/* * Copyright 2009-2011, Ingo Weinhold, ingo_weinhold@gmx.de. * Copyright 2002-2008, Axel Dörfler, axeld@pinc-software.de. * Copyright 2012, Alex Smith, alex@alex-smith.me.uk. * Distributed under the terms of the MIT License. * * Copyright 2001, Travis Geiselbrecht. All rights reserved. * Distributed under the terms of the NewOS License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct stack_frame { stack_frame* previous; addr_t return_address; }; #define NUM_PREVIOUS_LOCATIONS 32 static bool is_kernel_stack_address(Thread* thread, addr_t address); static bool already_visited(addr_t* visited, int32* _last, int32* _num, addr_t bp) { int32 last = *_last; int32 num = *_num; int32 i; for (i = 0; i < num; i++) { if (visited[(NUM_PREVIOUS_LOCATIONS + last - i) % NUM_PREVIOUS_LOCATIONS] == bp) return true; } *_last = last = (last + 1) % NUM_PREVIOUS_LOCATIONS; visited[last] = bp; if (num < NUM_PREVIOUS_LOCATIONS) *_num = num + 1; return false; } /*! Safe to be called only from outside the debugger. */ static status_t get_next_frame_no_debugger(addr_t bp, addr_t* _next, addr_t* _ip, bool onKernelStack, Thread* thread) { // TODO: Do this more efficiently in assembly. stack_frame frame; if (onKernelStack && is_kernel_stack_address(thread, bp + sizeof(frame) - 1)) { memcpy(&frame, (void*)bp, sizeof(frame)); } else if (!IS_USER_ADDRESS(bp) || user_memcpy(&frame, (void*)bp, sizeof(frame)) != B_OK) { return B_BAD_ADDRESS; } *_ip = frame.return_address; *_next = (addr_t)frame.previous; return B_OK; } /*! Safe to be called only from inside the debugger. */ static status_t get_next_frame_debugger(addr_t bp, addr_t* _next, addr_t* _ip) { stack_frame frame; if (debug_memcpy(B_CURRENT_TEAM, &frame, (void*)bp, sizeof(frame)) != B_OK) return B_BAD_ADDRESS; *_ip = frame.return_address; *_next = (addr_t)frame.previous; return B_OK; } static status_t lookup_symbol(Thread* thread, addr_t address, addr_t* _baseAddress, const char** _symbolName, const char** _imageName, bool* _exactMatch) { status_t status = B_ENTRY_NOT_FOUND; if (IS_KERNEL_ADDRESS(address)) { // a kernel symbol status = elf_debug_lookup_symbol_address(address, _baseAddress, _symbolName, _imageName, _exactMatch); } else if (thread != NULL && thread->team != NULL) { // try a lookup using the userland runtime loader structures status = elf_debug_lookup_user_symbol_address(thread->team, address, _baseAddress, _symbolName, _imageName, _exactMatch); if (status != B_OK) { // try to locate the image in the images loaded into user space status = image_debug_lookup_user_symbol_address(thread->team, address, _baseAddress, _symbolName, _imageName, _exactMatch); } } return status; } #ifndef __x86_64__ static void set_debug_argument_variable(int32 index, uint64 value) { char name[8]; snprintf(name, sizeof(name), "_arg%d", index); set_debug_variable(name, value); } template static Type read_function_argument_value(void* argument, bool& _valueKnown) { Type value; if (debug_memcpy(B_CURRENT_TEAM, &value, argument, sizeof(Type)) == B_OK) { _valueKnown = true; return value; } _valueKnown = false; return 0; } static status_t print_demangled_call(const char* image, const char* symbol, addr_t args, bool noObjectMethod, bool addDebugVariables) { static const size_t kBufferSize = 256; char* buffer = (char*)debug_malloc(kBufferSize); if (buffer == NULL) return B_NO_MEMORY; bool isObjectMethod; const char* name = debug_demangle_symbol(symbol, buffer, kBufferSize, &isObjectMethod); if (name == NULL) { debug_free(buffer); return B_ERROR; } uint32* arg = (uint32*)args; if (noObjectMethod) isObjectMethod = false; if (isObjectMethod) { const char* lastName = strrchr(name, ':') - 1; int namespaceLength = lastName - name; uint32 argValue = 0; if (debug_memcpy(B_CURRENT_TEAM, &argValue, arg, 4) == B_OK) { kprintf("<%s> %.*s<\33[32m%#" B_PRIx32 "\33[0m>%s", image, namespaceLength, name, argValue, lastName); } else kprintf("<%s> %.*s<\?\?\?>%s", image, namespaceLength, name, lastName); if (addDebugVariables) set_debug_variable("_this", argValue); arg++; } else kprintf("<%s> %s", image, name); kprintf("("); size_t length; int32 type, i = 0; uint32 cookie = 0; while (debug_get_next_demangled_argument(&cookie, symbol, buffer, kBufferSize, &type, &length) == B_OK) { if (i++ > 0) kprintf(", "); // retrieve value and type identifier uint64 value; bool valueKnown = false; switch (type) { case B_INT64_TYPE: value = read_function_argument_value(arg, valueKnown); if (valueKnown) kprintf("int64: \33[34m%lld\33[0m", value); break; case B_INT32_TYPE: value = read_function_argument_value(arg, valueKnown); if (valueKnown) kprintf("int32: \33[34m%d\33[0m", (int32)value); break; case B_INT16_TYPE: value = read_function_argument_value(arg, valueKnown); if (valueKnown) kprintf("int16: \33[34m%d\33[0m", (int16)value); break; case B_INT8_TYPE: value = read_function_argument_value(arg, valueKnown); if (valueKnown) kprintf("int8: \33[34m%d\33[0m", (int8)value); break; case B_UINT64_TYPE: value = read_function_argument_value(arg, valueKnown); if (valueKnown) { kprintf("uint64: \33[34m%#Lx\33[0m", value); if (value < 0x100000) kprintf(" (\33[34m%Lu\33[0m)", value); } break; case B_UINT32_TYPE: value = read_function_argument_value(arg, valueKnown); if (valueKnown) { kprintf("uint32: \33[34m%#x\33[0m", (uint32)value); if (value < 0x100000) kprintf(" (\33[34m%u\33[0m)", (uint32)value); } break; case B_UINT16_TYPE: value = read_function_argument_value(arg, valueKnown); if (valueKnown) { kprintf("uint16: \33[34m%#x\33[0m (\33[34m%u\33[0m)", (uint16)value, (uint16)value); } break; case B_UINT8_TYPE: value = read_function_argument_value(arg, valueKnown); if (valueKnown) { kprintf("uint8: \33[34m%#x\33[0m (\33[34m%u\33[0m)", (uint8)value, (uint8)value); } break; case B_BOOL_TYPE: value = read_function_argument_value(arg, valueKnown); if (valueKnown) kprintf("\33[34m%s\33[0m", value ? "true" : "false"); break; default: if (buffer[0]) kprintf("%s: ", buffer); if (length == 4) { value = read_function_argument_value(arg, valueKnown); if (valueKnown) { if (value == 0 && (type == B_POINTER_TYPE || type == B_REF_TYPE)) kprintf("NULL"); else kprintf("\33[34m%#x\33[0m", (uint32)value); } break; } if (length == 8) { value = read_function_argument_value(arg, valueKnown); } else value = (uint64)arg; if (valueKnown) kprintf("\33[34m%#Lx\33[0m", value); break; } if (!valueKnown) kprintf("???"); if (valueKnown && type == B_STRING_TYPE) { if (value == 0) kprintf(" \33[31m\"\"\33[0m"); else if (debug_strlcpy(B_CURRENT_TEAM, buffer, (char*)(addr_t)value, kBufferSize) < B_OK) { kprintf(" \33[31m\"<\?\?\?>\"\33[0m"); } else kprintf(" \33[36m\"%s\"\33[0m", buffer); } if (addDebugVariables) set_debug_argument_variable(i, value); arg = (uint32*)((uint8*)arg + length); } debug_free(buffer); kprintf(")"); return B_OK; } #else // __x86_64__ static status_t print_demangled_call(const char* image, const char* symbol, addr_t args, bool noObjectMethod, bool addDebugVariables) { // Since x86_64 uses registers rather than the stack for the first 6 // arguments we cannot use the same method as x86 to read the function // arguments. Maybe we need DWARF support in the kernel debugger. For now // just print out the function signature without the argument values. static const size_t kBufferSize = 256; char* buffer = (char*)debug_malloc(kBufferSize); if (buffer == NULL) return B_NO_MEMORY; bool isObjectMethod; const char* name = debug_demangle_symbol(symbol, buffer, kBufferSize, &isObjectMethod); if (name == NULL) { debug_free(buffer); return B_ERROR; } kprintf("<%s> %s(", image, name); size_t length; int32 type, i = 0; uint32 cookie = 0; while (debug_get_next_demangled_argument(&cookie, symbol, buffer, kBufferSize, &type, &length) == B_OK) { if (i++ > 0) kprintf(", "); if (buffer[0]) kprintf("%s", buffer); else kprintf("???"); } debug_free(buffer); kprintf(")"); return B_OK; } #endif // __x86_64__ static void print_stack_frame(Thread* thread, addr_t ip, addr_t calleeBp, addr_t bp, int32 callIndex, bool demangle) { const char* symbol; const char* image; addr_t baseAddress; bool exactMatch; status_t status; addr_t diff; diff = bp - calleeBp; // kernel space/user space switch if (calleeBp > bp) diff = 0; status = lookup_symbol(thread, ip, &baseAddress, &symbol, &image, &exactMatch); kprintf("%2" B_PRId32 " %0*lx (+%4ld) %0*lx ", callIndex, B_PRINTF_POINTER_WIDTH, bp, diff, B_PRINTF_POINTER_WIDTH, ip); if (status == B_OK) { if (exactMatch && demangle) { status = print_demangled_call(image, symbol, bp + sizeof(stack_frame), false, false); } if (!exactMatch || !demangle || status != B_OK) { if (symbol != NULL) { kprintf("<%s> %s%s", image, symbol, exactMatch ? "" : " (nearest)"); } else kprintf("<%s@%p> ", image, (void*)baseAddress); } kprintf(" + %#04lx\n", ip - baseAddress); } else { VMArea *area = NULL; if (thread != NULL && thread->team != NULL && thread->team->address_space != NULL) { area = thread->team->address_space->LookupArea(ip); } if (area != NULL) { kprintf("%" B_PRId32 ":%s@%p + %#lx\n", area->id, area->name, (void*)area->Base(), ip - area->Base()); } else kprintf("\n"); } } static void print_iframe(iframe* frame) { bool isUser = IFRAME_IS_USER(frame); #ifdef __x86_64__ kprintf("%s iframe at %p (end = %p)\n", isUser ? "user" : "kernel", frame, frame + 1); kprintf(" rax %#-18lx rbx %#-18lx rcx %#lx\n", frame->ax, frame->bx, frame->cx); kprintf(" rdx %#-18lx rsi %#-18lx rdi %#lx\n", frame->dx, frame->si, frame->di); kprintf(" rbp %#-18lx r8 %#-18lx r9 %#lx\n", frame->bp, frame->r8, frame->r9); kprintf(" r10 %#-18lx r11 %#-18lx r12 %#lx\n", frame->r10, frame->r11, frame->r12); kprintf(" r13 %#-18lx r14 %#-18lx r15 %#lx\n", frame->r13, frame->r14, frame->r15); kprintf(" rip %#-18lx rsp %#-18lx rflags %#lx\n", frame->ip, frame->sp, frame->flags); #else kprintf("%s iframe at %p (end = %p)\n", isUser ? "user" : "kernel", frame, isUser ? (void*)(frame + 1) : (void*)&frame->user_sp); kprintf(" eax %#-10x ebx %#-10x ecx %#-10x edx %#x\n", frame->ax, frame->bx, frame->cx, frame->dx); kprintf(" esi %#-10x edi %#-10x ebp %#-10x esp %#x\n", frame->si, frame->di, frame->bp, frame->sp); kprintf(" eip %#-10x eflags %#-10x", frame->ip, frame->flags); if (isUser) { // from user space kprintf("user esp %#x", frame->user_sp); } kprintf("\n"); #endif kprintf(" vector: %#lx, error code: %#lx\n", (long unsigned int)frame->vector, (long unsigned int)frame->error_code); } static bool setup_for_thread(char* arg, Thread** _thread, addr_t* _bp, phys_addr_t* _oldPageDirectory) { Thread* thread = NULL; if (arg != NULL) { thread_id id = strtoul(arg, NULL, 0); thread = Thread::GetDebug(id); if (thread == NULL) { kprintf("could not find thread %" B_PRId32 "\n", id); return false; } if (id != thread_get_current_thread_id()) { // switch to the page directory of the new thread to be // able to follow the stack trace into userland phys_addr_t newPageDirectory = x86_next_page_directory( thread_get_current_thread(), thread); if (newPageDirectory != 0) { *_oldPageDirectory = x86_read_cr3(); x86_write_cr3(newPageDirectory); } if (thread->state == B_THREAD_RUNNING) { // The thread is currently running on another CPU. if (thread->cpu == NULL) return false; arch_debug_registers* registers = debug_get_debug_registers( thread->cpu->cpu_num); if (registers == NULL) return false; *_bp = registers->bp; } else { // Read frame pointer from the thread's stack. *_bp = thread->arch_info.GetFramePointer(); } } else thread = NULL; } if (thread == NULL) { // if we don't have a thread yet, we want the current one // (ebp has been set by the caller for this case already) thread = thread_get_current_thread(); } *_thread = thread; return true; } static bool is_double_fault_stack_address(int32 cpu, addr_t address) { size_t size; addr_t bottom = (addr_t)x86_get_double_fault_stack(cpu, &size); return address >= bottom && address < bottom + size; } static bool is_kernel_stack_address(Thread* thread, addr_t address) { // We don't have a thread pointer in the early boot process, but then we are // on the kernel stack for sure. if (thread == NULL) return IS_KERNEL_ADDRESS(address); // Also in the early boot process we might have a thread structure, but it // might not have its kernel stack attributes set yet. if (thread->kernel_stack_top == 0) return IS_KERNEL_ADDRESS(address); return (address >= thread->kernel_stack_base && address < thread->kernel_stack_top) || (thread->cpu != NULL && is_double_fault_stack_address(thread->cpu->cpu_num, address)); } static bool is_iframe(Thread* thread, addr_t frame) { if (!is_kernel_stack_address(thread, frame)) return false; addr_t previousFrame = *(addr_t*)frame; return ((previousFrame & ~(addr_t)IFRAME_TYPE_MASK) == 0 && previousFrame != 0); } static iframe* find_previous_iframe(Thread* thread, addr_t frame) { // iterate backwards through the stack frames, until we hit an iframe while (is_kernel_stack_address(thread, frame)) { if (is_iframe(thread, frame)) return (iframe*)frame; frame = *(addr_t*)frame; } return NULL; } static iframe* get_previous_iframe(Thread* thread, iframe* frame) { if (frame == NULL) return NULL; return find_previous_iframe(thread, frame->bp); } static iframe* get_current_iframe(Thread* thread) { if (thread == thread_get_current_thread()) return x86_get_current_iframe(); // NOTE: This doesn't work, if the thread is running (on another CPU). return find_previous_iframe(thread, thread->arch_info.GetFramePointer()); } #define CHECK_DEBUG_VARIABLE(_name, _member, _settable) \ if (strcmp(variableName, _name) == 0) { \ settable = _settable; \ return (addr_t*)&_member; \ } static addr_t* find_debug_variable(const char* variableName, bool& settable) { iframe* frame = get_current_iframe(debug_get_debugged_thread()); if (frame == NULL) return NULL; #ifdef __x86_64__ CHECK_DEBUG_VARIABLE("cs", frame->cs, false); CHECK_DEBUG_VARIABLE("ss", frame->ss, false); CHECK_DEBUG_VARIABLE("r15", frame->r15, true); CHECK_DEBUG_VARIABLE("r14", frame->r14, true); CHECK_DEBUG_VARIABLE("r13", frame->r13, true); CHECK_DEBUG_VARIABLE("r12", frame->r12, true); CHECK_DEBUG_VARIABLE("r11", frame->r11, true); CHECK_DEBUG_VARIABLE("r10", frame->r10, true); CHECK_DEBUG_VARIABLE("r9", frame->r9, true); CHECK_DEBUG_VARIABLE("r8", frame->r8, true); CHECK_DEBUG_VARIABLE("rbp", frame->bp, true); CHECK_DEBUG_VARIABLE("rsi", frame->si, true); CHECK_DEBUG_VARIABLE("rdi", frame->di, true); CHECK_DEBUG_VARIABLE("rdx", frame->dx, true); CHECK_DEBUG_VARIABLE("rcx", frame->cx, true); CHECK_DEBUG_VARIABLE("rbx", frame->bx, true); CHECK_DEBUG_VARIABLE("rax", frame->ax, true); CHECK_DEBUG_VARIABLE("rip", frame->ip, true); CHECK_DEBUG_VARIABLE("rflags", frame->flags, true); CHECK_DEBUG_VARIABLE("rsp", frame->sp, true); #else CHECK_DEBUG_VARIABLE("gs", frame->gs, false); CHECK_DEBUG_VARIABLE("fs", frame->fs, false); CHECK_DEBUG_VARIABLE("es", frame->es, false); CHECK_DEBUG_VARIABLE("ds", frame->ds, false); CHECK_DEBUG_VARIABLE("cs", frame->cs, false); CHECK_DEBUG_VARIABLE("edi", frame->di, true); CHECK_DEBUG_VARIABLE("esi", frame->si, true); CHECK_DEBUG_VARIABLE("ebp", frame->bp, true); CHECK_DEBUG_VARIABLE("esp", frame->sp, true); CHECK_DEBUG_VARIABLE("ebx", frame->bx, true); CHECK_DEBUG_VARIABLE("edx", frame->dx, true); CHECK_DEBUG_VARIABLE("ecx", frame->cx, true); CHECK_DEBUG_VARIABLE("eax", frame->ax, true); CHECK_DEBUG_VARIABLE("orig_eax", frame->orig_eax, true); CHECK_DEBUG_VARIABLE("orig_edx", frame->orig_edx, true); CHECK_DEBUG_VARIABLE("eip", frame->ip, true); CHECK_DEBUG_VARIABLE("eflags", frame->flags, true); if (IFRAME_IS_USER(frame)) { CHECK_DEBUG_VARIABLE("user_esp", frame->user_sp, true); CHECK_DEBUG_VARIABLE("user_ss", frame->user_ss, false); } #endif return NULL; } static int stack_trace(int argc, char** argv) { static const char* usage = "usage: %s [-d] [ ]\n" "Prints a stack trace for the current, respectively the specified\n" "thread.\n" " -d - Disables the demangling of the symbols.\n" " - The ID of the thread for which to print the stack\n" " trace.\n"; bool demangle = true; int32 threadIndex = 1; if (argc > 1 && !strcmp(argv[1], "-d")) { demangle = false; threadIndex++; } if (argc > threadIndex + 1 || (argc == 2 && strcmp(argv[1], "--help") == 0)) { kprintf(usage, argv[0]); return 0; } addr_t previousLocations[NUM_PREVIOUS_LOCATIONS]; Thread* thread = NULL; phys_addr_t oldPageDirectory = 0; addr_t bp = x86_get_stack_frame(); int32 num = 0, last = 0; if (!setup_for_thread(argc == threadIndex + 1 ? argv[threadIndex] : NULL, &thread, &bp, &oldPageDirectory)) return 0; DebuggedThreadSetter threadSetter(thread); if (thread != NULL) { kprintf("stack trace for thread %" B_PRId32 " \"%s\"\n", thread->id, thread->name); kprintf(" kernel stack: %p to %p\n", (void*)thread->kernel_stack_base, (void*)(thread->kernel_stack_top)); if (thread->user_stack_base != 0) { kprintf(" user stack: %p to %p\n", (void*)thread->user_stack_base, (void*)(thread->user_stack_base + thread->user_stack_size)); } } kprintf("%-*s %-*s :function + offset\n", B_PRINTF_POINTER_WIDTH, "frame", B_PRINTF_POINTER_WIDTH, "caller"); bool onKernelStack = true; for (int32 callIndex = 0; ; callIndex++) { onKernelStack = onKernelStack && is_kernel_stack_address(thread, bp); if (onKernelStack && is_iframe(thread, bp)) { iframe* frame = (iframe*)bp; print_iframe(frame); print_stack_frame(thread, frame->ip, bp, frame->bp, callIndex, demangle); bp = frame->bp; } else { addr_t ip, nextBp; if (get_next_frame_debugger(bp, &nextBp, &ip) != B_OK) { kprintf("%0*lx -- read fault\n", B_PRINTF_POINTER_WIDTH, bp); break; } if (ip == 0 || bp == 0) break; print_stack_frame(thread, ip, bp, nextBp, callIndex, demangle); bp = nextBp; } if (already_visited(previousLocations, &last, &num, bp)) { kprintf("circular stack frame: %p!\n", (void*)bp); break; } if (bp == 0) break; } if (oldPageDirectory != 0) { // switch back to the previous page directory to no cause any troubles x86_write_cr3(oldPageDirectory); } return 0; } #ifndef __x86_64__ static void print_call(Thread *thread, addr_t eip, addr_t ebp, addr_t nextEbp, int32 argCount) { const char *symbol, *image; addr_t baseAddress; bool exactMatch; status_t status; bool demangled = false; int32 *arg = (int32 *)(nextEbp + 8); status = lookup_symbol(thread, eip, &baseAddress, &symbol, &image, &exactMatch); kprintf("%08lx %08lx ", ebp, eip); if (status == B_OK) { if (symbol != NULL) { if (exactMatch && (argCount == 0 || argCount == -1)) { status = print_demangled_call(image, symbol, (addr_t)arg, argCount == -1, true); if (status == B_OK) demangled = true; } if (!demangled) { kprintf("<%s>:%s%s", image, symbol, exactMatch ? "" : " (nearest)"); } } else { kprintf("<%s@%p>:unknown + 0x%04lx", image, (void *)baseAddress, eip - baseAddress); } } else { VMArea *area = NULL; if (thread->team->address_space != NULL) area = thread->team->address_space->LookupArea(eip); if (area != NULL) { kprintf("%d:%s@%p + %#lx", area->id, area->name, (void *)area->Base(), eip - area->Base()); } } if (!demangled) { kprintf("("); for (int32 i = 0; i < argCount; i++) { if (i > 0) kprintf(", "); kprintf("%#x", *arg); if (*arg > -0x10000 && *arg < 0x10000) kprintf(" (%d)", *arg); set_debug_argument_variable(i + 1, *(uint32 *)arg); arg++; } kprintf(")\n"); } else kprintf("\n"); set_debug_variable("_frame", nextEbp); } static int show_call(int argc, char **argv) { static const char* usage = "usage: %s [ ] [ - ]\n" "Prints a function call with parameters of the current, respectively\n" "the specified thread.\n" " - The ID of the thread for which to print the call.\n" " - The index of the call in the stack trace.\n" " - The number of call arguments to print (use 'c' to\n" " force the C++ demangler to use class methods,\n" " use 'd' to disable demangling).\n"; if (argc == 2 && strcmp(argv[1], "--help") == 0) { kprintf(usage, argv[0]); return 0; } Thread *thread = NULL; phys_addr_t oldPageDirectory = 0; addr_t ebp = x86_get_stack_frame(); int32 argCount = 0; if (argc >= 2 && argv[argc - 1][0] == '-') { if (argv[argc - 1][1] == 'c') argCount = -1; else if (argv[argc - 1][1] == 'd') argCount = -2; else argCount = strtoul(argv[argc - 1] + 1, NULL, 0); if (argCount < -2 || argCount > 16) { kprintf("Invalid argument count \"%d\".\n", argCount); return 0; } argc--; } if (argc < 2 || argc > 3) { kprintf(usage, argv[0]); return 0; } if (!setup_for_thread(argc == 3 ? argv[1] : NULL, &thread, &ebp, &oldPageDirectory)) return 0; DebuggedThreadSetter threadSetter(thread); int32 callIndex = strtoul(argv[argc == 3 ? 2 : 1], NULL, 0); if (thread != NULL) kprintf("thread %d, %s\n", thread->id, thread->name); bool onKernelStack = true; for (int32 index = 0; index <= callIndex; index++) { onKernelStack = onKernelStack && is_kernel_stack_address(thread, ebp); if (onKernelStack && is_iframe(thread, ebp)) { struct iframe *frame = (struct iframe *)ebp; if (index == callIndex) print_call(thread, frame->ip, ebp, frame->bp, argCount); ebp = frame->bp; } else { addr_t eip, nextEbp; if (get_next_frame_debugger(ebp, &nextEbp, &eip) != B_OK) { kprintf("%08lx -- read fault\n", ebp); break; } if (eip == 0 || ebp == 0) break; if (index == callIndex) print_call(thread, eip, ebp, nextEbp, argCount); ebp = nextEbp; } if (ebp == 0) break; } if (oldPageDirectory != 0) { // switch back to the previous page directory to not cause any troubles x86_write_cr3(oldPageDirectory); } return 0; } #endif static int dump_iframes(int argc, char** argv) { static const char* usage = "usage: %s [ ]\n" "Prints the iframe stack for the current, respectively the specified\n" "thread.\n" " - The ID of the thread for which to print the iframe\n" " stack.\n"; if (argc == 2 && strcmp(argv[1], "--help") == 0) { kprintf(usage, argv[0]); return 0; } Thread* thread = NULL; if (argc < 2) { thread = thread_get_current_thread(); } else if (argc == 2) { thread_id id = strtoul(argv[1], NULL, 0); thread = Thread::GetDebug(id); if (thread == NULL) { kprintf("could not find thread %" B_PRId32 "\n", id); return 0; } } else if (argc > 2) { kprintf(usage, argv[0]); return 0; } if (thread != NULL) { kprintf("iframes for thread %" B_PRId32 " \"%s\"\n", thread->id, thread->name); } DebuggedThreadSetter threadSetter(thread); iframe* frame = find_previous_iframe(thread, x86_get_stack_frame()); while (frame != NULL) { print_iframe(frame); frame = get_previous_iframe(thread, frame); } return 0; } static bool is_calling(Thread* thread, addr_t ip, const char* pattern, addr_t start, addr_t end) { if (pattern == NULL) return ip >= start && ip < end; if (!IS_KERNEL_ADDRESS(ip)) return false; const char* symbol; if (lookup_symbol(thread, ip, NULL, &symbol, NULL, NULL) != B_OK) return false; return strstr(symbol, pattern); } static int cmd_in_context(int argc, char** argv) { if (argc != 2) { print_debugger_command_usage(argv[0]); return 0; } // get the thread ID const char* commandLine = argv[1]; char threadIDString[16]; if (parse_next_debug_command_argument(&commandLine, threadIDString, sizeof(threadIDString)) != B_OK) { kprintf("Failed to parse thread ID.\n"); return 0; } if (commandLine == NULL) { print_debugger_command_usage(argv[0]); return 0; } uint64 threadID; if (!evaluate_debug_expression(threadIDString, &threadID, false)) return 0; // get the thread Thread* thread = Thread::GetDebug(threadID); if (thread == NULL) { kprintf("Could not find thread with ID \"%s\".\n", threadIDString); return 0; } // switch the page directory, if necessary phys_addr_t oldPageDirectory = 0; if (thread != thread_get_current_thread()) { phys_addr_t newPageDirectory = x86_next_page_directory( thread_get_current_thread(), thread); if (newPageDirectory != 0) { oldPageDirectory = x86_read_cr3(); x86_write_cr3(newPageDirectory); } } // execute the command { DebuggedThreadSetter threadSetter(thread); evaluate_debug_command(commandLine); } // reset the page directory if (oldPageDirectory) x86_write_cr3(oldPageDirectory); return 0; } // #pragma mark - void arch_debug_save_registers(arch_debug_registers* registers) { // get the caller's frame pointer stack_frame* frame = (stack_frame*)x86_get_stack_frame(); registers->bp = (addr_t)frame->previous; } void arch_debug_stack_trace(void) { stack_trace(0, NULL); } bool arch_debug_contains_call(Thread* thread, const char* symbol, addr_t start, addr_t end) { DebuggedThreadSetter threadSetter(thread); addr_t bp; if (thread == thread_get_current_thread()) bp = x86_get_stack_frame(); else { if (thread->state == B_THREAD_RUNNING) { // The thread is currently running on another CPU. if (thread->cpu == NULL) return false; arch_debug_registers* registers = debug_get_debug_registers( thread->cpu->cpu_num); if (registers == NULL) return false; bp = registers->bp; } else { // thread not running bp = thread->arch_info.GetFramePointer(); } } for (;;) { if (!is_kernel_stack_address(thread, bp)) break; if (is_iframe(thread, bp)) { iframe* frame = (iframe*)bp; if (is_calling(thread, frame->ip, symbol, start, end)) return true; bp = frame->bp; } else { addr_t ip, nextBp; if (get_next_frame_no_debugger(bp, &nextBp, &ip, true, thread) != B_OK || ip == 0 || bp == 0) break; if (is_calling(thread, ip, symbol, start, end)) return true; bp = nextBp; } if (bp == 0) break; } return false; } /*! Captures a stack trace (the return addresses) of the current thread. \param returnAddresses The array the return address shall be written to. \param maxCount The maximum number of return addresses to be captured. \param skipIframes The number of interrupt frames that shall be skipped. If greater than 0, \a skipFrames is ignored. \param skipFrames The number of stack frames that shall be skipped. \param flags A combination of one or two of the following: - \c STACK_TRACE_KERNEL: Capture kernel return addresses. - \c STACK_TRACE_USER: Capture user return addresses. \return The number of return addresses written to the given array. */ int32 arch_debug_get_stack_trace(addr_t* returnAddresses, int32 maxCount, int32 skipIframes, int32 skipFrames, uint32 flags) { // Keep skipping normal stack frames until we've skipped the iframes we're // supposed to skip. if (skipIframes > 0) skipFrames = INT_MAX; Thread* thread = thread_get_current_thread(); int32 count = 0; addr_t bp = x86_get_stack_frame(); bool onKernelStack = true; if ((flags & (STACK_TRACE_KERNEL | STACK_TRACE_USER)) == STACK_TRACE_USER) { iframe* frame = x86_get_user_iframe(); if (frame == NULL) return 0; bp = (addr_t)frame; } while (bp != 0 && count < maxCount) { onKernelStack = onKernelStack && is_kernel_stack_address(thread, bp); if (!onKernelStack && (flags & STACK_TRACE_USER) == 0) break; addr_t ip; addr_t nextBp; if (onKernelStack && is_iframe(thread, bp)) { iframe* frame = (iframe*)bp; ip = frame->ip; nextBp = frame->bp; if (skipIframes > 0) { if (--skipIframes == 0) skipFrames = 0; } } else { if (get_next_frame_no_debugger(bp, &nextBp, &ip, onKernelStack, thread) != B_OK) { break; } } if (ip == 0) break; if (skipFrames > 0) skipFrames--; else returnAddresses[count++] = ip; bp = nextBp; } return count; } /*! Returns the program counter of the currently debugged (respectively this) thread where the innermost interrupts happened. \a _isSyscall, if specified, is set to whether this interrupt frame was created by a syscall. Returns \c NULL, if there's no such frame or a problem occurred retrieving it; \a _isSyscall won't be set in this case. */ void* arch_debug_get_interrupt_pc(bool* _isSyscall) { iframe* frame = get_current_iframe(debug_get_debugged_thread()); if (frame == NULL) return NULL; if (_isSyscall != NULL) *_isSyscall = frame->type == IFRAME_TYPE_SYSCALL; return (void*)(addr_t)frame->ip; } /*! Sets the current thread to \c NULL. Invoked in the kernel debugger only. */ void arch_debug_unset_current_thread(void) { // Can't just write 0 to the GS base, that will cause the read from %gs:0 // to fault. Instead point it at a NULL pointer, %gs:0 will get this value. static Thread* unsetThread = NULL; #ifdef __x86_64__ x86_write_msr(IA32_MSR_GS_BASE, (addr_t)&unsetThread); #else asm volatile("mov %0, %%gs:0" : : "r" (unsetThread) : "memory"); #endif } bool arch_is_debug_variable_defined(const char* variableName) { bool settable; return find_debug_variable(variableName, settable); } status_t arch_set_debug_variable(const char* variableName, uint64 value) { bool settable; size_t* variable = find_debug_variable(variableName, settable); if (variable == NULL) return B_ENTRY_NOT_FOUND; if (!settable) return B_NOT_ALLOWED; *variable = (size_t)value; return B_OK; } status_t arch_get_debug_variable(const char* variableName, uint64* value) { bool settable; size_t* variable = find_debug_variable(variableName, settable); if (variable == NULL) return B_ENTRY_NOT_FOUND; *value = *variable; return B_OK; } struct gdb_register { int32 type; uint64 value; }; /*! Writes the contents of the CPU registers at some fixed outer stack frame or iframe into the given buffer in the format expected by gdb. This function is called in response to gdb's 'g' command. \param buffer The buffer to write the registers to. \param bufferSize The size of \a buffer in bytes. \return When successful, the number of bytes written to \a buffer, or a negative error code on error. */ ssize_t arch_debug_gdb_get_registers(char* buffer, size_t bufferSize) { iframe* frame = get_current_iframe(debug_get_debugged_thread()); if (frame == NULL) return B_NOT_SUPPORTED; #ifdef __x86_64__ // For x86_64 the register order is: // // rax, rbx, rcx, rdx, rsi, rdi, rbp, rsp, // r8, r9, r10, r11, r12, r13, r14, r15, // rip, rflags, cs, ss, ds, es, fs, gs // // Annoyingly, GDB wants all the registers as 64-bit values, but then // RFLAGS and the segment registers as 32-bit values, hence the need for // the type information. static const int32 kRegisterCount = 24; gdb_register registers[kRegisterCount] = { { B_UINT64_TYPE, frame->ax }, { B_UINT64_TYPE, frame->bx }, { B_UINT64_TYPE, frame->cx }, { B_UINT64_TYPE, frame->dx }, { B_UINT64_TYPE, frame->si }, { B_UINT64_TYPE, frame->di }, { B_UINT64_TYPE, frame->bp }, { B_UINT64_TYPE, frame->sp }, { B_UINT64_TYPE, frame->r8 }, { B_UINT64_TYPE, frame->r9 }, { B_UINT64_TYPE, frame->r10 }, { B_UINT64_TYPE, frame->r11 }, { B_UINT64_TYPE, frame->r12 }, { B_UINT64_TYPE, frame->r13 }, { B_UINT64_TYPE, frame->r14 }, { B_UINT64_TYPE, frame->r15 }, { B_UINT64_TYPE, frame->ip }, { B_UINT32_TYPE, frame->flags }, { B_UINT32_TYPE, frame->cs }, { B_UINT32_TYPE, frame->ss }, { B_UINT32_TYPE, 0 }, { B_UINT32_TYPE, 0 }, { B_UINT32_TYPE, 0 }, { B_UINT32_TYPE, 0 }, }; #else // For x86 the register order is: // // eax, ecx, edx, ebx, // esp, ebp, esi, edi, // eip, eflags, // cs, ss, ds, es, fs, gs // // Note that even though the segment descriptors are actually 16 bits wide, // gdb requires them as 32 bit integers. static const int32 kRegisterCount = 16; gdb_register registers[kRegisterCount] = { { B_UINT32_TYPE, frame->ax }, { B_UINT32_TYPE, frame->cx }, { B_UINT32_TYPE, frame->dx }, { B_UINT32_TYPE, frame->bx }, { B_UINT32_TYPE, frame->sp }, { B_UINT32_TYPE, frame->bp }, { B_UINT32_TYPE, frame->si }, { B_UINT32_TYPE, frame->di }, { B_UINT32_TYPE, frame->ip }, { B_UINT32_TYPE, frame->flags }, { B_UINT32_TYPE, frame->cs }, { B_UINT32_TYPE, frame->ds }, // assume ss == ds { B_UINT32_TYPE, frame->ds }, { B_UINT32_TYPE, frame->es }, { B_UINT32_TYPE, frame->fs }, { B_UINT32_TYPE, frame->gs }, }; #endif const char* const bufferStart = buffer; for (int32 i = 0; i < kRegisterCount; i++) { // For some reason gdb wants the register dump in *big endian* format. int result = 0; switch (registers[i].type) { case B_UINT64_TYPE: result = snprintf(buffer, bufferSize, "%016" B_PRIx64, (uint64)B_HOST_TO_BENDIAN_INT64(registers[i].value)); break; case B_UINT32_TYPE: result = snprintf(buffer, bufferSize, "%08" B_PRIx32, (uint32)B_HOST_TO_BENDIAN_INT32((uint32)registers[i].value)); break; } if (result >= (int)bufferSize) return B_BUFFER_OVERFLOW; buffer += result; bufferSize -= result; } return buffer - bufferStart; } status_t arch_debug_init(kernel_args* args) { // at this stage, the debugger command system is alive add_debugger_command("where", &stack_trace, "Same as \"sc\""); add_debugger_command("bt", &stack_trace, "Same as \"sc\" (as in gdb)"); add_debugger_command("sc", &stack_trace, "Stack crawl for current thread (or any other)"); add_debugger_command("iframe", &dump_iframes, "Dump iframes for the specified thread"); #ifndef __x86_64__ add_debugger_command("call", &show_call, "Show call with arguments"); #endif add_debugger_command_etc("in_context", &cmd_in_context, "Executes a command in the context of a given thread", " ...\n" "Executes a command in the context of a given thread.\n", B_KDEBUG_DONT_PARSE_ARGUMENTS); return B_NO_ERROR; }