/* * M_APM - mapm_rcp.c * * Copyright (C) 2000 - 2007 Michael C. Ring * * Permission to use, copy, and distribute this software and its * documentation for any purpose with or without fee is hereby granted, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. * * Permission to modify the software is granted. Permission to distribute * the modified code is granted. Modifications are to be distributed by * using the file 'license.txt' as a template to modify the file header. * 'license.txt' is available in the official MAPM distribution. * * This software is provided "as is" without express or implied warranty. */ /* * $Id: mapm_rcp.c,v 1.7 2007/12/03 01:46:46 mike Exp $ * * This file contains the fast division and reciprocal functions * * $Log: mapm_rcp.c,v $ * Revision 1.7 2007/12/03 01:46:46 mike * Update license * * Revision 1.6 2003/07/21 20:20:17 mike * Modify error messages to be in a consistent format. * * Revision 1.5 2003/05/01 21:58:40 mike * remove math.h * * Revision 1.4 2003/03/31 22:15:49 mike * call generic error handling function * * Revision 1.3 2002/11/03 21:32:09 mike * Updated function parameters to use the modern style * * Revision 1.2 2000/09/26 16:27:48 mike * add some comments * * Revision 1.1 2000/09/26 16:16:00 mike * Initial revision */ #include "m_apm_lc.h" /****************************************************************************/ void m_apm_divide(M_APM rr, int places, M_APM aa, M_APM bb) { M_APM tmp0, tmp1; int sn, nexp, dplaces; sn = aa->m_apm_sign * bb->m_apm_sign; if (sn == 0) /* one number is zero, result is zero */ { if (bb->m_apm_sign == 0) { M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_divide\', Divide by 0"); } M_set_to_zero(rr); return; } /* * Use the original 'Knuth' method for smaller divides. On the * author's system, this was the *approx* break even point before * the reciprocal method used below became faster. */ if (places < 250) { M_apm_sdivide(rr, places, aa, bb); return; } /* mimic the decimal place behavior of the original divide */ nexp = aa->m_apm_exponent - bb->m_apm_exponent; if (nexp > 0) dplaces = nexp + places; else dplaces = places; tmp0 = M_get_stack_var(); tmp1 = M_get_stack_var(); m_apm_reciprocal(tmp0, (dplaces + 8), bb); m_apm_multiply(tmp1, tmp0, aa); m_apm_round(rr, dplaces, tmp1); M_restore_stack(2); } /****************************************************************************/ void m_apm_reciprocal(M_APM rr, int places, M_APM aa) { M_APM last_x, guess, tmpN, tmp1, tmp2; char sbuf[32]; int ii, bflag, dplaces, nexp, tolerance; if (aa->m_apm_sign == 0) { M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_reciprocal\', Input = 0"); M_set_to_zero(rr); return; } last_x = M_get_stack_var(); guess = M_get_stack_var(); tmpN = M_get_stack_var(); tmp1 = M_get_stack_var(); tmp2 = M_get_stack_var(); m_apm_absolute_value(tmpN, aa); /* normalize the input number (make the exponent 0) so the 'guess' below will not over/under flow on large magnitude exponents. */ nexp = aa->m_apm_exponent; tmpN->m_apm_exponent -= nexp; m_apm_to_string(sbuf, 15, tmpN); m_apm_set_double(guess, (1.0 / atof(sbuf))); tolerance = places + 4; dplaces = places + 16; bflag = FALSE; m_apm_negate(last_x, MM_Ten); /* Use the following iteration to calculate the reciprocal : X = X * [ 2 - N * X ] n+1 */ ii = 0; while (TRUE) { m_apm_multiply(tmp1, tmpN, guess); m_apm_subtract(tmp2, MM_Two, tmp1); m_apm_multiply(tmp1, tmp2, guess); if (bflag) break; m_apm_round(guess, dplaces, tmp1); /* force at least 2 iterations so 'last_x' has valid data */ if (ii != 0) { m_apm_subtract(tmp2, guess, last_x); if (tmp2->m_apm_sign == 0) break; /* * if we are within a factor of 4 on the error term, * we will be accurate enough after the *next* iteration * is complete. */ if ((-4 * tmp2->m_apm_exponent) > tolerance) bflag = TRUE; } m_apm_copy(last_x, guess); ii++; } m_apm_round(rr, places, tmp1); rr->m_apm_exponent -= nexp; rr->m_apm_sign = aa->m_apm_sign; M_restore_stack(5); } /****************************************************************************/