/* * M_APM - mapmhasn.c * * Copyright (C) 2000 - 2007 Michael C. Ring * * Permission to use, copy, and distribute this software and its * documentation for any purpose with or without fee is hereby granted, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. * * Permission to modify the software is granted. Permission to distribute * the modified code is granted. Modifications are to be distributed by * using the file 'license.txt' as a template to modify the file header. * 'license.txt' is available in the official MAPM distribution. * * This software is provided "as is" without express or implied warranty. */ /* * $Id: mapmhasn.c,v 1.7 2007/12/03 01:53:33 mike Exp $ * * This file contains the Inverse Hyperbolic SIN, COS, & TAN functions. * * $Log: mapmhasn.c,v $ * Revision 1.7 2007/12/03 01:53:33 mike * Update license * * Revision 1.6 2003/07/24 16:28:50 mike * update arcsinh * * Revision 1.5 2003/07/23 23:08:27 mike * fix problem with arcsinh when input is a very large * negative number. * * Revision 1.4 2003/07/21 20:36:33 mike * Modify error messages to be in a consistent format. * * Revision 1.3 2003/03/31 21:53:21 mike * call generic error handling function * * Revision 1.2 2002/11/03 21:25:03 mike * Updated function parameters to use the modern style * * Revision 1.1 2000/04/03 18:16:29 mike * Initial revision */ #include "m_apm_lc.h" /****************************************************************************/ /* * arcsinh(x) == log [ x + sqrt(x^2 + 1) ] * * also, use arcsinh(-x) == -arcsinh(x) */ void m_apm_arcsinh(M_APM rr, int places, M_APM aa) { M_APM tmp0, tmp1, tmp2; /* result is 0 if input is 0 */ if (aa->m_apm_sign == 0) { M_set_to_zero(rr); return; } tmp0 = M_get_stack_var(); tmp1 = M_get_stack_var(); tmp2 = M_get_stack_var(); m_apm_absolute_value(tmp0, aa); m_apm_multiply(tmp1, tmp0, tmp0); m_apm_add(tmp2, tmp1, MM_One); m_apm_sqrt(tmp1, (places + 6), tmp2); m_apm_add(tmp2, tmp0, tmp1); m_apm_log(rr, places, tmp2); rr->m_apm_sign = aa->m_apm_sign; /* fix final sign */ M_restore_stack(3); } /****************************************************************************/ /* * arccosh(x) == log [ x + sqrt(x^2 - 1) ] * * x >= 1.0 */ void m_apm_arccosh(M_APM rr, int places, M_APM aa) { M_APM tmp1, tmp2; int ii; ii = m_apm_compare(aa, MM_One); if (ii == -1) /* x < 1 */ { M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arccosh\', Argument < 1"); M_set_to_zero(rr); return; } tmp1 = M_get_stack_var(); tmp2 = M_get_stack_var(); m_apm_multiply(tmp1, aa, aa); m_apm_subtract(tmp2, tmp1, MM_One); m_apm_sqrt(tmp1, (places + 6), tmp2); m_apm_add(tmp2, aa, tmp1); m_apm_log(rr, places, tmp2); M_restore_stack(2); } /****************************************************************************/ /* * arctanh(x) == 0.5 * log [ (1 + x) / (1 - x) ] * * |x| < 1.0 */ void m_apm_arctanh(M_APM rr, int places, M_APM aa) { M_APM tmp1, tmp2, tmp3; int ii, local_precision; tmp1 = M_get_stack_var(); m_apm_absolute_value(tmp1, aa); ii = m_apm_compare(tmp1, MM_One); if (ii >= 0) /* |x| >= 1.0 */ { M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arctanh\', |Argument| >= 1"); M_set_to_zero(rr); M_restore_stack(1); return; } tmp2 = M_get_stack_var(); tmp3 = M_get_stack_var(); local_precision = places + 8; m_apm_add(tmp1, MM_One, aa); m_apm_subtract(tmp2, MM_One, aa); m_apm_divide(tmp3, local_precision, tmp1, tmp2); m_apm_log(tmp2, local_precision, tmp3); m_apm_multiply(tmp1, tmp2, MM_0_5); m_apm_round(rr, places, tmp1); M_restore_stack(3); } /****************************************************************************/