffer(); if (userPath != NULL) { if (!IS_USER_ADDRESS(userPath) || user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; } return dir_remove(fd, userPath ? path : NULL, false); } status_t _user_read_link(int fd, const char* userPath, char* userBuffer, size_t* userBufferSize) { KPath pathBuffer(B_PATH_NAME_LENGTH + 1), linkBuffer; if (pathBuffer.InitCheck() != B_OK || linkBuffer.InitCheck() != B_OK) return B_NO_MEMORY; size_t bufferSize; if (!IS_USER_ADDRESS(userBuffer) || !IS_USER_ADDRESS(userBufferSize) || user_memcpy(&bufferSize, userBufferSize, sizeof(size_t)) != B_OK) return B_BAD_ADDRESS; char* path = pathBuffer.LockBuffer(); char* buffer = linkBuffer.LockBuffer(); if (userPath) { if (!IS_USER_ADDRESS(userPath) || user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; if (bufferSize > B_PATH_NAME_LENGTH) bufferSize = B_PATH_NAME_LENGTH; } status_t status = common_read_link(fd, userPath ? path : NULL, buffer, &bufferSize, false); // we also update the bufferSize in case of errors // (the real length will be returned in case of B_BUFFER_OVERFLOW) if (user_memcpy(userBufferSize, &bufferSize, sizeof(size_t)) != B_OK) return B_BAD_ADDRESS; if (status != B_OK) return status; if (user_memcpy(userBuffer, buffer, bufferSize) != B_OK) return B_BAD_ADDRESS; return B_OK; } status_t _user_create_symlink(int fd, const char* userPath, const char* userToPath, int mode) { KPath pathBuffer(B_PATH_NAME_LENGTH + 1); KPath toPathBuffer(B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK || toPathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* path = pathBuffer.LockBuffer(); char* toPath = toPathBuffer.LockBuffer(); if (!IS_USER_ADDRESS(userPath) || !IS_USER_ADDRESS(userToPath) || user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK || user_strlcpy(toPath, userToPath, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; return common_create_symlink(fd, path, toPath, mode, false); } status_t _user_create_link(int pathFD, const char* userPath, int toFD, const char* userToPath, bool traverseLeafLink) { KPath pathBuffer(B_PATH_NAME_LENGTH + 1); KPath toPathBuffer(B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK || toPathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* path = pathBuffer.LockBuffer(); char* toPath = toPathBuffer.LockBuffer(); if (!IS_USER_ADDRESS(userPath) || !IS_USER_ADDRESS(userToPath) || user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK || user_strlcpy(toPath, userToPath, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; status_t status = check_path(toPath); if (status != B_OK) return status; return common_create_link(pathFD, path, toFD, toPath, traverseLeafLink, false); } status_t _user_unlink(int fd, const char* userPath) { KPath pathBuffer(B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* path = pathBuffer.LockBuffer(); if (!IS_USER_ADDRESS(userPath) || user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; return common_unlink(fd, path, false); } status_t _user_rename(int oldFD, const char* userOldPath, int newFD, const char* userNewPath) { KPath oldPathBuffer(B_PATH_NAME_LENGTH + 1); KPath newPathBuffer(B_PATH_NAME_LENGTH + 1); if (oldPathBuffer.InitCheck() != B_OK || newPathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* oldPath = oldPathBuffer.LockBuffer(); char* newPath = newPathBuffer.LockBuffer(); if (!IS_USER_ADDRESS(userOldPath) || !IS_USER_ADDRESS(userNewPath) || user_strlcpy(oldPath, userOldPath, B_PATH_NAME_LENGTH) < B_OK || user_strlcpy(newPath, userNewPath, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; return common_rename(oldFD, oldPath, newFD, newPath, false); } status_t _user_create_fifo(int fd, const char* userPath, mode_t perms) { KPath pathBuffer(B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* path = pathBuffer.LockBuffer(); if (!IS_USER_ADDRESS(userPath) || user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK) { return B_BAD_ADDRESS; } // split into directory vnode and filename path char filename[B_FILE_NAME_LENGTH]; struct vnode* dir; status_t status = fd_and_path_to_dir_vnode(fd, path, &dir, filename, false); if (status != B_OK) return status; VNodePutter _(dir); // the underlying FS needs to support creating FIFOs if (!HAS_FS_CALL(dir, create_special_node)) return B_UNSUPPORTED; // create the entry -- the FIFO sub node is set up automatically fs_vnode superVnode; ino_t nodeID; status = FS_CALL(dir, create_special_node, filename, NULL, S_IFIFO | (perms & S_IUMSK), 0, &superVnode, &nodeID); // create_special_node() acquired a reference for us that we don't need. if (status == B_OK) put_vnode(dir->mount->volume, nodeID); return status; } status_t _user_create_pipe(int* userFDs) { // rootfs should support creating FIFOs, but let's be sure if (!HAS_FS_CALL(sRoot, create_special_node)) return B_UNSUPPORTED; // create the node -- the FIFO sub node is set up automatically fs_vnode superVnode; ino_t nodeID; status_t status = FS_CALL(sRoot, create_special_node, NULL, NULL, S_IFIFO | S_IRUSR | S_IWUSR, 0, &superVnode, &nodeID); if (status != B_OK) return status; // We've got one reference to the node and need another one. struct vnode* vnode; status = get_vnode(sRoot->mount->id, nodeID, &vnode, true, false); if (status != B_OK) { // that should not happen dprintf("_user_create_pipe(): Failed to lookup vnode (%ld, %lld)\n", sRoot->mount->id, sRoot->id); return status; } // Everything looks good so far. Open two FDs for reading respectively // writing. int fds[2]; fds[0] = open_vnode(vnode, O_RDONLY, false); fds[1] = open_vnode(vnode, O_WRONLY, false); FDCloser closer0(fds[0], false); FDCloser closer1(fds[1], false); status = (fds[0] >= 0 ? (fds[1] >= 0 ? B_OK : fds[1]) : fds[0]); // copy FDs to userland if (status == B_OK) { if (!IS_USER_ADDRESS(userFDs) || user_memcpy(userFDs, fds, sizeof(fds)) != B_OK) { status = B_BAD_ADDRESS; } } // keep FDs, if everything went fine if (status == B_OK) { closer0.Detach(); closer1.Detach(); } return status; } status_t _user_access(int fd, const char* userPath, int mode, bool effectiveUserGroup) { KPath pathBuffer(B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* path = pathBuffer.LockBuffer(); if (!IS_USER_ADDRESS(userPath) || user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; return common_access(fd, path, mode, effectiveUserGroup, false); } status_t _user_read_stat(int fd, const char* userPath, bool traverseLink, struct stat* userStat, size_t statSize) { struct stat stat; status_t status; if (statSize > sizeof(struct stat)) return B_BAD_VALUE; if (!IS_USER_ADDRESS(userStat)) return B_BAD_ADDRESS; if (userPath) { // path given: get the stat of the node referred to by (fd, path) if (!IS_USER_ADDRESS(userPath)) return B_BAD_ADDRESS; KPath pathBuffer(B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* path = pathBuffer.LockBuffer(); ssize_t length = user_strlcpy(path, userPath, B_PATH_NAME_LENGTH); if (length < B_OK) return length; if (length >= B_PATH_NAME_LENGTH) return B_NAME_TOO_LONG; status = common_path_read_stat(fd, path, traverseLink, &stat, false); } else { // no path given: get the FD and use the FD operation struct file_descriptor* descriptor = get_fd(get_current_io_context(false), fd); if (descriptor == NULL) return B_FILE_ERROR; if (descriptor->ops->fd_read_stat) status = descriptor->ops->fd_read_stat(descriptor, &stat); else status = B_NOT_SUPPORTED; put_fd(descriptor); } if (status != B_OK) return status; return user_memcpy(userStat, &stat, statSize); } status_t _user_write_stat(int fd, const char* userPath, bool traverseLeafLink, const struct stat* userStat, size_t statSize, int statMask) { if (statSize > sizeof(struct stat)) return B_BAD_VALUE; struct stat stat; if (!IS_USER_ADDRESS(userStat) || user_memcpy(&stat, userStat, statSize) < B_OK) return B_BAD_ADDRESS; // clear additional stat fields if (statSize < sizeof(struct stat)) memset((uint8*)&stat + statSize, 0, sizeof(struct stat) - statSize); status_t status; if (userPath) { // path given: write the stat of the node referred to by (fd, path) if (!IS_USER_ADDRESS(userPath)) return B_BAD_ADDRESS; KPath pathBuffer(B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* path = pathBuffer.LockBuffer(); ssize_t length = user_strlcpy(path, userPath, B_PATH_NAME_LENGTH); if (length < B_OK) return length; if (length >= B_PATH_NAME_LENGTH) return B_NAME_TOO_LONG; status = common_path_write_stat(fd, path, traverseLeafLink, &stat, statMask, false); } else { // no path given: get the FD and use the FD operation struct file_descriptor* descriptor = get_fd(get_current_io_context(false), fd); if (descriptor == NULL) return B_FILE_ERROR; if (descriptor->ops->fd_write_stat) { status = descriptor->ops->fd_write_stat(descriptor, &stat, statMask); } else status = B_NOT_SUPPORTED; put_fd(descriptor); } return status; } int _user_open_attr_dir(int fd, const char* userPath) { KPath pathBuffer(B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* path = pathBuffer.LockBuffer(); if (userPath != NULL) { if (!IS_USER_ADDRESS(userPath) || user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; } return attr_dir_open(fd, userPath ? path : NULL, false); } ssize_t _user_read_attr(int fd, const char* attribute, off_t pos, void* userBuffer, size_t readBytes) { int attr = attr_open(fd, NULL, attribute, O_RDONLY, false); if (attr < 0) return attr; ssize_t bytes = _user_read(attr, pos, userBuffer, readBytes); _user_close(attr); return bytes; } ssize_t _user_write_attr(int fd, const char* attribute, uint32 type, off_t pos, const void* buffer, size_t writeBytes) { // Try to support the BeOS typical truncation as well as the position // argument int attr = attr_create(fd, NULL, attribute, type, O_CREAT | O_WRONLY | (pos != 0 ? 0 : O_TRUNC), false); if (attr < 0) return attr; ssize_t bytes = _user_write(attr, pos, buffer, writeBytes); _user_close(attr); return bytes; } status_t _user_stat_attr(int fd, const char* attribute, struct attr_info* userAttrInfo) { int attr = attr_open(fd, NULL, attribute, O_RDONLY, false); if (attr < 0) return attr; struct file_descriptor* descriptor = get_fd(get_current_io_context(false), attr); if (descriptor == NULL) { _user_close(attr); return B_FILE_ERROR; } struct stat stat; status_t status; if (descriptor->ops->fd_read_stat) status = descriptor->ops->fd_read_stat(descriptor, &stat); else status = B_NOT_SUPPORTED; put_fd(descriptor); _user_close(attr); if (status == B_OK) { attr_info info; info.type = stat.st_type; info.size = stat.st_size; if (user_memcpy(userAttrInfo, &info, sizeof(struct attr_info)) != B_OK) return B_BAD_ADDRESS; } return status; } int _user_open_attr(int fd, const char* userPath, const char* userName, uint32 type, int openMode) { char name[B_FILE_NAME_LENGTH]; if (!IS_USER_ADDRESS(userName) || user_strlcpy(name, userName, B_FILE_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; KPath pathBuffer(B_PATH_NAME_LENGTH + 1); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* path = pathBuffer.LockBuffer(); if (userPath != NULL) { if (!IS_USER_ADDRESS(userPath) || user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; } if ((openMode & O_CREAT) != 0) { return attr_create(fd, userPath ? path : NULL, name, type, openMode, false); } return attr_open(fd, userPath ? path : NULL, name, openMode, false); } status_t _user_remove_attr(int fd, const char* userName) { char name[B_FILE_NAME_LENGTH]; if (!IS_USER_ADDRESS(userName) || user_strlcpy(name, userName, B_FILE_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; return attr_remove(fd, name, false); } status_t _user_rename_attr(int fromFile, const char* userFromName, int toFile, const char* userToName) { if (!IS_USER_ADDRESS(userFromName) || !IS_USER_ADDRESS(userToName)) return B_BAD_ADDRESS; KPath fromNameBuffer(B_FILE_NAME_LENGTH); KPath toNameBuffer(B_FILE_NAME_LENGTH); if (fromNameBuffer.InitCheck() != B_OK || toNameBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* fromName = fromNameBuffer.LockBuffer(); char* toName = toNameBuffer.LockBuffer(); if (user_strlcpy(fromName, userFromName, B_FILE_NAME_LENGTH) < B_OK || user_strlcpy(toName, userToName, B_FILE_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; return attr_rename(fromFile, fromName, toFile, toName, false); } int _user_open_index_dir(dev_t device) { return index_dir_open(device, false); } status_t _user_create_index(dev_t device, const char* userName, uint32 type, uint32 flags) { char name[B_FILE_NAME_LENGTH]; if (!IS_USER_ADDRESS(userName) || user_strlcpy(name, userName, B_FILE_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; return index_create(device, name, type, flags, false); } status_t _user_read_index_stat(dev_t device, const char* userName, struct stat* userStat) { char name[B_FILE_NAME_LENGTH]; struct stat stat; status_t status; if (!IS_USER_ADDRESS(userName) || !IS_USER_ADDRESS(userStat) || user_strlcpy(name, userName, B_FILE_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; status = index_name_read_stat(device, name, &stat, false); if (status == B_OK) { if (user_memcpy(userStat, &stat, sizeof(stat)) != B_OK) return B_BAD_ADDRESS; } return status; } status_t _user_remove_index(dev_t device, const char* userName) { char name[B_FILE_NAME_LENGTH]; if (!IS_USER_ADDRESS(userName) || user_strlcpy(name, userName, B_FILE_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; return index_remove(device, name, false); } status_t _user_getcwd(char* userBuffer, size_t size) { if (size == 0) return B_BAD_VALUE; if (!IS_USER_ADDRESS(userBuffer)) return B_BAD_ADDRESS; if (size > kMaxPathLength) size = kMaxPathLength; KPath pathBuffer(size); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; TRACE(("user_getcwd: buf %p, %ld\n", userBuffer, size)); char* path = pathBuffer.LockBuffer(); status_t status = get_cwd(path, size, false); if (status != B_OK) return status; // Copy back the result if (user_strlcpy(userBuffer, path, size) < B_OK) return B_BAD_ADDRESS; return status; } status_t _user_setcwd(int fd, const char* userPath) { TRACE(("user_setcwd: path = %p\n", userPath)); KPath pathBuffer(B_PATH_NAME_LENGTH); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; char* path = pathBuffer.LockBuffer(); if (userPath != NULL) { if (!IS_USER_ADDRESS(userPath) || user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; } return set_cwd(fd, userPath != NULL ? path : NULL, false); } status_t _user_change_root(const char* userPath) { // only root is allowed to chroot() if (geteuid() != 0) return B_NOT_ALLOWED; // alloc path buffer KPath pathBuffer(B_PATH_NAME_LENGTH); if (pathBuffer.InitCheck() != B_OK) return B_NO_MEMORY; // copy userland path to kernel char* path = pathBuffer.LockBuffer(); if (userPath != NULL) { if (!IS_USER_ADDRESS(userPath) || user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; } // get the vnode struct vnode* vnode; status_t status = path_to_vnode(path, true, &vnode, NULL, false); if (status != B_OK) return status; // set the new root struct io_context* context = get_current_io_context(false); mutex_lock(&sIOContextRootLock); struct vnode* oldRoot = context->root; context->root = vnode; mutex_unlock(&sIOContextRootLock); put_vnode(oldRoot); return B_OK; } int _user_open_query(dev_t device, const char* userQuery, size_t queryLength, uint32 flags, port_id port, int32 token) { char* query; if (device < 0 || userQuery == NULL || queryLength == 0) return B_BAD_VALUE; // this is a safety restriction if (queryLength >= 65536) return B_NAME_TOO_LONG; query = (char*)malloc(queryLength + 1); if (query == NULL) return B_NO_MEMORY; if (user_strlcpy(query, userQuery, queryLength + 1) < B_OK) { free(query); return B_BAD_ADDRESS; } int fd = query_open(device, query, flags, port, token, false); free(query); return fd; } #include "vfs_request_io.cpp"