/* * Copyright 2006, Haiku. * Distributed under the terms of the MIT License. * * Authors: * Stephan Aßmus */ #include "Transformable.h" #include #include // constructor Transformable::Transformable() : agg::trans_affine() { } // copy constructor Transformable::Transformable(const Transformable& other) : agg::trans_affine(other) { } // destructor Transformable::~Transformable() { } // StoreTo void Transformable::StoreTo(double matrix[matrix_size]) const { store_to(matrix); } // LoadFrom void Transformable::LoadFrom(const double matrix[matrix_size]) { // before calling the potentially heavy TransformationChanged() // hook function, make sure that the transformation // really changed Transformable t; t.load_from(matrix); if (*this != t) { load_from(matrix); TransformationChanged(); } } // SetTransform void Transformable::SetTransform(const Transformable& other) { if (*this != other) { *this = other; TransformationChanged(); } } // operator= Transformable& Transformable::operator=(const Transformable& other) { if (other != *this) { reset(); multiply(other); TransformationChanged(); } return *this; } // Multiply Transformable& Transformable::Multiply(const Transformable& other) { if (!other.IsIdentity()) { multiply(other); TransformationChanged(); } return *this; } // Reset void Transformable::Reset() { if (!IsIdentity()) { reset(); TransformationChanged(); } } // Invert void Transformable::Invert() { if (!IsIdentity()) { invert(); TransformationChanged(); } } // IsIdentity bool Transformable::IsIdentity() const { double m[matrix_size]; store_to(m); if (m[0] == 1.0 && m[1] == 0.0 && m[2] == 0.0 && m[3] == 1.0 && m[4] == 0.0 && m[5] == 0.0) return true; return false; } // IsTranslationOnly bool Transformable::IsTranslationOnly() const { double m[matrix_size]; store_to(m); if (m[0] == 1.0 && m[1] == 0.0 && m[2] == 0.0 && m[3] == 1.0) return true; return false; } // IsNotDistorted bool Transformable::IsNotDistorted() const { double m[matrix_size]; store_to(m); return (m[0] == m[3]); } // IsValid bool Transformable::IsValid() const { double m[matrix_size]; store_to(m); return ((m[0] * m[3] - m[1] * m[2]) != 0.0); } // operator== bool Transformable::operator==(const Transformable& other) const { double m1[matrix_size]; other.store_to(m1); double m2[matrix_size]; store_to(m2); return memcmp(m1, m2, sizeof(m1)) == 0; } // operator!= bool Transformable::operator!=(const Transformable& other) const { return !(*this == other); } // Transform void Transformable::Transform(double* x, double* y) const { transform(x, y); } // Transform void Transformable::Transform(BPoint* point) const { if (point) { double x = point->x; double y = point->y; transform(&x, &y); point->x = x; point->y = y; } } // Transform BPoint Transformable::Transform(const BPoint& point) const { BPoint p(point); Transform(&p); return p; } // InverseTransform void Transformable::InverseTransform(double* x, double* y) const { inverse_transform(x, y); } // InverseTransform void Transformable::InverseTransform(BPoint* point) const { if (point) { double x = point->x; double y = point->y; inverse_transform(&x, &y); point->x = x; point->y = y; } } // InverseTransform BPoint Transformable::InverseTransform(const BPoint& point) const { BPoint p(point); InverseTransform(&p); return p; } inline float min4(float a, float b, float c, float d) { return min_c(a, min_c(b, min_c(c, d))); } inline float max4(float a, float b, float c, float d) { return max_c(a, max_c(b, max_c(c, d))); } // TransformBounds BRect Transformable::TransformBounds(BRect bounds) const { if (bounds.IsValid()) { BPoint lt(bounds.left, bounds.top); BPoint rt(bounds.right, bounds.top); BPoint lb(bounds.left, bounds.bottom); BPoint rb(bounds.right, bounds.bottom); Transform(<); Transform(&rt); Transform(&lb); Transform(&rb); return BRect(floorf(min4(lt.x, rt.x, lb.x, rb.x)), floorf(min4(lt.y, rt.y, lb.y, rb.y)), ceilf(max4(lt.x, rt.x, lb.x, rb.x)), ceilf(max4(lt.y, rt.y, lb.y, rb.y))); } return bounds; } // TranslateBy void Transformable::TranslateBy(BPoint offset) { if (offset.x != 0.0 || offset.y != 0.0) { multiply(agg::trans_affine_translation(offset.x, offset.y)); TransformationChanged(); } } // RotateBy void Transformable::RotateBy(BPoint origin, double degrees) { if (degrees != 0.0) { multiply(agg::trans_affine_translation(-origin.x, -origin.y)); multiply(agg::trans_affine_rotation(degrees * (PI / 180.0))); multiply(agg::trans_affine_translation(origin.x, origin.y)); TransformationChanged(); } } // ScaleBy void Transformable::ScaleBy(BPoint origin, double xScale, double yScale) { if (xScale != 1.0 || yScale != 1.0) { multiply(agg::trans_affine_translation(-origin.x, -origin.y)); multiply(agg::trans_affine_scaling(xScale, yScale)); multiply(agg::trans_affine_translation(origin.x, origin.y)); TransformationChanged(); } } // ShearBy void Transformable::ShearBy(BPoint origin, double xShear, double yShear) { if (xShear != 0.0 || yShear != 0.0) { multiply(agg::trans_affine_translation(-origin.x, -origin.y)); multiply(agg::trans_affine_skewing(xShear, yShear)); multiply(agg::trans_affine_translation(origin.x, origin.y)); TransformationChanged(); } } // TransformationChanged void Transformable::TransformationChanged() { // default implementation doesn't care }