/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting * Copyright (c) 2012 IEEE * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD: releng/12.0/sys/net80211/ieee80211_proto.c 326737 2017-12-09 23:16:02Z adrian $"); /* * IEEE 802.11 protocol support. */ #include "opt_inet.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include /* XXX for ether_sprintf */ #include #include #include #include #include #ifdef IEEE80211_SUPPORT_MESH #include #endif #include #include /* XXX tunables */ #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ const char *mgt_subtype_name[] = { "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", "probe_req", "probe_resp", "timing_adv", "reserved#7", "beacon", "atim", "disassoc", "auth", "deauth", "action", "action_noack", "reserved#15" }; const char *ctl_subtype_name[] = { "reserved#0", "reserved#1", "reserved#2", "reserved#3", "reserved#4", "reserved#5", "reserved#6", "control_wrap", "bar", "ba", "ps_poll", "rts", "cts", "ack", "cf_end", "cf_end_ack" }; const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { "IBSS", /* IEEE80211_M_IBSS */ "STA", /* IEEE80211_M_STA */ "WDS", /* IEEE80211_M_WDS */ "AHDEMO", /* IEEE80211_M_AHDEMO */ "HOSTAP", /* IEEE80211_M_HOSTAP */ "MONITOR", /* IEEE80211_M_MONITOR */ "MBSS" /* IEEE80211_M_MBSS */ }; const char *ieee80211_state_name[IEEE80211_S_MAX] = { "INIT", /* IEEE80211_S_INIT */ "SCAN", /* IEEE80211_S_SCAN */ "AUTH", /* IEEE80211_S_AUTH */ "ASSOC", /* IEEE80211_S_ASSOC */ "CAC", /* IEEE80211_S_CAC */ "RUN", /* IEEE80211_S_RUN */ "CSA", /* IEEE80211_S_CSA */ "SLEEP", /* IEEE80211_S_SLEEP */ }; const char *ieee80211_wme_acnames[] = { "WME_AC_BE", "WME_AC_BK", "WME_AC_VI", "WME_AC_VO", "WME_UPSD", }; /* * Reason code descriptions were (mostly) obtained from * IEEE Std 802.11-2012, pp. 442-445 Table 8-36. */ const char * ieee80211_reason_to_string(uint16_t reason) { switch (reason) { case IEEE80211_REASON_UNSPECIFIED: return ("unspecified"); case IEEE80211_REASON_AUTH_EXPIRE: return ("previous authentication is expired"); case IEEE80211_REASON_AUTH_LEAVE: return ("sending STA is leaving/has left IBSS or ESS"); case IEEE80211_REASON_ASSOC_EXPIRE: return ("disassociated due to inactivity"); case IEEE80211_REASON_ASSOC_TOOMANY: return ("too many associated STAs"); case IEEE80211_REASON_NOT_AUTHED: return ("class 2 frame received from nonauthenticated STA"); case IEEE80211_REASON_NOT_ASSOCED: return ("class 3 frame received from nonassociated STA"); case IEEE80211_REASON_ASSOC_LEAVE: return ("sending STA is leaving/has left BSS"); case IEEE80211_REASON_ASSOC_NOT_AUTHED: return ("STA requesting (re)association is not authenticated"); case IEEE80211_REASON_DISASSOC_PWRCAP_BAD: return ("information in the Power Capability element is " "unacceptable"); case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD: return ("information in the Supported Channels element is " "unacceptable"); case IEEE80211_REASON_IE_INVALID: return ("invalid element"); case IEEE80211_REASON_MIC_FAILURE: return ("MIC failure"); case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT: return ("4-Way handshake timeout"); case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT: return ("group key update timeout"); case IEEE80211_REASON_IE_IN_4WAY_DIFFERS: return ("element in 4-Way handshake different from " "(re)association request/probe response/beacon frame"); case IEEE80211_REASON_GROUP_CIPHER_INVALID: return ("invalid group cipher"); case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID: return ("invalid pairwise cipher"); case IEEE80211_REASON_AKMP_INVALID: return ("invalid AKMP"); case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION: return ("unsupported version in RSN IE"); case IEEE80211_REASON_INVALID_RSN_IE_CAP: return ("invalid capabilities in RSN IE"); case IEEE80211_REASON_802_1X_AUTH_FAILED: return ("IEEE 802.1X authentication failed"); case IEEE80211_REASON_CIPHER_SUITE_REJECTED: return ("cipher suite rejected because of the security " "policy"); case IEEE80211_REASON_UNSPECIFIED_QOS: return ("unspecified (QoS-related)"); case IEEE80211_REASON_INSUFFICIENT_BW: return ("QoS AP lacks sufficient bandwidth for this QoS STA"); case IEEE80211_REASON_TOOMANY_FRAMES: return ("too many frames need to be acknowledged"); case IEEE80211_REASON_OUTSIDE_TXOP: return ("STA is transmitting outside the limits of its TXOPs"); case IEEE80211_REASON_LEAVING_QBSS: return ("requested from peer STA (the STA is " "resetting/leaving the BSS)"); case IEEE80211_REASON_BAD_MECHANISM: return ("requested from peer STA (it does not want to use " "the mechanism)"); case IEEE80211_REASON_SETUP_NEEDED: return ("requested from peer STA (setup is required for the " "used mechanism)"); case IEEE80211_REASON_TIMEOUT: return ("requested from peer STA (timeout)"); case IEEE80211_REASON_PEER_LINK_CANCELED: return ("SME cancels the mesh peering instance (not related " "to the maximum number of peer mesh STAs)"); case IEEE80211_REASON_MESH_MAX_PEERS: return ("maximum number of peer mesh STAs was reached"); case IEEE80211_REASON_MESH_CPVIOLATION: return ("the received information violates the Mesh " "Configuration policy configured in the mesh STA " "profile"); case IEEE80211_REASON_MESH_CLOSE_RCVD: return ("the mesh STA has received a Mesh Peering Close " "message requesting to close the mesh peering"); case IEEE80211_REASON_MESH_MAX_RETRIES: return ("the mesh STA has resent dot11MeshMaxRetries Mesh " "Peering Open messages, without receiving a Mesh " "Peering Confirm message"); case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT: return ("the confirmTimer for the mesh peering instance times " "out"); case IEEE80211_REASON_MESH_INVALID_GTK: return ("the mesh STA fails to unwrap the GTK or the values " "in the wrapped contents do not match"); case IEEE80211_REASON_MESH_INCONS_PARAMS: return ("the mesh STA receives inconsistent information about " "the mesh parameters between Mesh Peering Management " "frames"); case IEEE80211_REASON_MESH_INVALID_SECURITY: return ("the mesh STA fails the authenticated mesh peering " "exchange because due to failure in selecting " "pairwise/group ciphersuite"); case IEEE80211_REASON_MESH_PERR_NO_PROXY: return ("the mesh STA does not have proxy information for " "this external destination"); case IEEE80211_REASON_MESH_PERR_NO_FI: return ("the mesh STA does not have forwarding information " "for this destination"); case IEEE80211_REASON_MESH_PERR_DEST_UNREACH: return ("the mesh STA determines that the link to the next " "hop of an active path in its forwarding information " "is no longer usable"); case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS: return ("the MAC address of the STA already exists in the " "mesh BSS"); case IEEE80211_REASON_MESH_CHAN_SWITCH_REG: return ("the mesh STA performs channel switch to meet " "regulatory requirements"); case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC: return ("the mesh STA performs channel switch with " "unspecified reason"); default: return ("reserved/unknown"); } } static void beacon_miss(void *, int); static void beacon_swmiss(void *, int); static void parent_updown(void *, int); static void update_mcast(void *, int); static void update_promisc(void *, int); static void update_channel(void *, int); static void update_chw(void *, int); static void vap_update_wme(void *, int); static void restart_vaps(void *, int); static void ieee80211_newstate_cb(void *, int); static int null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); m_freem(m); return ENETDOWN; } void ieee80211_proto_attach(struct ieee80211com *ic) { uint8_t hdrlen; /* override the 802.3 setting */ hdrlen = ic->ic_headroom + sizeof(struct ieee80211_qosframe_addr4) + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN; /* XXX no way to recalculate on ifdetach */ if (ALIGN(hdrlen) > max_linkhdr) { /* XXX sanity check... */ max_linkhdr = ALIGN(hdrlen); max_hdr = max_linkhdr + max_protohdr; max_datalen = MHLEN - max_hdr; } ic->ic_protmode = IEEE80211_PROT_CTSONLY; TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic); ic->ic_wme.wme_hipri_switch_hysteresis = AGGRESSIVE_MODE_SWITCH_HYSTERESIS; /* initialize management frame handlers */ ic->ic_send_mgmt = ieee80211_send_mgmt; ic->ic_raw_xmit = null_raw_xmit; ieee80211_adhoc_attach(ic); ieee80211_sta_attach(ic); ieee80211_wds_attach(ic); ieee80211_hostap_attach(ic); #ifdef IEEE80211_SUPPORT_MESH ieee80211_mesh_attach(ic); #endif ieee80211_monitor_attach(ic); } void ieee80211_proto_detach(struct ieee80211com *ic) { ieee80211_monitor_detach(ic); #ifdef IEEE80211_SUPPORT_MESH ieee80211_mesh_detach(ic); #endif ieee80211_hostap_detach(ic); ieee80211_wds_detach(ic); ieee80211_adhoc_detach(ic); ieee80211_sta_detach(ic); } static void null_update_beacon(struct ieee80211vap *vap, int item) { } void ieee80211_proto_vattach(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = vap->iv_ifp; int i; /* override the 802.3 setting */ ifp->if_hdrlen = ic->ic_headroom + sizeof(struct ieee80211_qosframe_addr4) + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN; vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; vap->iv_bmiss_max = IEEE80211_BMISS_MAX; callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); callout_init(&vap->iv_mgtsend, 1); TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap); /* * Install default tx rate handling: no fixed rate, lowest * supported rate for mgmt and multicast frames. Default * max retry count. These settings can be changed by the * driver and/or user applications. */ for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; /* * Setting the management rate to MCS 0 assumes that the * BSS Basic rate set is empty and the BSS Basic MCS set * is not. * * Since we're not checking this, default to the lowest * defined rate for this mode. * * At least one 11n AP (DLINK DIR-825) is reported to drop * some MCS management traffic (eg BA response frames.) * * See also: 9.6.0 of the 802.11n-2009 specification. */ #ifdef NOTYET if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; } else { vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; } #endif vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; } vap->iv_roaming = IEEE80211_ROAMING_AUTO; vap->iv_update_beacon = null_update_beacon; vap->iv_deliver_data = ieee80211_deliver_data; /* attach support for operating mode */ ic->ic_vattach[vap->iv_opmode](vap); } void ieee80211_proto_vdetach(struct ieee80211vap *vap) { #define FREEAPPIE(ie) do { \ if (ie != NULL) \ IEEE80211_FREE(ie, M_80211_NODE_IE); \ } while (0) /* * Detach operating mode module. */ if (vap->iv_opdetach != NULL) vap->iv_opdetach(vap); /* * This should not be needed as we detach when reseting * the state but be conservative here since the * authenticator may do things like spawn kernel threads. */ if (vap->iv_auth->ia_detach != NULL) vap->iv_auth->ia_detach(vap); /* * Detach any ACL'ator. */ if (vap->iv_acl != NULL) vap->iv_acl->iac_detach(vap); FREEAPPIE(vap->iv_appie_beacon); FREEAPPIE(vap->iv_appie_probereq); FREEAPPIE(vap->iv_appie_proberesp); FREEAPPIE(vap->iv_appie_assocreq); FREEAPPIE(vap->iv_appie_assocresp); FREEAPPIE(vap->iv_appie_wpa); #undef FREEAPPIE } /* * Simple-minded authenticator module support. */ #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) /* XXX well-known names */ static const char *auth_modnames[IEEE80211_AUTH_MAX] = { "wlan_internal", /* IEEE80211_AUTH_NONE */ "wlan_internal", /* IEEE80211_AUTH_OPEN */ "wlan_internal", /* IEEE80211_AUTH_SHARED */ "wlan_xauth", /* IEEE80211_AUTH_8021X */ "wlan_internal", /* IEEE80211_AUTH_AUTO */ "wlan_xauth", /* IEEE80211_AUTH_WPA */ }; static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; static const struct ieee80211_authenticator auth_internal = { .ia_name = "wlan_internal", .ia_attach = NULL, .ia_detach = NULL, .ia_node_join = NULL, .ia_node_leave = NULL, }; /* * Setup internal authenticators once; they are never unregistered. */ static void ieee80211_auth_setup(void) { ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); } SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); const struct ieee80211_authenticator * ieee80211_authenticator_get(int auth) { if (auth >= IEEE80211_AUTH_MAX) return NULL; if (authenticators[auth] == NULL) ieee80211_load_module(auth_modnames[auth]); return authenticators[auth]; } void ieee80211_authenticator_register(int type, const struct ieee80211_authenticator *auth) { if (type >= IEEE80211_AUTH_MAX) return; authenticators[type] = auth; } void ieee80211_authenticator_unregister(int type) { if (type >= IEEE80211_AUTH_MAX) return; authenticators[type] = NULL; } /* * Very simple-minded ACL module support. */ /* XXX just one for now */ static const struct ieee80211_aclator *acl = NULL; void ieee80211_aclator_register(const struct ieee80211_aclator *iac) { printf("wlan: %s acl policy registered\n", iac->iac_name); acl = iac; } void ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) { if (acl == iac) acl = NULL; printf("wlan: %s acl policy unregistered\n", iac->iac_name); } const struct ieee80211_aclator * ieee80211_aclator_get(const char *name) { if (acl == NULL) ieee80211_load_module("wlan_acl"); return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; } void ieee80211_print_essid(const uint8_t *essid, int len) { const uint8_t *p; int i; if (len > IEEE80211_NWID_LEN) len = IEEE80211_NWID_LEN; /* determine printable or not */ for (i = 0, p = essid; i < len; i++, p++) { if (*p < ' ' || *p > 0x7e) break; } if (i == len) { printf("\""); for (i = 0, p = essid; i < len; i++, p++) printf("%c", *p); printf("\""); } else { printf("0x"); for (i = 0, p = essid; i < len; i++, p++) printf("%02x", *p); } } void ieee80211_dump_pkt(struct ieee80211com *ic, const uint8_t *buf, int len, int rate, int rssi) { const struct ieee80211_frame *wh; int i; wh = (const struct ieee80211_frame *)buf; switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { case IEEE80211_FC1_DIR_NODS: printf("NODS %s", ether_sprintf(wh->i_addr2)); printf("->%s", ether_sprintf(wh->i_addr1)); printf("(%s)", ether_sprintf(wh->i_addr3)); break; case IEEE80211_FC1_DIR_TODS: printf("TODS %s", ether_sprintf(wh->i_addr2)); printf("->%s", ether_sprintf(wh->i_addr3)); printf("(%s)", ether_sprintf(wh->i_addr1)); break; case IEEE80211_FC1_DIR_FROMDS: printf("FRDS %s", ether_sprintf(wh->i_addr3)); printf("->%s", ether_sprintf(wh->i_addr1)); printf("(%s)", ether_sprintf(wh->i_addr2)); break; case IEEE80211_FC1_DIR_DSTODS: printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); printf("->%s", ether_sprintf(wh->i_addr3)); printf("(%s", ether_sprintf(wh->i_addr2)); printf("->%s)", ether_sprintf(wh->i_addr1)); break; } switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { case IEEE80211_FC0_TYPE_DATA: printf(" data"); break; case IEEE80211_FC0_TYPE_MGT: printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0])); break; default: printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); break; } if (IEEE80211_QOS_HAS_SEQ(wh)) { const struct ieee80211_qosframe *qwh = (const struct ieee80211_qosframe *)buf; printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); } if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { int off; off = ieee80211_anyhdrspace(ic, wh); printf(" WEP [IV %.02x %.02x %.02x", buf[off+0], buf[off+1], buf[off+2]); if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) printf(" %.02x %.02x %.02x", buf[off+4], buf[off+5], buf[off+6]); printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); } if (rate >= 0) printf(" %dM", rate / 2); if (rssi >= 0) printf(" +%d", rssi); printf("\n"); if (len > 0) { for (i = 0; i < len; i++) { if ((i & 1) == 0) printf(" "); printf("%02x", buf[i]); } printf("\n"); } } static __inline int findrix(const struct ieee80211_rateset *rs, int r) { int i; for (i = 0; i < rs->rs_nrates; i++) if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) return i; return -1; } int ieee80211_fix_rate(struct ieee80211_node *ni, struct ieee80211_rateset *nrs, int flags) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; int i, j, rix, error; int okrate, badrate, fixedrate, ucastrate; const struct ieee80211_rateset *srs; uint8_t r; error = 0; okrate = badrate = 0; ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; if (ucastrate != IEEE80211_FIXED_RATE_NONE) { /* * Workaround awkwardness with fixed rate. We are called * to check both the legacy rate set and the HT rate set * but we must apply any legacy fixed rate check only to the * legacy rate set and vice versa. We cannot tell what type * of rate set we've been given (legacy or HT) but we can * distinguish the fixed rate type (MCS have 0x80 set). * So to deal with this the caller communicates whether to * check MCS or legacy rate using the flags and we use the * type of any fixed rate to avoid applying an MCS to a * legacy rate and vice versa. */ if (ucastrate & 0x80) { if (flags & IEEE80211_F_DOFRATE) flags &= ~IEEE80211_F_DOFRATE; } else if ((ucastrate & 0x80) == 0) { if (flags & IEEE80211_F_DOFMCS) flags &= ~IEEE80211_F_DOFMCS; } /* NB: required to make MCS match below work */ ucastrate &= IEEE80211_RATE_VAL; } fixedrate = IEEE80211_FIXED_RATE_NONE; /* * XXX we are called to process both MCS and legacy rates; * we must use the appropriate basic rate set or chaos will * ensue; for now callers that want MCS must supply * IEEE80211_F_DOBRS; at some point we'll need to split this * function so there are two variants, one for MCS and one * for legacy rates. */ if (flags & IEEE80211_F_DOBRS) srs = (const struct ieee80211_rateset *) ieee80211_get_suphtrates(ic, ni->ni_chan); else srs = ieee80211_get_suprates(ic, ni->ni_chan); for (i = 0; i < nrs->rs_nrates; ) { if (flags & IEEE80211_F_DOSORT) { /* * Sort rates. */ for (j = i + 1; j < nrs->rs_nrates; j++) { if (IEEE80211_RV(nrs->rs_rates[i]) > IEEE80211_RV(nrs->rs_rates[j])) { r = nrs->rs_rates[i]; nrs->rs_rates[i] = nrs->rs_rates[j]; nrs->rs_rates[j] = r; } } } r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; badrate = r; /* * Check for fixed rate. */ if (r == ucastrate) fixedrate = r; /* * Check against supported rates. */ rix = findrix(srs, r); if (flags & IEEE80211_F_DONEGO) { if (rix < 0) { /* * A rate in the node's rate set is not * supported. If this is a basic rate and we * are operating as a STA then this is an error. * Otherwise we just discard/ignore the rate. */ if ((flags & IEEE80211_F_JOIN) && (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) error++; } else if ((flags & IEEE80211_F_JOIN) == 0) { /* * Overwrite with the supported rate * value so any basic rate bit is set. */ nrs->rs_rates[i] = srs->rs_rates[rix]; } } if ((flags & IEEE80211_F_DODEL) && rix < 0) { /* * Delete unacceptable rates. */ nrs->rs_nrates--; for (j = i; j < nrs->rs_nrates; j++) nrs->rs_rates[j] = nrs->rs_rates[j + 1]; nrs->rs_rates[j] = 0; continue; } if (rix >= 0) okrate = nrs->rs_rates[i]; i++; } if (okrate == 0 || error != 0 || ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && fixedrate != ucastrate)) { IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); return badrate | IEEE80211_RATE_BASIC; } else return IEEE80211_RV(okrate); } /* * Reset 11g-related state. */ void ieee80211_reset_erp(struct ieee80211com *ic) { ic->ic_flags &= ~IEEE80211_F_USEPROT; ic->ic_nonerpsta = 0; ic->ic_longslotsta = 0; /* * Short slot time is enabled only when operating in 11g * and not in an IBSS. We must also honor whether or not * the driver is capable of doing it. */ ieee80211_set_shortslottime(ic, IEEE80211_IS_CHAN_A(ic->ic_curchan) || IEEE80211_IS_CHAN_HT(ic->ic_curchan) || (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && ic->ic_opmode == IEEE80211_M_HOSTAP && (ic->ic_caps & IEEE80211_C_SHSLOT))); /* * Set short preamble and ERP barker-preamble flags. */ if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { ic->ic_flags |= IEEE80211_F_SHPREAMBLE; ic->ic_flags &= ~IEEE80211_F_USEBARKER; } else { ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; ic->ic_flags |= IEEE80211_F_USEBARKER; } } /* * Set the short slot time state and notify the driver. */ void ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff) { if (onoff) ic->ic_flags |= IEEE80211_F_SHSLOT; else ic->ic_flags &= ~IEEE80211_F_SHSLOT; /* notify driver */ if (ic->ic_updateslot != NULL) ic->ic_updateslot(ic); } /* * Check if the specified rate set supports ERP. * NB: the rate set is assumed to be sorted. */ int ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) { static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; int i, j; if (rs->rs_nrates < nitems(rates)) return 0; for (i = 0; i < nitems(rates); i++) { for (j = 0; j < rs->rs_nrates; j++) { int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; if (rates[i] == r) goto next; if (r > rates[i]) return 0; } return 0; next: ; } return 1; } /* * Mark the basic rates for the rate table based on the * operating mode. For real 11g we mark all the 11b rates * and 6, 12, and 24 OFDM. For 11b compatibility we mark only * 11b rates. There's also a pseudo 11a-mode used to mark only * the basic OFDM rates. */ static void setbasicrates(struct ieee80211_rateset *rs, enum ieee80211_phymode mode, int add) { static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, /* NB: mixed b/g */ [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, /* NB: mixed b/g */ [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, /* NB: mixed b/g */ [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } }, [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } }, }; int i, j; for (i = 0; i < rs->rs_nrates; i++) { if (!add) rs->rs_rates[i] &= IEEE80211_RATE_VAL; for (j = 0; j < basic[mode].rs_nrates; j++) if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { rs->rs_rates[i] |= IEEE80211_RATE_BASIC; break; } } } /* * Set the basic rates in a rate set. */ void ieee80211_setbasicrates(struct ieee80211_rateset *rs, enum ieee80211_phymode mode) { setbasicrates(rs, mode, 0); } /* * Add basic rates to a rate set. */ void ieee80211_addbasicrates(struct ieee80211_rateset *rs, enum ieee80211_phymode mode) { setbasicrates(rs, mode, 1); } /* * WME protocol support. * * The default 11a/b/g/n parameters come from the WiFi Alliance WMM * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n * Draft 2.0 Test Plan (Appendix D). * * Static/Dynamic Turbo mode settings come from Atheros. */ typedef struct phyParamType { uint8_t aifsn; uint8_t logcwmin; uint8_t logcwmax; uint16_t txopLimit; uint8_t acm; } paramType; static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 }, }; static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 }, }; static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 }, [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 }, }; static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 }, [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 }, }; static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, }; static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, }; static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, }; static void _setifsparams(struct wmeParams *wmep, const paramType *phy) { wmep->wmep_aifsn = phy->aifsn; wmep->wmep_logcwmin = phy->logcwmin; wmep->wmep_logcwmax = phy->logcwmax; wmep->wmep_txopLimit = phy->txopLimit; } static void setwmeparams(struct ieee80211vap *vap, const char *type, int ac, struct wmeParams *wmep, const paramType *phy) { wmep->wmep_acm = phy->acm; _setifsparams(wmep, phy); IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", ieee80211_wme_acnames[ac], type, wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, wmep->wmep_logcwmax, wmep->wmep_txopLimit); } static void ieee80211_wme_initparams_locked(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_wme_state *wme = &ic->ic_wme; const paramType *pPhyParam, *pBssPhyParam; struct wmeParams *wmep; enum ieee80211_phymode mode; int i; IEEE80211_LOCK_ASSERT(ic); if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) return; /* * Clear the wme cap_info field so a qoscount from a previous * vap doesn't confuse later code which only parses the beacon * field and updates hardware when said field changes. * Otherwise the hardware is programmed with defaults, not what * the beacon actually announces. */ wme->wme_wmeChanParams.cap_info = 0; /* * Select mode; we can be called early in which case we * always use auto mode. We know we'll be called when * entering the RUN state with bsschan setup properly * so state will eventually get set correctly */ if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) mode = ieee80211_chan2mode(ic->ic_bsschan); else mode = IEEE80211_MODE_AUTO; for (i = 0; i < WME_NUM_AC; i++) { switch (i) { case WME_AC_BK: pPhyParam = &phyParamForAC_BK[mode]; pBssPhyParam = &phyParamForAC_BK[mode]; break; case WME_AC_VI: pPhyParam = &phyParamForAC_VI[mode]; pBssPhyParam = &bssPhyParamForAC_VI[mode]; break; case WME_AC_VO: pPhyParam = &phyParamForAC_VO[mode]; pBssPhyParam = &bssPhyParamForAC_VO[mode]; break; case WME_AC_BE: default: pPhyParam = &phyParamForAC_BE[mode]; pBssPhyParam = &bssPhyParamForAC_BE[mode]; break; } wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; if (ic->ic_opmode == IEEE80211_M_HOSTAP) { setwmeparams(vap, "chan", i, wmep, pPhyParam); } else { setwmeparams(vap, "chan", i, wmep, pBssPhyParam); } wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); } /* NB: check ic_bss to avoid NULL deref on initial attach */ if (vap->iv_bss != NULL) { /* * Calculate aggressive mode switching threshold based * on beacon interval. This doesn't need locking since * we're only called before entering the RUN state at * which point we start sending beacon frames. */ wme->wme_hipri_switch_thresh = (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; wme->wme_flags &= ~WME_F_AGGRMODE; ieee80211_wme_updateparams(vap); } } void ieee80211_wme_initparams(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); ieee80211_wme_initparams_locked(vap); IEEE80211_UNLOCK(ic); } /* * Update WME parameters for ourself and the BSS. */ void ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) { static const paramType aggrParam[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ }; struct ieee80211com *ic = vap->iv_ic; struct ieee80211_wme_state *wme = &ic->ic_wme; const struct wmeParams *wmep; struct wmeParams *chanp, *bssp; enum ieee80211_phymode mode; int i; int do_aggrmode = 0; /* * Set up the channel access parameters for the physical * device. First populate the configured settings. */ for (i = 0; i < WME_NUM_AC; i++) { chanp = &wme->wme_chanParams.cap_wmeParams[i]; wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; chanp->wmep_aifsn = wmep->wmep_aifsn; chanp->wmep_logcwmin = wmep->wmep_logcwmin; chanp->wmep_logcwmax = wmep->wmep_logcwmax; chanp->wmep_txopLimit = wmep->wmep_txopLimit; chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; chanp->wmep_aifsn = wmep->wmep_aifsn; chanp->wmep_logcwmin = wmep->wmep_logcwmin; chanp->wmep_logcwmax = wmep->wmep_logcwmax; chanp->wmep_txopLimit = wmep->wmep_txopLimit; } /* * Select mode; we can be called early in which case we * always use auto mode. We know we'll be called when * entering the RUN state with bsschan setup properly * so state will eventually get set correctly */ if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) mode = ieee80211_chan2mode(ic->ic_bsschan); else mode = IEEE80211_MODE_AUTO; /* * This implements aggressive mode as found in certain * vendors' AP's. When there is significant high * priority (VI/VO) traffic in the BSS throttle back BE * traffic by using conservative parameters. Otherwise * BE uses aggressive params to optimize performance of * legacy/non-QoS traffic. */ /* Hostap? Only if aggressive mode is enabled */ if (vap->iv_opmode == IEEE80211_M_HOSTAP && (wme->wme_flags & WME_F_AGGRMODE) != 0) do_aggrmode = 1; /* * Station? Only if we're in a non-QoS BSS. */ else if ((vap->iv_opmode == IEEE80211_M_STA && (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) do_aggrmode = 1; /* * IBSS? Only if we we have WME enabled. */ else if ((vap->iv_opmode == IEEE80211_M_IBSS) && (vap->iv_flags & IEEE80211_F_WME)) do_aggrmode = 1; /* * If WME is disabled on this VAP, default to aggressive mode * regardless of the configuration. */ if ((vap->iv_flags & IEEE80211_F_WME) == 0) do_aggrmode = 1; /* XXX WDS? */ /* XXX MBSS? */ if (do_aggrmode) { chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; chanp->wmep_logcwmin = bssp->wmep_logcwmin = aggrParam[mode].logcwmin; chanp->wmep_logcwmax = bssp->wmep_logcwmax = aggrParam[mode].logcwmax; chanp->wmep_txopLimit = bssp->wmep_txopLimit = (vap->iv_flags & IEEE80211_F_BURST) ? aggrParam[mode].txopLimit : 0; IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, chanp->wmep_logcwmax, chanp->wmep_txopLimit); } /* * Change the contention window based on the number of associated * stations. If the number of associated stations is 1 and * aggressive mode is enabled, lower the contention window even * further. */ if (vap->iv_opmode == IEEE80211_M_HOSTAP && ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = 3, [IEEE80211_MODE_11A] = 3, [IEEE80211_MODE_11B] = 4, [IEEE80211_MODE_11G] = 3, [IEEE80211_MODE_FH] = 4, [IEEE80211_MODE_TURBO_A] = 3, [IEEE80211_MODE_TURBO_G] = 3, [IEEE80211_MODE_STURBO_A] = 3, [IEEE80211_MODE_HALF] = 3, [IEEE80211_MODE_QUARTER] = 3, [IEEE80211_MODE_11NA] = 3, [IEEE80211_MODE_11NG] = 3, [IEEE80211_MODE_VHT_2GHZ] = 3, [IEEE80211_MODE_VHT_5GHZ] = 3, }; chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "update %s (chan+bss) logcwmin %u\n", ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); } /* * Arrange for the beacon update. * * XXX what about MBSS, WDS? */ if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS) { /* * Arrange for a beacon update and bump the parameter * set number so associated stations load the new values. */ wme->wme_bssChanParams.cap_info = (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); } /* schedule the deferred WME update */ ieee80211_runtask(ic, &vap->iv_wme_task); IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "%s: WME params updated, cap_info 0x%x\n", __func__, vap->iv_opmode == IEEE80211_M_STA ? wme->wme_wmeChanParams.cap_info : wme->wme_bssChanParams.cap_info); } void ieee80211_wme_updateparams(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; if (ic->ic_caps & IEEE80211_C_WME) { IEEE80211_LOCK(ic); ieee80211_wme_updateparams_locked(vap); IEEE80211_UNLOCK(ic); } } /* * Fetch the WME parameters for the given VAP. * * When net80211 grows p2p, etc support, this may return different * parameters for each VAP. */ void ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp) { memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp)); } /* * For NICs which only support one set of WME paramaters (ie, softmac NICs) * there may be different VAP WME parameters but only one is "active". * This returns the "NIC" WME parameters for the currently active * context. */ void ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp) { memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp)); } /* * Return whether to use QoS on a given WME queue. * * This is intended to be called from the transmit path of softmac drivers * which are setting NoAck bits in transmit descriptors. * * Ideally this would be set in some transmit field before the packet is * queued to the driver but net80211 isn't quite there yet. */ int ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac) { /* Bounds/sanity check */ if (ac < 0 || ac >= WME_NUM_AC) return (0); /* Again, there's only one global context for now */ return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy); } static void parent_updown(void *arg, int npending) { struct ieee80211com *ic = arg; ic->ic_parent(ic); } static void update_mcast(void *arg, int npending) { struct ieee80211com *ic = arg; ic->ic_update_mcast(ic); } static void update_promisc(void *arg, int npending) { struct ieee80211com *ic = arg; ic->ic_update_promisc(ic); } static void update_channel(void *arg, int npending) { struct ieee80211com *ic = arg; ic->ic_set_channel(ic); ieee80211_radiotap_chan_change(ic); } static void update_chw(void *arg, int npending) { struct ieee80211com *ic = arg; /* * XXX should we defer the channel width _config_ update until now? */ ic->ic_update_chw(ic); } /* * Deferred WME update. * * In preparation for per-VAP WME configuration, call the VAP * method if the VAP requires it. Otherwise, just call the * older global method. There isn't a per-VAP WME configuration * just yet so for now just use the global configuration. */ static void vap_update_wme(void *arg, int npending) { struct ieee80211vap *vap = arg; struct ieee80211com *ic = vap->iv_ic; if (vap->iv_wme_update != NULL) vap->iv_wme_update(vap, ic->ic_wme.wme_chanParams.cap_wmeParams); else ic->ic_wme.wme_update(ic); } static void restart_vaps(void *arg, int npending) { struct ieee80211com *ic = arg; ieee80211_suspend_all(ic); ieee80211_resume_all(ic); } /* * Block until the parent is in a known state. This is * used after any operations that dispatch a task (e.g. * to auto-configure the parent device up/down). */ void ieee80211_waitfor_parent(struct ieee80211com *ic) { taskqueue_block(ic->ic_tq); ieee80211_draintask(ic, &ic->ic_parent_task); ieee80211_draintask(ic, &ic->ic_mcast_task); ieee80211_draintask(ic, &ic->ic_promisc_task); ieee80211_draintask(ic, &ic->ic_chan_task); ieee80211_draintask(ic, &ic->ic_bmiss_task); ieee80211_draintask(ic, &ic->ic_chw_task); taskqueue_unblock(ic->ic_tq); } /* * Check to see whether the current channel needs reset. * * Some devices don't handle being given an invalid channel * in their operating mode very well (eg wpi(4) will throw a * firmware exception.) * * Return 0 if we're ok, 1 if the channel needs to be reset. * * See PR kern/202502. */ static int ieee80211_start_check_reset_chan(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; if ((vap->iv_opmode == IEEE80211_M_IBSS && IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || (vap->iv_opmode == IEEE80211_M_HOSTAP && IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) return (1); return (0); } /* * Reset the curchan to a known good state. */ static void ieee80211_start_reset_chan(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; ic->ic_curchan = &ic->ic_channels[0]; } /* * Start a vap running. If this is the first vap to be * set running on the underlying device then we * automatically bring the device up. */ void ieee80211_start_locked(struct ieee80211vap *vap) { struct ifnet *ifp = vap->iv_ifp; struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK_ASSERT(ic); IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "start running, %d vaps running\n", ic->ic_nrunning); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { /* * Mark us running. Note that it's ok to do this first; * if we need to bring the parent device up we defer that * to avoid dropping the com lock. We expect the device * to respond to being marked up by calling back into us * through ieee80211_start_all at which point we'll come * back in here and complete the work. */ ifp->if_drv_flags |= IFF_DRV_RUNNING; /* * We are not running; if this we are the first vap * to be brought up auto-up the parent if necessary. */ if (ic->ic_nrunning++ == 0) { /* reset the channel to a known good channel */ if (ieee80211_start_check_reset_chan(vap)) ieee80211_start_reset_chan(vap); IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "%s: up parent %s\n", __func__, ic->ic_name); ieee80211_runtask(ic, &ic->ic_parent_task); return; } } /* * If the parent is up and running, then kick the * 802.11 state machine as appropriate. */ if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { if (vap->iv_opmode == IEEE80211_M_STA) { #if 0 /* XXX bypasses scan too easily; disable for now */ /* * Try to be intelligent about clocking the state * machine. If we're currently in RUN state then * we should be able to apply any new state/parameters * simply by re-associating. Otherwise we need to * re-scan to select an appropriate ap. */ if (vap->iv_state >= IEEE80211_S_RUN) ieee80211_new_state_locked(vap, IEEE80211_S_ASSOC, 1); else #endif ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 0); } else { /* * For monitor+wds mode there's nothing to do but * start running. Otherwise if this is the first * vap to be brought up, start a scan which may be * preempted if the station is locked to a particular * channel. */ vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; if (vap->iv_opmode == IEEE80211_M_MONITOR || vap->iv_opmode == IEEE80211_M_WDS) ieee80211_new_state_locked(vap, IEEE80211_S_RUN, -1); else ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 0); } } } /* * Start a single vap. */ void ieee80211_init(void *arg) { struct ieee80211vap *vap = arg; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "%s\n", __func__); IEEE80211_LOCK(vap->iv_ic); ieee80211_start_locked(vap); IEEE80211_UNLOCK(vap->iv_ic); } /* * Start all runnable vap's on a device. */ void ieee80211_start_all(struct ieee80211com *ic) { struct ieee80211vap *vap; IEEE80211_LOCK(ic); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { struct ifnet *ifp = vap->iv_ifp; if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ ieee80211_start_locked(vap); } IEEE80211_UNLOCK(ic); } /* * Stop a vap. We force it down using the state machine * then mark it's ifnet not running. If this is the last * vap running on the underlying device then we close it * too to insure it will be properly initialized when the * next vap is brought up. */ void ieee80211_stop_locked(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = vap->iv_ifp; IEEE80211_LOCK_ASSERT(ic); IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "stop running, %d vaps running\n", ic->ic_nrunning); ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); if (ifp->if_drv_flags & IFF_DRV_RUNNING) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ if (--ic->ic_nrunning == 0) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "down parent %s\n", ic->ic_name); ieee80211_runtask(ic, &ic->ic_parent_task); } } } void ieee80211_stop(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); ieee80211_stop_locked(vap); IEEE80211_UNLOCK(ic); } /* * Stop all vap's running on a device. */ void ieee80211_stop_all(struct ieee80211com *ic) { struct ieee80211vap *vap; IEEE80211_LOCK(ic); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { struct ifnet *ifp = vap->iv_ifp; if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ ieee80211_stop_locked(vap); } IEEE80211_UNLOCK(ic); ieee80211_waitfor_parent(ic); } /* * Stop all vap's running on a device and arrange * for those that were running to be resumed. */ void ieee80211_suspend_all(struct ieee80211com *ic) { struct ieee80211vap *vap; IEEE80211_LOCK(ic); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { struct ifnet *ifp = vap->iv_ifp; if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; ieee80211_stop_locked(vap); } } IEEE80211_UNLOCK(ic); ieee80211_waitfor_parent(ic); } /* * Start all vap's marked for resume. */ void ieee80211_resume_all(struct ieee80211com *ic) { struct ieee80211vap *vap; IEEE80211_LOCK(ic); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { struct ifnet *ifp = vap->iv_ifp; if (!IFNET_IS_UP_RUNNING(ifp) && (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; ieee80211_start_locked(vap); } } IEEE80211_UNLOCK(ic); } /* * Restart all vap's running on a device. */ void ieee80211_restart_all(struct ieee80211com *ic) { /* * NB: do not use ieee80211_runtask here, we will * block & drain net80211 taskqueue. */ taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task); } void ieee80211_beacon_miss(struct ieee80211com *ic) { IEEE80211_LOCK(ic); if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { /* Process in a taskq, the handler may reenter the driver */ ieee80211_runtask(ic, &ic->ic_bmiss_task); } IEEE80211_UNLOCK(ic); } static void beacon_miss(void *arg, int npending) { struct ieee80211com *ic = arg; struct ieee80211vap *vap; IEEE80211_LOCK(ic); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { /* * We only pass events through for sta vap's in RUN+ state; * may be too restrictive but for now this saves all the * handlers duplicating these checks. */ if (vap->iv_opmode == IEEE80211_M_STA && vap->iv_state >= IEEE80211_S_RUN && vap->iv_bmiss != NULL) vap->iv_bmiss(vap); } IEEE80211_UNLOCK(ic); } static void beacon_swmiss(void *arg, int npending) { struct ieee80211vap *vap = arg; struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); if (vap->iv_state >= IEEE80211_S_RUN) { /* XXX Call multiple times if npending > zero? */ vap->iv_bmiss(vap); } IEEE80211_UNLOCK(ic); } /* * Software beacon miss handling. Check if any beacons * were received in the last period. If not post a * beacon miss; otherwise reset the counter. */ void ieee80211_swbmiss(void *arg) { struct ieee80211vap *vap = arg; struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK_ASSERT(ic); KASSERT(vap->iv_state >= IEEE80211_S_RUN, ("wrong state %d", vap->iv_state)); if (ic->ic_flags & IEEE80211_F_SCAN) { /* * If scanning just ignore and reset state. If we get a * bmiss after coming out of scan because we haven't had * time to receive a beacon then we should probe the AP * before posting a real bmiss (unless iv_bmiss_max has * been artifiically lowered). A cleaner solution might * be to disable the timer on scan start/end but to handle * case of multiple sta vap's we'd need to disable the * timers of all affected vap's. */ vap->iv_swbmiss_count = 0; } else if (vap->iv_swbmiss_count == 0) { if (vap->iv_bmiss != NULL) ieee80211_runtask(ic, &vap->iv_swbmiss_task); } else vap->iv_swbmiss_count = 0; callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, ieee80211_swbmiss, vap); } /* * Start an 802.11h channel switch. We record the parameters, * mark the operation pending, notify each vap through the * beacon update mechanism so it can update the beacon frame * contents, and then switch vap's to CSA state to block outbound * traffic. Devices that handle CSA directly can use the state * switch to do the right thing so long as they call * ieee80211_csa_completeswitch when it's time to complete the * channel change. Devices that depend on the net80211 layer can * use ieee80211_beacon_update to handle the countdown and the * channel switch. */ void ieee80211_csa_startswitch(struct ieee80211com *ic, struct ieee80211_channel *c, int mode, int count) { struct ieee80211vap *vap; IEEE80211_LOCK_ASSERT(ic); ic->ic_csa_newchan = c; ic->ic_csa_mode = mode; ic->ic_csa_count = count; ic->ic_flags |= IEEE80211_F_CSAPENDING; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS || vap->iv_opmode == IEEE80211_M_MBSS) ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); /* switch to CSA state to block outbound traffic */ if (vap->iv_state == IEEE80211_S_RUN) ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); } ieee80211_notify_csa(ic, c, mode, count); } /* * Complete the channel switch by transitioning all CSA VAPs to RUN. * This is called by both the completion and cancellation functions * so each VAP is placed back in the RUN state and can thus transmit. */ static void csa_completeswitch(struct ieee80211com *ic) { struct ieee80211vap *vap; ic->ic_csa_newchan = NULL; ic->ic_flags &= ~IEEE80211_F_CSAPENDING; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_state == IEEE80211_S_CSA) ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); } /* * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. * We clear state and move all vap's in CSA state to RUN state * so they can again transmit. * * Although this may not be completely correct, update the BSS channel * for each VAP to the newly configured channel. The setcurchan sets * the current operating channel for the interface (so the radio does * switch over) but the VAP BSS isn't updated, leading to incorrectly * reported information via ioctl. */ void ieee80211_csa_completeswitch(struct ieee80211com *ic) { struct ieee80211vap *vap; IEEE80211_LOCK_ASSERT(ic); KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); ieee80211_setcurchan(ic, ic->ic_csa_newchan); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_state == IEEE80211_S_CSA) vap->iv_bss->ni_chan = ic->ic_curchan; csa_completeswitch(ic); } /* * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. * We clear state and move all vap's in CSA state to RUN state * so they can again transmit. */ void ieee80211_csa_cancelswitch(struct ieee80211com *ic) { IEEE80211_LOCK_ASSERT(ic); csa_completeswitch(ic); } /* * Complete a DFS CAC started by ieee80211_dfs_cac_start. * We clear state and move all vap's in CAC state to RUN state. */ void ieee80211_cac_completeswitch(struct ieee80211vap *vap0) { struct ieee80211com *ic = vap0->iv_ic; struct ieee80211vap *vap; IEEE80211_LOCK(ic); /* * Complete CAC state change for lead vap first; then * clock all the other vap's waiting. */ KASSERT(vap0->iv_state == IEEE80211_S_CAC, ("wrong state %d", vap0->iv_state)); ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_state == IEEE80211_S_CAC && vap != vap0) ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); IEEE80211_UNLOCK(ic); } /* * Force all vap's other than the specified vap to the INIT state * and mark them as waiting for a scan to complete. These vaps * will be brought up when the scan completes and the scanning vap * reaches RUN state by wakeupwaiting. */ static void markwaiting(struct ieee80211vap *vap0) { struct ieee80211com *ic = vap0->iv_ic; struct ieee80211vap *vap; IEEE80211_LOCK_ASSERT(ic); /* * A vap list entry can not disappear since we are running on the * taskqueue and a vap destroy will queue and drain another state * change task. */ TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { if (vap == vap0) continue; if (vap->iv_state != IEEE80211_S_INIT) { /* NB: iv_newstate may drop the lock */ vap->iv_newstate(vap, IEEE80211_S_INIT, 0); IEEE80211_LOCK_ASSERT(ic); vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; } } } /* * Wakeup all vap's waiting for a scan to complete. This is the * companion to markwaiting (above) and is used to coordinate * multiple vaps scanning. * This is called from the state taskqueue. */ static void wakeupwaiting(struct ieee80211vap *vap0) { struct ieee80211com *ic = vap0->iv_ic; struct ieee80211vap *vap; IEEE80211_LOCK_ASSERT(ic); /* * A vap list entry can not disappear since we are running on the * taskqueue and a vap destroy will queue and drain another state * change task. */ TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { if (vap == vap0) continue; if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; /* NB: sta's cannot go INIT->RUN */ /* NB: iv_newstate may drop the lock */ vap->iv_newstate(vap, vap->iv_opmode == IEEE80211_M_STA ? IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); IEEE80211_LOCK_ASSERT(ic); } } } /* * Handle post state change work common to all operating modes. */ static void ieee80211_newstate_cb(void *xvap, int npending) { struct ieee80211vap *vap = xvap; struct ieee80211com *ic = vap->iv_ic; enum ieee80211_state nstate, ostate; int arg, rc; IEEE80211_LOCK(ic); nstate = vap->iv_nstate; arg = vap->iv_nstate_arg; if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { /* * We have been requested to drop back to the INIT before * proceeding to the new state. */ /* Deny any state changes while we are here. */ vap->iv_nstate = IEEE80211_S_INIT; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s -> %s arg %d\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[vap->iv_nstate], arg); vap->iv_newstate(vap, vap->iv_nstate, 0); IEEE80211_LOCK_ASSERT(ic); vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT | IEEE80211_FEXT_STATEWAIT); /* enqueue new state transition after cancel_scan() task */ ieee80211_new_state_locked(vap, nstate, arg); goto done; } ostate = vap->iv_state; if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { /* * SCAN was forced; e.g. on beacon miss. Force other running * vap's to INIT state and mark them as waiting for the scan to * complete. This insures they don't interfere with our * scanning. Since we are single threaded the vaps can not * transition again while we are executing. * * XXX not always right, assumes ap follows sta */ markwaiting(vap); } IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s -> %s arg %d\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); rc = vap->iv_newstate(vap, nstate, arg); IEEE80211_LOCK_ASSERT(ic); vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; if (rc != 0) { /* State transition failed */ KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); KASSERT(nstate != IEEE80211_S_INIT, ("INIT state change failed")); IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s returned error %d\n", __func__, ieee80211_state_name[nstate], rc); goto done; } /* No actual transition, skip post processing */ if (ostate == nstate) goto done; if (nstate == IEEE80211_S_RUN) { /* * OACTIVE may be set on the vap if the upper layer * tried to transmit (e.g. IPv6 NDP) before we reach * RUN state. Clear it and restart xmit. * * Note this can also happen as a result of SLEEP->RUN * (i.e. coming out of power save mode). */ vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; /* * XXX TODO Kick-start a VAP queue - this should be a method! */ /* bring up any vaps waiting on us */ wakeupwaiting(vap); } else if (nstate == IEEE80211_S_INIT) { /* * Flush the scan cache if we did the last scan (XXX?) * and flush any frames on send queues from this vap. * Note the mgt q is used only for legacy drivers and * will go away shortly. */ ieee80211_scan_flush(vap); /* * XXX TODO: ic/vap queue flush */ } done: IEEE80211_UNLOCK(ic); } /* * Public interface for initiating a state machine change. * This routine single-threads the request and coordinates * the scheduling of multiple vaps for the purpose of selecting * an operating channel. Specifically the following scenarios * are handled: * o only one vap can be selecting a channel so on transition to * SCAN state if another vap is already scanning then * mark the caller for later processing and return without * doing anything (XXX? expectations by caller of synchronous operation) * o only one vap can be doing CAC of a channel so on transition to * CAC state if another vap is already scanning for radar then * mark the caller for later processing and return without * doing anything (XXX? expectations by caller of synchronous operation) * o if another vap is already running when a request is made * to SCAN then an operating channel has been chosen; bypass * the scan and just join the channel * * Note that the state change call is done through the iv_newstate * method pointer so any driver routine gets invoked. The driver * will normally call back into operating mode-specific * ieee80211_newstate routines (below) unless it needs to completely * bypass the state machine (e.g. because the firmware has it's * own idea how things should work). Bypassing the net80211 layer * is usually a mistake and indicates lack of proper integration * with the net80211 layer. */ int ieee80211_new_state_locked(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211vap *vp; enum ieee80211_state ostate; int nrunning, nscanning; IEEE80211_LOCK_ASSERT(ic); if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { if (vap->iv_nstate == IEEE80211_S_INIT || ((vap->iv_state == IEEE80211_S_INIT || (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) && vap->iv_nstate == IEEE80211_S_SCAN && nstate > IEEE80211_S_SCAN)) { /* * XXX The vap is being stopped/started, * do not allow any other state changes * until this is completed. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s -> %s (%s) transition discarded\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate], ieee80211_state_name[vap->iv_nstate]); return -1; } else if (vap->iv_state != vap->iv_nstate) { #if 0 /* Warn if the previous state hasn't completed. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: pending %s -> %s transition lost\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[vap->iv_nstate]); #else /* XXX temporarily enable to identify issues */ if_printf(vap->iv_ifp, "%s: pending %s -> %s transition lost\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[vap->iv_nstate]); #endif } } nrunning = nscanning = 0; /* XXX can track this state instead of calculating */ TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { if (vp != vap) { if (vp->iv_state >= IEEE80211_S_RUN) nrunning++; /* XXX doesn't handle bg scan */ /* NB: CAC+AUTH+ASSOC treated like SCAN */ else if (vp->iv_state > IEEE80211_S_INIT) nscanning++; } } ostate = vap->iv_state; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate], nrunning, nscanning); switch (nstate) { case IEEE80211_S_SCAN: if (ostate == IEEE80211_S_INIT) { /* * INIT -> SCAN happens on initial bringup. */ KASSERT(!(nscanning && nrunning), ("%d scanning and %d running", nscanning, nrunning)); if (nscanning) { /* * Someone is scanning, defer our state * change until the work has completed. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: defer %s -> %s\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; return 0; } if (nrunning) { /* * Someone is operating; just join the channel * they have chosen. */ /* XXX kill arg? */ /* XXX check each opmode, adhoc? */ if (vap->iv_opmode == IEEE80211_M_STA) nstate = IEEE80211_S_SCAN; else nstate = IEEE80211_S_RUN; #ifdef IEEE80211_DEBUG if (nstate != IEEE80211_S_SCAN) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: override, now %s -> %s\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); } #endif } } break; case IEEE80211_S_RUN: if (vap->iv_opmode == IEEE80211_M_WDS && (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && nscanning) { /* * Legacy WDS with someone else scanning; don't * go online until that completes as we should * follow the other vap to the channel they choose. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: defer %s -> %s (legacy WDS)\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; return 0; } if (vap->iv_opmode == IEEE80211_M_HOSTAP && IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { /* * This is a DFS channel, transition to CAC state * instead of RUN. This allows us to initiate * Channel Availability Check (CAC) as specified * by 11h/DFS. */ nstate = IEEE80211_S_CAC; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: override %s -> %s (DFS)\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); } break; case IEEE80211_S_INIT: /* cancel any scan in progress */ ieee80211_cancel_scan(vap); if (ostate == IEEE80211_S_INIT ) { /* XXX don't believe this */ /* INIT -> INIT. nothing to do */ vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; } /* fall thru... */ default: break; } /* defer the state change to a thread */ vap->iv_nstate = nstate; vap->iv_nstate_arg = arg; vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; ieee80211_runtask(ic, &vap->iv_nstate_task); return EINPROGRESS; } int ieee80211_new_state(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ieee80211com *ic = vap->iv_ic; int rc; IEEE80211_LOCK(ic); rc = ieee80211_new_state_locked(vap, nstate, arg); IEEE80211_UNLOCK(ic); return rc; }