/* * Copyright 2005-2007, Axel Dörfler, axeld@pinc-software.de * Copyright 2003, Jeff Ward, jeff@r2d2.stcloudstate.edu. All rights reserved. * * Distributed under the terms of the MIT License. */ #include #include #include #include #include #define CMOS_ADDR_PORT 0x70 #define CMOS_DATA_PORT 0x71 typedef struct { uint8 second; uint8 minute; uint8 hour; uint8 day; uint8 month; uint8 year; uint8 century; } cmos_time; static uint32 bcd_to_int(uint8 bcd) { uint32 numl; uint32 numh; numl = bcd & 0x0f; numh = (bcd & 0xf0) >> 4; return numh * 10 + numl; } static uint8 int_to_bcd(uint32 number) { uint8 low; uint8 high; if (number > 99) return 0; high = number / 10; low = number % 10; return (high << 4) | low; } static int same_time(const cmos_time *time1, const cmos_time *time2) { return time1->second == time2->second && time1->minute == time2->minute && time1->hour == time2->hour && time1->day == time2->day && time1->month == time2->month && time1->year == time2->year && time1->century == time2->century; } static uint8 cmos_read(uint8 addr) { int waitTime = 10000; // Wait until bit 7 of Status Register A (indicating whether or not an update is in // progress) is clear if we are reading one of the clock data registers... if (addr < 0x0a) { out8(0x0a, CMOS_ADDR_PORT); while ((in8(CMOS_DATA_PORT) & 0x80) && --waitTime); } // then read the value. out8(addr, CMOS_ADDR_PORT); return in8(CMOS_DATA_PORT); } static void cmos_write(uint8 addr, uint8 data) { out8(addr, CMOS_ADDR_PORT); out8(data, CMOS_DATA_PORT); } static void set_24_hour_mode(void) { uint8 status_b; status_b = cmos_read(0x0b); status_b |= 0x02; cmos_write(0x0b, status_b); } static void read_cmos_clock(cmos_time *cmos) { set_24_hour_mode(); cmos->century = cmos_read(0x32); cmos->year = cmos_read(0x09); cmos->month = cmos_read(0x08); cmos->day = cmos_read(0x07); cmos->hour = cmos_read(0x04); cmos->minute = cmos_read(0x02); cmos->second = cmos_read(0x00); } static void write_cmos_clock(cmos_time *cmos) { set_24_hour_mode(); cmos_write(0x32, cmos->century); cmos_write(0x09, cmos->year); cmos_write(0x08, cmos->month); cmos_write(0x07, cmos->day); cmos_write(0x04, cmos->hour); cmos_write(0x02, cmos->minute); cmos_write(0x00, cmos->second); } static uint32 cmos_to_secs(const cmos_time *cmos) { struct tm t; t.tm_year = bcd_to_int(cmos->century) * 100 + bcd_to_int(cmos->year) - RTC_EPOCH_BASE_YEAR; t.tm_mon = bcd_to_int(cmos->month) - 1; t.tm_mday = bcd_to_int(cmos->day); t.tm_hour = bcd_to_int(cmos->hour); t.tm_min = bcd_to_int(cmos->minute); t.tm_sec = bcd_to_int(cmos->second); return rtc_tm_to_secs(&t); } static void secs_to_cmos(uint32 seconds, cmos_time *cmos) { int wholeYear; struct tm t; rtc_secs_to_tm(seconds, &t); wholeYear = t.tm_year + RTC_EPOCH_BASE_YEAR; cmos->century = int_to_bcd(wholeYear / 100); cmos->year = int_to_bcd(wholeYear % 100); cmos->month = int_to_bcd(t.tm_mon + 1); cmos->day = int_to_bcd(t.tm_mday); cmos->hour = int_to_bcd(t.tm_hour); cmos->minute = int_to_bcd(t.tm_min); cmos->second = int_to_bcd(t.tm_sec); } // #pragma mark - status_t arch_rtc_init(struct kernel_args *args, struct real_time_data *data) { data->arch_data.system_time_conversion_factor = args->arch_args.system_time_cv_factor; return B_OK; } uint32 arch_rtc_get_hw_time(void) { int waitTime; cmos_time cmos1; cmos_time cmos2; waitTime = 1000; // We will read the clock twice and make sure both reads are equal. This will prevent // problems that would occur if the clock is read during an update (e.g. if we read the hour // at 8:59:59, the clock gets changed, and then we read the minute and second, we would // be off by a whole hour) do { read_cmos_clock(&cmos1); read_cmos_clock(&cmos2); } while (!same_time(&cmos1, &cmos2) && --waitTime); // Convert the CMOS data to seconds since 1970. return cmos_to_secs(&cmos1); } void arch_rtc_set_hw_time(uint32 seconds) { cmos_time cmos; secs_to_cmos(seconds, &cmos); write_cmos_clock(&cmos); } void arch_rtc_set_system_time_offset(struct real_time_data *data, bigtime_t offset) { atomic_set64(&data->arch_data.system_time_offset, offset); } bigtime_t arch_rtc_get_system_time_offset(struct real_time_data *data) { return atomic_get64(&data->arch_data.system_time_offset); }