/* * M_APM - mapmasin.c * * Copyright (C) 1999 - 2007 Michael C. Ring * * Permission to use, copy, and distribute this software and its * documentation for any purpose with or without fee is hereby granted, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. * * Permission to modify the software is granted. Permission to distribute * the modified code is granted. Modifications are to be distributed by * using the file 'license.txt' as a template to modify the file header. * 'license.txt' is available in the official MAPM distribution. * * This software is provided "as is" without express or implied warranty. */ /* * $Id: mapmasin.c,v 1.28 2007/12/03 01:49:10 mike Exp $ * * This file contains the 'ARC' family of functions; ARC-SIN, ARC-COS, * ARC-TAN, and ARC-TAN2. * * $Log: mapmasin.c,v $ * Revision 1.28 2007/12/03 01:49:10 mike * Update license * * Revision 1.27 2003/07/24 16:34:02 mike * update arctan_large_input * * Revision 1.26 2003/07/21 20:27:48 mike * Modify error messages to be in a consistent format. * * Revision 1.25 2003/07/21 19:19:26 mike * add new arctan with large input value * * Revision 1.24 2003/05/01 21:58:49 mike * remove math.h * * Revision 1.23 2003/04/09 21:43:00 mike * optimize iterative asin & acos with lessons learned * from the new log function * * Revision 1.22 2003/03/31 21:58:11 mike * call generic error handling function * * Revision 1.21 2002/11/03 21:41:54 mike * Updated function parameters to use the modern style * * Revision 1.20 2001/02/07 19:07:07 mike * eliminate MM_skip_limit_PI_check * * Revision 1.19 2001/02/06 21:50:56 mike * don't display accuracy when iteration count maxes out * * Revision 1.18 2000/12/02 20:10:09 mike * add calls to more efficient functions if * the input args are close to zero * * Revision 1.17 2000/09/05 22:18:02 mike * re-arrange code to eliminate goto from atan2 * * Revision 1.16 2000/05/28 23:58:41 mike * minor optimization to arc-tan2 * * Revision 1.15 2000/05/19 17:13:29 mike * use local copies of PI variables & recompute * on the fly as needed * * Revision 1.14 2000/03/27 21:43:23 mike * dtermine how many iterations should be required at * run time for arc-sin and arc-cos * * Revision 1.13 1999/09/21 21:00:33 mike * make sure the sign of 'sin' from M_cos_to_sin is non-zero * before assigning it from the original angle. * * Revision 1.12 1999/07/21 03:05:06 mike * added some comments * * Revision 1.11 1999/07/19 02:33:39 mike * reset local precision again * * Revision 1.10 1999/07/19 02:18:05 mike * more fine tuning of local precision * * Revision 1.9 1999/07/19 00:08:34 mike * adjust local precision during iterative loops * * Revision 1.8 1999/07/18 22:35:56 mike * make arc-sin and arc-cos use dynamically changing * precision to speed up iterative routines for large N * * Revision 1.7 1999/07/09 22:52:00 mike * skip limit PI check when not needed * * Revision 1.6 1999/07/09 00:10:39 mike * use better method for arc sin and arc cos * * Revision 1.5 1999/07/08 22:56:20 mike * replace local MAPM constant with a global * * Revision 1.4 1999/06/20 16:55:01 mike * changed local static variables to MAPM stack variables * * Revision 1.3 1999/05/15 02:10:27 mike * add check for number of decimal places * * Revision 1.2 1999/05/10 21:10:21 mike * added some comments * * Revision 1.1 1999/05/10 20:56:31 mike * Initial revision */ #include "m_apm_lc.h" /****************************************************************************/ void m_apm_arctan2(M_APM rr, int places, M_APM yy, M_APM xx) { M_APM tmp5, tmp6, tmp7; int ix, iy; iy = yy->m_apm_sign; ix = xx->m_apm_sign; if (ix == 0) /* x == 0 */ { if (iy == 0) /* y == 0 */ { M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arctan2\', Both Inputs = 0"); M_set_to_zero(rr); return; } M_check_PI_places(places); m_apm_round(rr, places, MM_lc_HALF_PI); rr->m_apm_sign = iy; return; } if (iy == 0) { if (ix == 1) { M_set_to_zero(rr); } else { M_check_PI_places(places); m_apm_round(rr, places, MM_lc_PI); } return; } /* * the special cases have been handled, now do the real work */ tmp5 = M_get_stack_var(); tmp6 = M_get_stack_var(); tmp7 = M_get_stack_var(); m_apm_divide(tmp6, (places + 6), yy, xx); m_apm_arctan(tmp5, (places + 6), tmp6); if (ix == 1) /* 'x' is positive */ { m_apm_round(rr, places, tmp5); } else /* 'x' is negative */ { M_check_PI_places(places); if (iy == 1) /* 'y' is positive */ { m_apm_add(tmp7, tmp5, MM_lc_PI); m_apm_round(rr, places, tmp7); } else /* 'y' is negative */ { m_apm_subtract(tmp7, tmp5, MM_lc_PI); m_apm_round(rr, places, tmp7); } } M_restore_stack(3); } /****************************************************************************/ /* Calculate arctan using the identity : x arctan (x) == arcsin [ --------------- ] sqrt(1 + x^2) */ void m_apm_arctan(M_APM rr, int places, M_APM xx) { M_APM tmp8, tmp9; if (xx->m_apm_sign == 0) /* input == 0 ?? */ { M_set_to_zero(rr); return; } if (xx->m_apm_exponent <= -4) /* input close to 0 ?? */ { M_arctan_near_0(rr, places, xx); return; } if (xx->m_apm_exponent >= 4) /* large input */ { M_arctan_large_input(rr, places, xx); return; } tmp8 = M_get_stack_var(); tmp9 = M_get_stack_var(); m_apm_multiply(tmp9, xx, xx); m_apm_add(tmp8, tmp9, MM_One); m_apm_sqrt(tmp9, (places + 6), tmp8); m_apm_divide(tmp8, (places + 6), xx, tmp9); m_apm_arcsin(rr, places, tmp8); M_restore_stack(2); } /****************************************************************************/ /* for large input values use : arctan(x) = (PI / 2) - arctan(1 / |x|) and sign of result = sign of original input */ void M_arctan_large_input(M_APM rr, int places, M_APM xx) { M_APM tmp1, tmp2; tmp1 = M_get_stack_var(); tmp2 = M_get_stack_var(); M_check_PI_places(places); m_apm_divide(tmp1, (places + 6), MM_One, xx); /* 1 / xx */ tmp1->m_apm_sign = 1; /* make positive */ m_apm_arctan(tmp2, (places + 6), tmp1); m_apm_subtract(tmp1, MM_lc_HALF_PI, tmp2); m_apm_round(rr, places, tmp1); rr->m_apm_sign = xx->m_apm_sign; /* fix final sign */ M_restore_stack(2); } /****************************************************************************/ void m_apm_arcsin(M_APM r, int places, M_APM x) { M_APM tmp0, tmp1, tmp2, tmp3, current_x; int ii, maxiter, maxp, tolerance, local_precision; current_x = M_get_stack_var(); tmp0 = M_get_stack_var(); tmp1 = M_get_stack_var(); tmp2 = M_get_stack_var(); tmp3 = M_get_stack_var(); m_apm_absolute_value(tmp0, x); ii = m_apm_compare(tmp0, MM_One); if (ii == 1) /* |x| > 1 */ { M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arcsin\', |Argument| > 1"); M_set_to_zero(r); M_restore_stack(5); return; } if (ii == 0) /* |x| == 1, arcsin = +/- PI / 2 */ { M_check_PI_places(places); m_apm_round(r, places, MM_lc_HALF_PI); r->m_apm_sign = x->m_apm_sign; M_restore_stack(5); return; } if (m_apm_compare(tmp0, MM_0_85) == 1) /* check if > 0.85 */ { M_cos_to_sin(tmp2, (places + 4), x); m_apm_arccos(r, places, tmp2); r->m_apm_sign = x->m_apm_sign; M_restore_stack(5); return; } if (x->m_apm_sign == 0) /* input == 0 ?? */ { M_set_to_zero(r); M_restore_stack(5); return; } if (x->m_apm_exponent <= -4) /* input close to 0 ?? */ { M_arcsin_near_0(r, places, x); M_restore_stack(5); return; } tolerance = -(places + 4); maxp = places + 8 - x->m_apm_exponent; local_precision = 20 - x->m_apm_exponent; /* * compute the maximum number of iterations * that should be needed to calculate to * the desired accuracy. [ constant below ~= 1 / log(2) ] */ maxiter = (int)(log((double)(places + 2)) * 1.442695) + 3; if (maxiter < 5) maxiter = 5; M_get_asin_guess(current_x, x); /* Use the following iteration to solve for arc-sin : sin(X) - N X = X - ------------ n+1 cos(X) */ ii = 0; while (TRUE) { M_4x_cos(tmp1, local_precision, current_x); M_cos_to_sin(tmp2, local_precision, tmp1); if (tmp2->m_apm_sign != 0) tmp2->m_apm_sign = current_x->m_apm_sign; m_apm_subtract(tmp3, tmp2, x); m_apm_divide(tmp0, local_precision, tmp3, tmp1); m_apm_subtract(tmp2, current_x, tmp0); m_apm_copy(current_x, tmp2); if (ii != 0) { if (((2 * tmp0->m_apm_exponent) < tolerance) || (tmp0->m_apm_sign == 0)) break; } if (++ii == maxiter) { M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arcsin\', max iteration count reached"); break; } local_precision *= 2; if (local_precision > maxp) local_precision = maxp; } m_apm_round(r, places, current_x); M_restore_stack(5); } /****************************************************************************/ void m_apm_arccos(M_APM r, int places, M_APM x) { M_APM tmp0, tmp1, tmp2, tmp3, current_x; int ii, maxiter, maxp, tolerance, local_precision; current_x = M_get_stack_var(); tmp0 = M_get_stack_var(); tmp1 = M_get_stack_var(); tmp2 = M_get_stack_var(); tmp3 = M_get_stack_var(); m_apm_absolute_value(tmp0, x); ii = m_apm_compare(tmp0, MM_One); if (ii == 1) /* |x| > 1 */ { M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arccos\', |Argument| > 1"); M_set_to_zero(r); M_restore_stack(5); return; } if (ii == 0) /* |x| == 1, arccos = 0, PI */ { if (x->m_apm_sign == 1) { M_set_to_zero(r); } else { M_check_PI_places(places); m_apm_round(r, places, MM_lc_PI); } M_restore_stack(5); return; } if (m_apm_compare(tmp0, MM_0_85) == 1) /* check if > 0.85 */ { M_cos_to_sin(tmp2, (places + 4), x); if (x->m_apm_sign == 1) { m_apm_arcsin(r, places, tmp2); } else { M_check_PI_places(places); m_apm_arcsin(tmp3, (places + 4), tmp2); m_apm_subtract(tmp1, MM_lc_PI, tmp3); m_apm_round(r, places, tmp1); } M_restore_stack(5); return; } if (x->m_apm_sign == 0) /* input == 0 ?? */ { M_check_PI_places(places); m_apm_round(r, places, MM_lc_HALF_PI); M_restore_stack(5); return; } if (x->m_apm_exponent <= -4) /* input close to 0 ?? */ { M_arccos_near_0(r, places, x); M_restore_stack(5); return; } tolerance = -(places + 4); maxp = places + 8; local_precision = 18; /* * compute the maximum number of iterations * that should be needed to calculate to * the desired accuracy. [ constant below ~= 1 / log(2) ] */ maxiter = (int)(log((double)(places + 2)) * 1.442695) + 3; if (maxiter < 5) maxiter = 5; M_get_acos_guess(current_x, x); /* Use the following iteration to solve for arc-cos : cos(X) - N X = X + ------------ n+1 sin(X) */ ii = 0; while (TRUE) { M_4x_cos(tmp1, local_precision, current_x); M_cos_to_sin(tmp2, local_precision, tmp1); if (tmp2->m_apm_sign != 0) tmp2->m_apm_sign = current_x->m_apm_sign; m_apm_subtract(tmp3, tmp1, x); m_apm_divide(tmp0, local_precision, tmp3, tmp2); m_apm_add(tmp2, current_x, tmp0); m_apm_copy(current_x, tmp2); if (ii != 0) { if (((2 * tmp0->m_apm_exponent) < tolerance) || (tmp0->m_apm_sign == 0)) break; } if (++ii == maxiter) { M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arccos\', max iteration count reached"); break; } local_precision *= 2; if (local_precision > maxp) local_precision = maxp; } m_apm_round(r, places, current_x); M_restore_stack(5); } /****************************************************************************/