/* * M_APM - mapm_mul.c * * Copyright (C) 1999 - 2007 Michael C. Ring * * Permission to use, copy, and distribute this software and its * documentation for any purpose with or without fee is hereby granted, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. * * Permission to modify the software is granted. Permission to distribute * the modified code is granted. Modifications are to be distributed by * using the file 'license.txt' as a template to modify the file header. * 'license.txt' is available in the official MAPM distribution. * * This software is provided "as is" without express or implied warranty. */ /* * $Id: mapm_mul.c,v 1.16 2007/12/03 01:45:27 mike Exp $ * * This file contains basic multiplication function. * * $Log: mapm_mul.c,v $ * Revision 1.16 2007/12/03 01:45:27 mike * Update license * * Revision 1.15 2004/02/21 04:30:35 mike * minor optimization by using pointers instead of array indexes. * * Revision 1.14 2003/07/21 20:18:59 mike * Modify error messages to be in a consistent format. * * Revision 1.13 2003/03/31 22:14:05 mike * call generic error handling function * * Revision 1.12 2002/11/03 22:25:36 mike * Updated function parameters to use the modern style * * Revision 1.11 2001/07/24 18:24:26 mike * access div/rem lookup table directly * for speed * * Revision 1.10 2001/02/11 22:31:39 mike * modify parameters to REALLOC * * Revision 1.9 2000/07/09 00:20:03 mike * change break even point again .... * * Revision 1.8 2000/07/08 18:51:43 mike * change break even point between this O(n^2) * multiply and the FFT multiply * * Revision 1.7 2000/04/14 16:27:45 mike * change the break even point between the 2 multiply * functions since we made the fast one even faster. * * Revision 1.6 2000/02/03 22:46:40 mike * use MAPM_* generic memory function * * Revision 1.5 1999/09/19 21:10:14 mike * change the break even point between the 2 multiply choices * * Revision 1.4 1999/08/09 23:57:17 mike * added more comments * * Revision 1.3 1999/08/09 02:38:17 mike * tweak break even point and add comments * * Revision 1.2 1999/08/08 18:35:20 mike * add call to fast algorithm if input numbers are large * * Revision 1.1 1999/05/10 20:56:31 mike * Initial revision */ #include "m_apm_lc.h" extern void M_fast_multiply(M_APM, M_APM, M_APM); /****************************************************************************/ void m_apm_multiply(M_APM r, M_APM a, M_APM b) { int ai, itmp, sign, nexp, ii, jj, indexa, indexb, index0, numdigits; UCHAR *cp, *cpr, *cp_div, *cp_rem; void *vp; sign = a->m_apm_sign * b->m_apm_sign; nexp = a->m_apm_exponent + b->m_apm_exponent; if (sign == 0) /* one number is zero, result is zero */ { M_set_to_zero(r); return; } numdigits = a->m_apm_datalength + b->m_apm_datalength; indexa = (a->m_apm_datalength + 1) >> 1; indexb = (b->m_apm_datalength + 1) >> 1; /* * If we are multiplying 2 'big' numbers, use the fast algorithm. * * This is a **very** approx break even point between this algorithm * and the FFT multiply. Note that different CPU's, operating systems, * and compiler's may yield a different break even point. This point * (~96 decimal digits) is how the test came out on the author's system. */ if (indexa >= 48 && indexb >= 48) { M_fast_multiply(r, a, b); return; } ii = (numdigits + 1) >> 1; /* required size of result, in bytes */ if (ii > r->m_apm_malloclength) { if ((vp = MAPM_REALLOC(r->m_apm_data, (ii + 32))) == NULL) { /* fatal, this does not return */ M_apm_log_error_msg(M_APM_FATAL, "\'m_apm_multiply\', Out of memory"); } r->m_apm_malloclength = ii + 28; r->m_apm_data = (UCHAR *)vp; } M_get_div_rem_addr(&cp_div, &cp_rem); index0 = indexa + indexb; cp = r->m_apm_data; memset(cp, 0, index0); ii = indexa; while (TRUE) { index0--; cpr = cp + index0; jj = indexb; ai = (int)a->m_apm_data[--ii]; while (TRUE) { itmp = ai * b->m_apm_data[--jj]; *(cpr-1) += cp_div[itmp]; *cpr += cp_rem[itmp]; if (*cpr >= 100) { *cpr -= 100; *(cpr-1) += 1; } cpr--; if (*cpr >= 100) { *cpr -= 100; *(cpr-1) += 1; } if (jj == 0) break; } if (ii == 0) break; } r->m_apm_sign = sign; r->m_apm_exponent = nexp; r->m_apm_datalength = numdigits; M_apm_normalize(r); } /****************************************************************************/