/* * Copyright 2008-2010, Ingo Weinhold, ingo_weinhold@gmx.de. * Copyright 2002-2007, Axel Dörfler, axeld@pinc-software.de. All rights reserved. * Distributed under the terms of the MIT License. * * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. * Distributed under the terms of the NewOS License. */ #include "paging/32bit/X86PagingMethod32Bit.h" #include #include #include #include #include #include #include #include #include #include "paging/32bit/X86PagingStructures32Bit.h" #include "paging/32bit/X86VMTranslationMap32Bit.h" #include "paging/x86_physical_page_mapper.h" #include "paging/x86_physical_page_mapper_large_memory.h" //#define TRACE_X86_PAGING_METHOD_32_BIT #ifdef TRACE_X86_PAGING_METHOD_32_BIT # define TRACE(x...) dprintf(x) #else # define TRACE(x...) ; #endif using X86LargePhysicalPageMapper::PhysicalPageSlot; // #pragma mark - X86PagingMethod32Bit::PhysicalPageSlotPool struct X86PagingMethod32Bit::PhysicalPageSlotPool : X86LargePhysicalPageMapper::PhysicalPageSlotPool { public: virtual ~PhysicalPageSlotPool(); status_t InitInitial(kernel_args* args); status_t InitInitialPostArea(kernel_args* args); void Init(area_id dataArea, void* data, area_id virtualArea, addr_t virtualBase); virtual status_t AllocatePool( X86LargePhysicalPageMapper ::PhysicalPageSlotPool*& _pool); virtual void Map(phys_addr_t physicalAddress, addr_t virtualAddress); public: static PhysicalPageSlotPool sInitialPhysicalPagePool; private: area_id fDataArea; area_id fVirtualArea; addr_t fVirtualBase; page_table_entry* fPageTable; }; X86PagingMethod32Bit::PhysicalPageSlotPool X86PagingMethod32Bit::PhysicalPageSlotPool::sInitialPhysicalPagePool; X86PagingMethod32Bit::PhysicalPageSlotPool::~PhysicalPageSlotPool() { } status_t X86PagingMethod32Bit::PhysicalPageSlotPool::InitInitial(kernel_args* args) { // allocate a virtual address range for the pages to be mapped into addr_t virtualBase = vm_allocate_early(args, 1024 * B_PAGE_SIZE, 0, 0, kPageTableAlignment); if (virtualBase == 0) { panic("LargeMemoryPhysicalPageMapper::Init(): Failed to reserve " "physical page pool space in virtual address space!"); return B_ERROR; } // allocate memory for the page table and data size_t areaSize = B_PAGE_SIZE + sizeof(PhysicalPageSlot[1024]); page_table_entry* pageTable = (page_table_entry*)vm_allocate_early(args, areaSize, ~0L, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA, 0); // prepare the page table _EarlyPreparePageTables(pageTable, virtualBase, 1024 * B_PAGE_SIZE); // init the pool structure and add the initial pool Init(-1, pageTable, -1, (addr_t)virtualBase); return B_OK; } status_t X86PagingMethod32Bit::PhysicalPageSlotPool::InitInitialPostArea( kernel_args* args) { // create an area for the (already allocated) data size_t areaSize = B_PAGE_SIZE + sizeof(PhysicalPageSlot[1024]); void* temp = fPageTable; area_id area = create_area("physical page pool", &temp, B_EXACT_ADDRESS, areaSize, B_ALREADY_WIRED, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA); if (area < B_OK) { panic("LargeMemoryPhysicalPageMapper::InitPostArea(): Failed to " "create area for physical page pool."); return area; } fDataArea = area; // create an area for the virtual address space temp = (void*)fVirtualBase; area = vm_create_null_area(VMAddressSpace::KernelID(), "physical page pool space", &temp, B_EXACT_ADDRESS, 1024 * B_PAGE_SIZE, 0); if (area < B_OK) { panic("LargeMemoryPhysicalPageMapper::InitPostArea(): Failed to " "create area for physical page pool space."); return area; } fVirtualArea = area; return B_OK; } void X86PagingMethod32Bit::PhysicalPageSlotPool::Init(area_id dataArea, void* data, area_id virtualArea, addr_t virtualBase) { fDataArea = dataArea; fVirtualArea = virtualArea; fVirtualBase = virtualBase; fPageTable = (page_table_entry*)data; // init slot list fSlots = (PhysicalPageSlot*)(fPageTable + 1024); addr_t slotAddress = virtualBase; for (int32 i = 0; i < 1024; i++, slotAddress += B_PAGE_SIZE) { PhysicalPageSlot* slot = &fSlots[i]; slot->next = slot + 1; slot->pool = this; slot->address = slotAddress; } fSlots[1023].next = NULL; // terminate list } void X86PagingMethod32Bit::PhysicalPageSlotPool::Map(phys_addr_t physicalAddress, addr_t virtualAddress) { page_table_entry& pte = fPageTable[ (virtualAddress - fVirtualBase) / B_PAGE_SIZE]; pte = (physicalAddress & X86_PTE_ADDRESS_MASK) | X86_PTE_WRITABLE | X86_PTE_GLOBAL | X86_PTE_PRESENT; invalidate_TLB(virtualAddress); } status_t X86PagingMethod32Bit::PhysicalPageSlotPool::AllocatePool( X86LargePhysicalPageMapper::PhysicalPageSlotPool*& _pool) { // create the pool structure PhysicalPageSlotPool* pool = new(std::nothrow) PhysicalPageSlotPool; if (pool == NULL) return B_NO_MEMORY; ObjectDeleter poolDeleter(pool); // create an area that can contain the page table and the slot // structures size_t areaSize = B_PAGE_SIZE + sizeof(PhysicalPageSlot[1024]); void* data; virtual_address_restrictions virtualRestrictions = {}; virtualRestrictions.address_specification = B_ANY_KERNEL_ADDRESS; physical_address_restrictions physicalRestrictions = {}; area_id dataArea = create_area_etc(B_SYSTEM_TEAM, "physical page pool", PAGE_ALIGN(areaSize), B_FULL_LOCK, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA, CREATE_AREA_DONT_WAIT, &virtualRestrictions, &physicalRestrictions, &data); if (dataArea < 0) return dataArea; // create the null area for the virtual address space void* virtualBase; area_id virtualArea = vm_create_null_area( VMAddressSpace::KernelID(), "physical page pool space", &virtualBase, B_ANY_KERNEL_BLOCK_ADDRESS, 1024 * B_PAGE_SIZE, CREATE_AREA_PRIORITY_VIP); if (virtualArea < 0) { delete_area(dataArea); return virtualArea; } // prepare the page table memset(data, 0, B_PAGE_SIZE); // get the page table's physical address phys_addr_t physicalTable; X86VMTranslationMap32Bit* map = static_cast( VMAddressSpace::Kernel()->TranslationMap()); uint32 dummyFlags; cpu_status state = disable_interrupts(); map->QueryInterrupt((addr_t)data, &physicalTable, &dummyFlags); restore_interrupts(state); // put the page table into the page directory int32 index = (addr_t)virtualBase / (B_PAGE_SIZE * 1024); page_directory_entry* entry = &map->PagingStructures32Bit()->pgdir_virt[index]; PutPageTableInPageDir(entry, physicalTable, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA); X86PagingStructures32Bit::UpdateAllPageDirs(index, *entry); // init the pool structure pool->Init(dataArea, data, virtualArea, (addr_t)virtualBase); poolDeleter.Detach(); _pool = pool; return B_OK; } // #pragma mark - X86PagingMethod32Bit X86PagingMethod32Bit::X86PagingMethod32Bit() : fPageHole(NULL), fPageHolePageDir(NULL), fKernelPhysicalPageDirectory(0), fKernelVirtualPageDirectory(NULL), fPhysicalPageMapper(NULL), fKernelPhysicalPageMapper(NULL) { } X86PagingMethod32Bit::~X86PagingMethod32Bit() { } status_t X86PagingMethod32Bit::Init(kernel_args* args, VMPhysicalPageMapper** _physicalPageMapper) { TRACE("X86PagingMethod32Bit::Init(): entry\n"); // page hole set up in stage2 fPageHole = (page_table_entry*)args->arch_args.page_hole; // calculate where the pgdir would be fPageHolePageDir = (page_directory_entry*) (((addr_t)args->arch_args.page_hole) + (B_PAGE_SIZE * 1024 - B_PAGE_SIZE)); // clear out the bottom 2 GB, unmap everything memset(fPageHolePageDir + FIRST_USER_PGDIR_ENT, 0, sizeof(page_directory_entry) * NUM_USER_PGDIR_ENTS); fKernelPhysicalPageDirectory = args->arch_args.phys_pgdir; fKernelVirtualPageDirectory = (page_directory_entry*) args->arch_args.vir_pgdir; #ifdef TRACE_X86_PAGING_METHOD_32_BIT TRACE("page hole: %p, page dir: %p\n", fPageHole, fPageHolePageDir); TRACE("page dir: %p (physical: %#" B_PRIx32 ")\n", fKernelVirtualPageDirectory, fKernelPhysicalPageDirectory); #endif X86PagingStructures32Bit::StaticInit(); // create the initial pool for the physical page mapper PhysicalPageSlotPool* pool = new(&PhysicalPageSlotPool::sInitialPhysicalPagePool) PhysicalPageSlotPool; status_t error = pool->InitInitial(args); if (error != B_OK) { panic("X86PagingMethod32Bit::Init(): Failed to create initial pool " "for physical page mapper!"); return error; } // create physical page mapper large_memory_physical_page_ops_init(args, pool, fPhysicalPageMapper, fKernelPhysicalPageMapper); // TODO: Select the best page mapper! // enable global page feature if available if (x86_check_feature(IA32_FEATURE_PGE, FEATURE_COMMON)) { // this prevents kernel pages from being flushed from TLB on // context-switch x86_write_cr4(x86_read_cr4() | IA32_CR4_GLOBAL_PAGES); } TRACE("X86PagingMethod32Bit::Init(): done\n"); *_physicalPageMapper = fPhysicalPageMapper; return B_OK; } status_t X86PagingMethod32Bit::InitPostArea(kernel_args* args) { // now that the vm is initialized, create an area that represents // the page hole void *temp; status_t error; area_id area; // unmap the page hole hack we were using before fKernelVirtualPageDirectory[1023] = 0; fPageHolePageDir = NULL; fPageHole = NULL; temp = (void*)fKernelVirtualPageDirectory; area = create_area("kernel_pgdir", &temp, B_EXACT_ADDRESS, B_PAGE_SIZE, B_ALREADY_WIRED, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA); if (area < B_OK) return area; error = PhysicalPageSlotPool::sInitialPhysicalPagePool .InitInitialPostArea(args); if (error != B_OK) return error; return B_OK; } status_t X86PagingMethod32Bit::CreateTranslationMap(bool kernel, VMTranslationMap** _map) { X86VMTranslationMap32Bit* map = new(std::nothrow) X86VMTranslationMap32Bit; if (map == NULL) return B_NO_MEMORY; status_t error = map->Init(kernel); if (error != B_OK) { delete map; return error; } *_map = map; return B_OK; } status_t X86PagingMethod32Bit::MapEarly(kernel_args* args, addr_t virtualAddress, phys_addr_t physicalAddress, uint8 attributes, phys_addr_t (*get_free_page)(kernel_args*)) { // XXX horrible back door to map a page quickly regardless of translation // map object, etc. used only during VM setup. // uses a 'page hole' set up in the stage 2 bootloader. The page hole is // created by pointing one of the pgdir entries back at itself, effectively // mapping the contents of all of the 4MB of pagetables into a 4 MB region. // It's only used here, and is later unmapped. // check to see if a page table exists for this range int index = VADDR_TO_PDENT(virtualAddress); if ((fPageHolePageDir[index] & X86_PDE_PRESENT) == 0) { phys_addr_t pgtable; page_directory_entry *e; // we need to allocate a pgtable pgtable = get_free_page(args); // pgtable is in pages, convert to physical address pgtable *= B_PAGE_SIZE; TRACE("X86PagingMethod32Bit::MapEarly(): asked for free page for " "pgtable. %#" B_PRIxPHYSADDR "\n", pgtable); // put it in the pgdir e = &fPageHolePageDir[index]; PutPageTableInPageDir(e, pgtable, attributes); // zero it out in it's new mapping memset((unsigned int*)((addr_t)fPageHole + (virtualAddress / B_PAGE_SIZE / 1024) * B_PAGE_SIZE), 0, B_PAGE_SIZE); } ASSERT_PRINT( (fPageHole[virtualAddress / B_PAGE_SIZE] & X86_PTE_PRESENT) == 0, "virtual address: %#" B_PRIxADDR ", pde: %#" B_PRIx32 ", existing pte: %#" B_PRIx32, virtualAddress, fPageHolePageDir[index], fPageHole[virtualAddress / B_PAGE_SIZE]); // now, fill in the pentry PutPageTableEntryInTable(fPageHole + virtualAddress / B_PAGE_SIZE, physicalAddress, attributes, 0, IS_KERNEL_ADDRESS(virtualAddress)); return B_OK; } bool X86PagingMethod32Bit::IsKernelPageAccessible(addr_t virtualAddress, uint32 protection) { // We only trust the kernel team's page directory. So switch to it first. // Always set it to make sure the TLBs don't contain obsolete data. uint32 physicalPageDirectory; read_cr3(physicalPageDirectory); write_cr3(fKernelPhysicalPageDirectory); // get the page directory entry for the address page_directory_entry pageDirectoryEntry; uint32 index = VADDR_TO_PDENT(virtualAddress); if (physicalPageDirectory == fKernelPhysicalPageDirectory) { pageDirectoryEntry = fKernelVirtualPageDirectory[index]; } else if (fPhysicalPageMapper != NULL) { // map the original page directory and get the entry void* handle; addr_t virtualPageDirectory; status_t error = fPhysicalPageMapper->GetPageDebug( physicalPageDirectory, &virtualPageDirectory, &handle); if (error == B_OK) { pageDirectoryEntry = ((page_directory_entry*)virtualPageDirectory)[index]; fPhysicalPageMapper->PutPageDebug(virtualPageDirectory, handle); } else pageDirectoryEntry = 0; } else pageDirectoryEntry = 0; // map the page table and get the entry page_table_entry pageTableEntry; index = VADDR_TO_PTENT(virtualAddress); if ((pageDirectoryEntry & X86_PDE_PRESENT) != 0 && fPhysicalPageMapper != NULL) { void* handle; addr_t virtualPageTable; status_t error = fPhysicalPageMapper->GetPageDebug( pageDirectoryEntry & X86_PDE_ADDRESS_MASK, &virtualPageTable, &handle); if (error == B_OK) { pageTableEntry = ((page_table_entry*)virtualPageTable)[index]; fPhysicalPageMapper->PutPageDebug(virtualPageTable, handle); } else pageTableEntry = 0; } else pageTableEntry = 0; // switch back to the original page directory if (physicalPageDirectory != fKernelPhysicalPageDirectory) write_cr3(physicalPageDirectory); if ((pageTableEntry & X86_PTE_PRESENT) == 0) return false; // present means kernel-readable, so check for writable return (protection & B_KERNEL_WRITE_AREA) == 0 || (pageTableEntry & X86_PTE_WRITABLE) != 0; } /*static*/ void X86PagingMethod32Bit::PutPageTableInPageDir(page_directory_entry* entry, phys_addr_t pgtablePhysical, uint32 attributes) { *entry = (pgtablePhysical & X86_PDE_ADDRESS_MASK) | X86_PDE_PRESENT | X86_PDE_WRITABLE | X86_PDE_USER; // TODO: we ignore the attributes of the page table - for compatibility // with BeOS we allow having user accessible areas in the kernel address // space. This is currently being used by some drivers, mainly for the // frame buffer. Our current real time data implementation makes use of // this fact, too. // We might want to get rid of this possibility one day, especially if // we intend to port it to a platform that does not support this. } /*static*/ void X86PagingMethod32Bit::PutPageTableEntryInTable(page_table_entry* entry, phys_addr_t physicalAddress, uint32 attributes, uint32 memoryType, bool globalPage) { page_table_entry page = (physicalAddress & X86_PTE_ADDRESS_MASK) | X86_PTE_PRESENT | (globalPage ? X86_PTE_GLOBAL : 0) | MemoryTypeToPageTableEntryFlags(memoryType); // if the page is user accessible, it's automatically // accessible in kernel space, too (but with the same // protection) if ((attributes & B_USER_PROTECTION) != 0) { page |= X86_PTE_USER; if ((attributes & B_WRITE_AREA) != 0) page |= X86_PTE_WRITABLE; } else if ((attributes & B_KERNEL_WRITE_AREA) != 0) page |= X86_PTE_WRITABLE; // put it in the page table *(volatile page_table_entry*)entry = page; } /*static*/ void X86PagingMethod32Bit::_EarlyPreparePageTables(page_table_entry* pageTables, addr_t address, size_t size) { memset(pageTables, 0, B_PAGE_SIZE * (size / (B_PAGE_SIZE * 1024))); // put the array of pgtables directly into the kernel pagedir // these will be wired and kept mapped into virtual space to be easy to get // to { addr_t virtualTable = (addr_t)pageTables; page_directory_entry* pageHolePageDir = X86PagingMethod32Bit::Method()->PageHolePageDir(); for (size_t i = 0; i < (size / (B_PAGE_SIZE * 1024)); i++, virtualTable += B_PAGE_SIZE) { phys_addr_t physicalTable = 0; _EarlyQuery(virtualTable, &physicalTable); page_directory_entry* entry = &pageHolePageDir[ (address / (B_PAGE_SIZE * 1024)) + i]; PutPageTableInPageDir(entry, physicalTable, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA); } } } //! TODO: currently assumes this translation map is active /*static*/ status_t X86PagingMethod32Bit::_EarlyQuery(addr_t virtualAddress, phys_addr_t *_physicalAddress) { X86PagingMethod32Bit* method = X86PagingMethod32Bit::Method(); int index = VADDR_TO_PDENT(virtualAddress); if ((method->PageHolePageDir()[index] & X86_PDE_PRESENT) == 0) { // no pagetable here return B_ERROR; } page_table_entry* entry = method->PageHole() + virtualAddress / B_PAGE_SIZE; if ((*entry & X86_PTE_PRESENT) == 0) { // page mapping not valid return B_ERROR; } *_physicalAddress = *entry & X86_PTE_ADDRESS_MASK; return B_OK; }