/* * Copyright 2007, Hugo Santos. All Rights Reserved. * Copyright 2004, Marcus Overhagen. All Rights Reserved. * Distributed under the terms of the MIT License. */ extern "C" { #include "device.h" } #include #include #include extern "C" { #include #include #include #include #include #include #include } //#define DEBUG_BUS_SPACE_RW #ifdef DEBUG_BUS_SPACE_RW # define TRACE_BUS_SPACE_RW(x) driver_printf x #else # define TRACE_BUS_SPACE_RW(x) #endif struct internal_intr { device_t dev; driver_filter_t* filter; driver_intr_t *handler; void *arg; int irq; uint32 flags; thread_id thread; sem_id sem; int32 handling; }; static int32 intr_wrapper(void *data); static area_id map_mem(void **virtualAddr, phys_addr_t _phy, size_t size, uint32 protection, const char *name) { uint32 offset = _phy & (B_PAGE_SIZE - 1); phys_addr_t physicalAddr = _phy - offset; area_id area; size = roundup(size + offset, B_PAGE_SIZE); area = map_physical_memory(name, physicalAddr, size, B_ANY_KERNEL_ADDRESS, protection, virtualAddr); if (area < B_OK) return area; *virtualAddr = (uint8 *)(*virtualAddr) + offset; return area; } static int bus_alloc_irq_resource(device_t dev, struct resource *res) { uint8 irq = pci_read_config(dev, PCI_interrupt_line, 1); if (irq == 0 || irq == 0xff) return -1; res->r_bustag = BUS_SPACE_TAG_IRQ; res->r_bushandle = irq; return 0; } static int bus_alloc_mem_resource(device_t dev, struct resource *res, pci_info *info, int bar_index) { phys_addr_t addr = info->u.h0.base_registers[bar_index]; uint64 size = info->u.h0.base_register_sizes[bar_index]; uchar flags = info->u.h0.base_register_flags[bar_index]; // reject empty regions if (size == 0) return -1; // reject I/O space if ((flags & PCI_address_space) != 0) return -1; // TODO: check flags & PCI_address_prefetchable ? if ((flags & PCI_address_type) == PCI_address_type_64) { addr |= (uint64)info->u.h0.base_registers[bar_index + 1] << 32; size |= (uint64)info->u.h0.base_register_sizes[bar_index + 1] << 32; } // enable this I/O resource if (pci_enable_io(dev, SYS_RES_MEMORY) != 0) return -1; void *virtualAddr; res->r_mapped_area = map_mem(&virtualAddr, addr, size, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA, "bus_alloc_resource(MEMORY)"); if (res->r_mapped_area < B_OK) return -1; res->r_bustag = BUS_SPACE_TAG_MEM; res->r_bushandle = (bus_space_handle_t)virtualAddr; return 0; } static int bus_alloc_ioport_resource(device_t dev, struct resource *res, pci_info *info, int bar_index) { uint32 size = info->u.h0.base_register_sizes[bar_index]; uchar flags = info->u.h0.base_register_flags[bar_index]; // reject empty regions if (size == 0) return -1; // reject memory space if ((flags & PCI_address_space) == 0) return -1; // enable this I/O resource if (pci_enable_io(dev, SYS_RES_IOPORT) != 0) return -1; res->r_bustag = BUS_SPACE_TAG_IO; res->r_bushandle = info->u.h0.base_registers[bar_index]; return 0; } static int bus_register_to_bar_index(pci_info *info, int regid) { // check the offset really is of a BAR if (regid < PCI_base_registers || (regid % sizeof(uint32) != 0) || (regid >= PCI_base_registers + 6 * (int)sizeof(uint32))) { return -1; } // turn offset into array index regid -= PCI_base_registers; regid /= sizeof(uint32); return regid; } struct resource * bus_alloc_resource(device_t dev, int type, int *rid, unsigned long start, unsigned long end, unsigned long count, uint32 flags) { struct resource *res; int result = -1; if (type != SYS_RES_IRQ && type != SYS_RES_MEMORY && type != SYS_RES_IOPORT) return NULL; device_printf(dev, "bus_alloc_resource(%i, [%i], 0x%lx, 0x%lx, 0x%lx," "0x%" B_PRIx32 ")\n", type, *rid, start, end, count, flags); // maybe a local array of resources is enough res = (struct resource *)malloc(sizeof(struct resource)); if (res == NULL) return NULL; if (type == SYS_RES_IRQ) { if (*rid == 0) { // pinned interrupt result = bus_alloc_irq_resource(dev, res); } else { // msi or msi-x interrupt at index *rid - 1 pci_info* info = get_device_pci_info(dev); res->r_bustag = BUS_SPACE_TAG_MSI; res->r_bushandle = info->u.h0.interrupt_line + *rid - 1; result = 0; } } else if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { pci_info* info = get_device_pci_info(dev); int bar_index = bus_register_to_bar_index(info, *rid); if (bar_index >= 0) { if (type == SYS_RES_MEMORY) result = bus_alloc_mem_resource(dev, res, info, bar_index); else result = bus_alloc_ioport_resource(dev, res, info, bar_index); } } if (result < 0) { free(res); return NULL; } res->r_type = type; return res; } int bus_release_resource(device_t dev, int type, int rid, struct resource *res) { if (res->r_type != type) panic("bus_release_resource: mismatch"); if (type == SYS_RES_MEMORY) delete_area(res->r_mapped_area); free(res); return 0; } int bus_alloc_resources(device_t dev, struct resource_spec *resourceSpec, struct resource **resources) { int i; for (i = 0; resourceSpec[i].type != -1; i++) { resources[i] = bus_alloc_resource_any(dev, resourceSpec[i].type, &resourceSpec[i].rid, resourceSpec[i].flags); if (resources[i] == NULL && (resourceSpec[i].flags & RF_OPTIONAL) == 0) { for (++i; resourceSpec[i].type != -1; i++) { resources[i] = NULL; } bus_release_resources(dev, resourceSpec, resources); return ENXIO; } } return 0; } void bus_release_resources(device_t dev, const struct resource_spec *resourceSpec, struct resource **resources) { int i; for (i = 0; resourceSpec[i].type != -1; i++) { if (resources[i] == NULL) continue; bus_release_resource(dev, resourceSpec[i].type, resourceSpec[i].rid, resources[i]); resources[i] = NULL; } } bus_space_handle_t rman_get_bushandle(struct resource *res) { return res->r_bushandle; } bus_space_tag_t rman_get_bustag(struct resource *res) { return res->r_bustag; } int rman_get_rid(struct resource *res) { return 0; } void* rman_get_virtual(struct resource *res) { return NULL; } bus_addr_t rman_get_start(struct resource *res) { return res->r_bushandle; } bus_size_t rman_get_size(struct resource *res) { area_info info; if (get_area_info(res->r_mapped_area, &info) != B_OK) return 0; return info.size; } // #pragma mark - Interrupt handling static int32 intr_wrapper(void *data) { struct internal_intr *intr = (struct internal_intr *)data; //device_printf(intr->dev, "in interrupt handler.\n"); if (!HAIKU_CHECK_DISABLE_INTERRUPTS(intr->dev)) return B_UNHANDLED_INTERRUPT; release_sem_etc(intr->sem, 1, B_DO_NOT_RESCHEDULE); return intr->handling ? B_HANDLED_INTERRUPT : B_INVOKE_SCHEDULER; } static int32 intr_handler(void *data) { struct internal_intr *intr = (struct internal_intr *)data; status_t status; while (1) { status = acquire_sem(intr->sem); if (status < B_OK) break; //device_printf(intr->dev, "in soft interrupt handler.\n"); atomic_or(&intr->handling, 1); if ((intr->flags & INTR_MPSAFE) == 0) mtx_lock(&Giant); intr->handler(intr->arg); if ((intr->flags & INTR_MPSAFE) == 0) mtx_unlock(&Giant); atomic_and(&intr->handling, 0); HAIKU_REENABLE_INTERRUPTS(intr->dev); } return 0; } static void free_internal_intr(struct internal_intr *intr) { if (intr->sem >= B_OK) { status_t status; delete_sem(intr->sem); wait_for_thread(intr->thread, &status); } free(intr); } int bus_setup_intr(device_t dev, struct resource *res, int flags, driver_filter_t* filter, driver_intr_t handler, void *arg, void **_cookie) { struct internal_intr *intr = (struct internal_intr *)malloc( sizeof(struct internal_intr)); char semName[64]; status_t status; if (intr == NULL) return B_NO_MEMORY; intr->dev = dev; intr->filter = filter; intr->handler = handler; intr->arg = arg; intr->irq = res->r_bushandle; intr->flags = flags; intr->sem = -1; intr->thread = -1; if (filter != NULL) { status = install_io_interrupt_handler(intr->irq, (interrupt_handler)intr->filter, intr->arg, 0); } else { snprintf(semName, sizeof(semName), "%s intr", dev->device_name); intr->sem = create_sem(0, semName); if (intr->sem < B_OK) { free(intr); return B_NO_MEMORY; } snprintf(semName, sizeof(semName), "%s intr handler", dev->device_name); intr->thread = spawn_kernel_thread(intr_handler, semName, B_REAL_TIME_DISPLAY_PRIORITY, intr); if (intr->thread < B_OK) { delete_sem(intr->sem); free(intr); return B_NO_MEMORY; } status = install_io_interrupt_handler(intr->irq, intr_wrapper, intr, 0); } if (status == B_OK && res->r_bustag == BUS_SPACE_TAG_MSI) { // this is an msi, enable it struct root_device_softc* root_softc = ((struct root_device_softc *)dev->root->softc); if (root_softc->is_msi) { if (gPci->enable_msi(root_softc->pci_info.bus, root_softc->pci_info.device, root_softc->pci_info.function) != B_OK) { device_printf(dev, "enabling msi failed\n"); bus_teardown_intr(dev, res, intr); return ENODEV; } } else if (root_softc->is_msix) { if (gPci->enable_msix(root_softc->pci_info.bus, root_softc->pci_info.device, root_softc->pci_info.function) != B_OK) { device_printf(dev, "enabling msix failed\n"); bus_teardown_intr(dev, res, intr); return ENODEV; } } } if (status < B_OK) { free_internal_intr(intr); return status; } resume_thread(intr->thread); *_cookie = intr; return 0; } int bus_teardown_intr(device_t dev, struct resource *res, void *arg) { struct internal_intr *intr = (struct internal_intr *)arg; if (intr == NULL) return -1; struct root_device_softc *root = (struct root_device_softc *)dev->root->softc; if (root->is_msi || root->is_msix) { // disable msi generation pci_info *info = &root->pci_info; gPci->disable_msi(info->bus, info->device, info->function); } if (intr->filter != NULL) { remove_io_interrupt_handler(intr->irq, (interrupt_handler)intr->filter, intr->arg); } else { remove_io_interrupt_handler(intr->irq, intr_wrapper, intr); } free_internal_intr(intr); return 0; } int bus_bind_intr(device_t dev, struct resource *res, int cpu) { if (dev->parent == NULL) return EINVAL; // TODO return 0; } int bus_describe_intr(device_t dev, struct resource *irq, void *cookie, const char* fmt, ...) { if (dev->parent == NULL) return EINVAL; // we don't really support names for interrupts return 0; } // #pragma mark - bus functions bus_dma_tag_t bus_get_dma_tag(device_t dev) { return NULL; } int bus_generic_suspend(device_t dev) { UNIMPLEMENTED(); return B_ERROR; } int bus_generic_resume(device_t dev) { UNIMPLEMENTED(); return B_ERROR; } void bus_generic_shutdown(device_t dev) { UNIMPLEMENTED(); } int bus_print_child_header(device_t dev, device_t child) { UNIMPLEMENTED(); return B_ERROR; } int bus_print_child_footer(device_t dev, device_t child) { UNIMPLEMENTED(); return B_ERROR; } int bus_generic_print_child(device_t dev, device_t child) { UNIMPLEMENTED(); return B_ERROR; } void bus_generic_driver_added(device_t dev, driver_t *driver) { UNIMPLEMENTED(); } int bus_child_present(device_t child) { device_t parent = device_get_parent(child); if (parent == NULL) return 0; return bus_child_present(parent); } void bus_enumerate_hinted_children(device_t bus) { #if 0 UNIMPLEMENTED(); #endif }