/* * Copyright 2007, Ingo Weinhold . * All rights reserved. Distributed under the terms of the MIT License. */ #include "LayoutOptimizer.h" #include #include #include #include //#define TRACE_LAYOUT_OPTIMIZER 1 #if TRACE_LAYOUT_OPTIMIZER # define TRACE(format...) printf(format) # define TRACE_ONLY(x) x #else # define TRACE(format...) # define TRACE_ONLY(x) #endif #define TRACE_ERROR(format...) fprintf(stderr, format) using std::nothrow; /*! \class BPrivate::Layout::LayoutOptimizer Given a set of layout constraints, a feasible solution, and a desired (non-)solution this class finds an optimal solution. The optimization criterion is to minimize the norm of the difference to the desired (non-)solution. It does so by implementing an active set method algorithm. The basic idea is to start with the subset of the constraints that are barely satisfied by the feasible solution, i.e. including all equality constraints and those inequality constraints that are still satisfied, if restricted to equality constraints. This set is called active set, the contained constraints active constraints. Considering all of the active constraints equality constraints a new solution is computed, which still satisfies all those equality constraints and is optimal with respect to the optimization criterion. If the new solution equals the previous one, we find the inequality constraint that, by keeping it in the active set, prevents us most from further optimizing the solution. If none really does, we're done, having found the globally optimal solution. Otherwise we remove the found constraint from the active set and try again. If the new solution does not equal the previous one, it might violate one or more of the inactive constraints. If that is the case, we add the most-violated constraint to the active set and adjust the new solution such that barely satisfies that constraint. Otherwise, we don't adjust the computed solution. With the adjusted respectively unadjusted solution we enter the next iteration, i.e. by computing a new optimal solution with respect to the active set. */ // #pragma mark - vector and matrix operations // is_zero static inline bool is_zero(double* x, int n) { for (int i = 0; i < n; i++) { if (!fuzzy_equals(x[i], 0)) return false; } return true; } // add_vectors static inline void add_vectors(double* x, const double* y, int n) { for (int i = 0; i < n; i++) x[i] += y[i]; } // add_vectors_scaled static inline void add_vectors_scaled(double* x, const double* y, double scalar, int n) { for (int i = 0; i < n; i++) x[i] += y[i] * scalar; } // negate_vector static inline void negate_vector(double* x, int n) { for (int i = 0; i < n; i++) x[i] = -x[i]; } // allocate_matrix static double** allocate_matrix(int m, int n) { double** matrix = new(nothrow) double*[m]; if (!matrix) return NULL; double* values = new(nothrow) double[m * n]; if (!values) { delete[] matrix; return NULL; } double* row = values; for (int i = 0; i < m; i++, row += n) matrix[i] = row; return matrix; } // free_matrix static void free_matrix(double** matrix) { if (matrix) { delete[] *matrix; delete[] matrix; } } // multiply_matrix_vector /*! y = Ax A: m x n matrix */ static inline void multiply_matrix_vector(const double* const* A, const double* x, int m, int n, double* y) { for (int i = 0; i < m; i++) { double sum = 0; for (int k = 0; k < n; k++) sum += A[i][k] * x[k]; y[i] = sum; } } // multiply_matrices /*! c = a*b */ static void multiply_matrices(const double* const* a, const double* const* b, double** c, int m, int n, int l) { for (int i = 0; i < m; i++) { for (int j = 0; j < l; j++) { double sum = 0; for (int k = 0; k < n; k++) sum += a[i][k] * b[k][j]; c[i][j] = sum; } } } // transpose_matrix static inline void transpose_matrix(const double* const* A, double** Atrans, int m, int n) { for (int i = 0; i < m; i++) { for (int k = 0; k < n; k++) Atrans[k][i] = A[i][k]; } } // zero_matrix static inline void zero_matrix(double** A, int m, int n) { for (int i = 0; i < m; i++) { for (int k = 0; k < n; k++) A[i][k] = 0; } } // copy_matrix static inline void copy_matrix(const double* const* A, double** B, int m, int n) { for (int i = 0; i < m; i++) { for (int k = 0; k < n; k++) B[i][k] = A[i][k]; } } static inline void multiply_optimization_matrix_vector(const double* x, int n, double* y) { // The matrix has the form: // 2 -1 0 ... 0 0 // -1 2 -1 0 ... . . // 0 -1 2 . . // . 0 . . . // . . 0 0 // . . -1 0 // 0 ... 0 -1 2 -1 // 0 ... -1 1 if (n == 1) { y[0] = x[0]; return; } y[0] = 2 * x[0] - x[1]; for (int i = 1; i < n - 1; i++) y[i] = 2 * x[i] - x[i - 1] - x[i + 1]; y[n - 1] = x[n - 1] - x[n - 2]; } static inline void multiply_optimization_matrix_matrix(const double* const* A, int m, int n, double** B) { if (m == 1) { memcpy(B[0], A[0], n * sizeof(double)); return; } for (int k = 0; k < n; k++) { B[0][k] = 2 * A[0][k] - A[1][k]; for (int i = 1; i < m - 1; i++) B[i][k] = 2 * A[i][k] - A[i - 1][k] - A[i + 1][k]; B[m - 1][k] = A[m - 1][k] - A[m - 2][k]; } } template static inline void swap(Type& a, Type& b) { Type c = a; a = b; b = c; } // #pragma mark - algorithms bool solve(double** a, int n, double* b) { // index array for row permutation // Note: We could eliminate it, if we would permutate the row pointers of a. int indices[n]; for (int i = 0; i < n; i++) indices[i] = i; // forward elimination for (int i = 0; i < n - 1; i++) { // find pivot int pivot = i; double pivotValue = fabs(a[indices[i]][i]); for (int j = i + 1; j < n; j++) { int index = indices[j]; double value = fabs(a[index][i]); if (value > pivotValue) { pivot = j; pivotValue = value; } } if (fuzzy_equals(pivotValue, 0)) { TRACE_ERROR("solve(): matrix is not regular\n"); return false; } if (pivot != i) { swap(indices[i], indices[pivot]); swap(b[i], b[pivot]); } pivot = indices[i]; // eliminate for (int j = i + 1; j < n; j++) { int index = indices[j]; double q = -a[index][i] / a[pivot][i]; a[index][i] = 0; for (int k = i + 1; k < n; k++) a[index][k] += a[pivot][k] * q; b[j] += b[i] * q; } } // backwards substitution for (int i = n - 1; i >= 0; i--) { int index = indices[i]; double sum = b[i]; for (int j = i + 1; j < n; j++) sum -= a[index][j] * b[j]; b[i] = sum / a[index][i]; } return true; } int compute_dependencies(double** a, int m, int n, bool* independent) { // index array for row permutation // Note: We could eliminate it, if we would permutate the row pointers of a. int indices[m]; for (int i = 0; i < m; i++) indices[i] = i; // forward elimination int iterations = (m > n ? n : m); int i = 0; int column = 0; for (; i < iterations && column < n; i++) { // find next pivot int pivot = i; do { double pivotValue = fabs(a[indices[i]][column]); for (int j = i + 1; j < m; j++) { int index = indices[j]; double value = fabs(a[index][column]); if (value > pivotValue) { pivot = j; pivotValue = value; } } if (!fuzzy_equals(pivotValue, 0)) break; column++; } while (column < n); if (column == n) break; if (pivot != i) swap(indices[i], indices[pivot]); pivot = indices[i]; independent[pivot] = true; // eliminate for (int j = i + 1; j < m; j++) { int index = indices[j]; double q = -a[index][column] / a[pivot][column]; a[index][column] = 0; for (int k = column + 1; k < n; k++) a[index][k] += a[pivot][k] * q; } column++; } for (int j = i; j < m; j++) independent[indices[j]] = false; return i; } // remove_linearly_dependent_rows static int remove_linearly_dependent_rows(double** A, double** temp, bool* independentRows, int m, int n) { // copy to temp copy_matrix(A, temp, m, n); int count = compute_dependencies(temp, m, n, independentRows); if (count == m) return count; // remove the rows int index = 0; for (int i = 0; i < m; i++) { if (independentRows[i]) { if (index < i) { for (int k = 0; k < n; k++) A[index][k] = A[i][k]; } index++; } } return count; } /*! QR decomposition using Householder transformations. */ bool qr_decomposition(double** a, int m, int n, double* d, double** q) { if (m < n) return false; for (int j = 0; j < n; j++) { // inner product of the first vector x of the (j,j) minor double innerProductU = 0; for (int i = j + 1; i < m; i++) innerProductU = innerProductU + a[i][j] * a[i][j]; double innerProduct = innerProductU + a[j][j] * a[j][j]; if (fuzzy_equals(innerProduct, 0)) { TRACE_ERROR("qr_decomposition(): 0 column %d\n", j); return false; } // alpha (norm of x with opposite signedness of x_1) and thus r_{j,j} double alpha = (a[j][j] < 0 ? sqrt(innerProduct) : -sqrt(innerProduct)); d[j] = alpha; double beta = 1 / (alpha * a[j][j] - innerProduct); // u = x - alpha * e_1 // (u is a[j..n][j]) a[j][j] -= alpha; // left-multiply A_k with Q_k, thus obtaining a row of R and the A_{k+1} // for the next iteration for (int k = j + 1; k < n; k++) { double sum = 0; for (int i = j; i < m; i++) sum += a[i][j] * a[i][k]; sum *= beta; for (int i = j; i < m; i++) a[i][k] += a[i][j] * sum; } // v = u/|u| innerProductU += a[j][j] * a[j][j]; double beta2 = -2 / innerProductU; // right-multiply Q with Q_k // Q_k = I - 2vv^T // Q * Q_k = Q - 2 * Q * vv^T if (j == 0) { for (int k = 0; k < m; k++) { for (int i = 0; i < m; i++) q[k][i] = beta2 * a[k][0] * a[i][0]; q[k][k] += 1; } } else { for (int k = 0; k < m; k++) { double sum = 0; for (int i = j; i < m; i++) sum += q[k][i] * a[i][j]; sum *= beta2; for (int i = j; i < m; i++) q[k][i] += sum * a[i][j]; } } } return true; } // MatrixDeleter struct MatrixDelete { inline void operator()(double** matrix) { free_matrix(matrix); } }; typedef BPrivate::AutoDeleter MatrixDeleter; // Constraint struct LayoutOptimizer::Constraint { Constraint(int32 left, int32 right, double value, bool equality, int32 index) : left(left), right(right), value(value), index(index), equality(equality) { } double ActualValue(double* values) const { double result = 0; if (right >= 0) result = values[right]; if (left >= 0) result -= values[left]; return result; } void Print() const { TRACE("c[%2ld] - c[%2ld] %2s %4d\n", right, left, (equality ? "=" : ">="), (int)value); } int32 left; int32 right; double value; int32 index; bool equality; }; // #pragma mark - LayoutOptimizer // constructor LayoutOptimizer::LayoutOptimizer(int32 variableCount) : fVariableCount(variableCount), fConstraints(), fVariables(new (nothrow) double[variableCount]) { fTemp1 = allocate_matrix(fVariableCount, fVariableCount); fTemp2 = allocate_matrix(fVariableCount, fVariableCount); fZtrans = allocate_matrix(fVariableCount, fVariableCount); fQ = allocate_matrix(fVariableCount, fVariableCount); } // destructor LayoutOptimizer::~LayoutOptimizer() { free_matrix(fTemp1); free_matrix(fTemp2); free_matrix(fZtrans); free_matrix(fQ); delete[] fVariables; for (int32 i = 0; Constraint* constraint = (Constraint*)fConstraints.ItemAt(i); i++) { delete constraint; } } // InitCheck status_t LayoutOptimizer::InitCheck() const { if (!fVariables || !fTemp1 || !fTemp2 || !fZtrans || !fQ) return B_NO_MEMORY; return B_OK; } // Clone LayoutOptimizer* LayoutOptimizer::Clone() const { LayoutOptimizer* clone = new(nothrow) LayoutOptimizer(fVariableCount); ObjectDeleter cloneDeleter(clone); if (!clone || clone->InitCheck() != B_OK || !clone->AddConstraintsFrom(this)) { return NULL; } return cloneDeleter.Detach(); } // AddConstraint /*! Adds a constraint of the form \sum_{i=left+1}^{right} x_i >=/= value, if left < right -\sum_{i=right+1}^{left} x_i >=/= value, if left > right If \a equality is \c true, the constraint is an equality constraint. */ bool LayoutOptimizer::AddConstraint(int32 left, int32 right, double value, bool equality) { Constraint* constraint = new(nothrow) Constraint(left, right, value, equality, fConstraints.CountItems()); if (constraint == NULL) return false; if (!fConstraints.AddItem(constraint)) { delete constraint; return false; } return true; } // AddConstraintsFrom bool LayoutOptimizer::AddConstraintsFrom(const LayoutOptimizer* other) { if (!other || other->fVariableCount != fVariableCount) return false; int32 count = fConstraints.CountItems(); for (int32 i = 0; i < count; i++) { Constraint* constraint = (Constraint*)other->fConstraints.ItemAt(i); if (!AddConstraint(constraint->left, constraint->right, constraint->value, constraint->equality)) { return false; } } return true; } // RemoveAllConstraints void LayoutOptimizer::RemoveAllConstraints() { int32 count = fConstraints.CountItems(); for (int32 i = 0; i < count; i++) { Constraint* constraint = (Constraint*)fConstraints.ItemAt(i); delete constraint; } fConstraints.MakeEmpty(); } // Solve /*! Solves the quadratic program (QP) given by the constraints added via AddConstraint(), the additional constraint \sum_{i=0}^{n-1} x_i = size, and the optimization criterion to minimize \sum_{i=0}^{n-1} (x_i - desired[i])^2. The \a values array must contain a feasible solution when called and will be overwritten with the optimial solution the method computes. */ bool LayoutOptimizer::Solve(const double* desired, double size, double* values) { if (fVariables == NULL || desired == NULL|| values == NULL) return false; int32 constraintCount = fConstraints.CountItems() + 1; // allocate the active constraint matrix and its transposed matrix fActiveMatrix = allocate_matrix(constraintCount, fVariableCount); fActiveMatrixTemp = allocate_matrix(constraintCount, fVariableCount); MatrixDeleter _(fActiveMatrix); MatrixDeleter _2(fActiveMatrixTemp); if (!fActiveMatrix || !fActiveMatrixTemp) return false; // add sum constraint if (!AddConstraint(-1, fVariableCount - 1, size, true)) return false; bool success = _Solve(desired, values); // remove sum constraint Constraint* constraint = (Constraint*)fConstraints.RemoveItem( constraintCount - 1); delete constraint; return success; } // _Solve bool LayoutOptimizer::_Solve(const double* desired, double* values) { int32 constraintCount = fConstraints.CountItems(); TRACE_ONLY( TRACE("constraints:\n"); for (int32 i = 0; i < constraintCount; i++) { TRACE(" %-2ld: ", i); ((Constraint*)fConstraints.ItemAt(i))->Print(); } ) // our QP is supposed to be in this form: // min_x 1/2x^TGx + x^Td // s.t. a_i^Tx = b_i, i \in E // a_i^Tx >= b_i, i \in I // init our initial x double x[fVariableCount]; x[0] = values[0]; for (int i = 1; i < fVariableCount; i++) x[i] = values[i] + x[i - 1]; // init d // Note that the values of d and of G result from rewriting the // ||x - desired|| we actually want to minimize. double d[fVariableCount]; for (int i = 0; i < fVariableCount - 1; i++) d[i] = desired[i + 1] - desired[i]; d[fVariableCount - 1] = -desired[fVariableCount - 1]; // init active set BList activeConstraints(constraintCount); for (int32 i = 0; i < constraintCount; i++) { Constraint* constraint = (Constraint*)fConstraints.ItemAt(i); double actualValue = constraint->ActualValue(x); TRACE("constraint %ld: actual: %f constraint: %f\n", i, actualValue, constraint->value); if (fuzzy_equals(actualValue, constraint->value)) activeConstraints.AddItem(constraint); } // The main loop: Each iteration we try to get closer to the optimum // solution. We compute a vector p that brings our x closer to the optimum. // We do that by computing the QP resulting from our active constraint set, // W^k. Afterward each iteration we adjust the active set. TRACE_ONLY(int iteration = 0;) while (true) { TRACE_ONLY( TRACE("\n[iteration %d]\n", iteration++); TRACE("active set:\n"); for (int32 i = 0; i < activeConstraints.CountItems(); i++) { TRACE(" "); ((Constraint*)activeConstraints.ItemAt(i))->Print(); } ) // solve the QP: // min_p 1/2p^TGp + g_k^Tp // s.t. a_i^Tp = 0 // with a_i \in activeConstraints // g_k = Gx_k + d // p = x - x_k int32 activeCount = activeConstraints.CountItems(); if (activeCount == 0) { TRACE_ERROR("Solve(): Error: No more active constraints!\n"); return false; } // construct a matrix from the active constraints int am = activeCount; const int an = fVariableCount; bool independentRows[activeCount]; zero_matrix(fActiveMatrix, am, an); for (int32 i = 0; i < activeCount; i++) { Constraint* constraint = (Constraint*)activeConstraints.ItemAt(i); if (constraint->right >= 0) fActiveMatrix[i][constraint->right] = 1; if (constraint->left >= 0) fActiveMatrix[i][constraint->left] = -1; } // TODO: The fActiveMatrix is sparse (max 2 entries per row). There should be // some room for optimization. am = remove_linearly_dependent_rows(fActiveMatrix, fActiveMatrixTemp, independentRows, am, an); // gxd = G * x + d double gxd[fVariableCount]; multiply_optimization_matrix_vector(x, fVariableCount, gxd); add_vectors(gxd, d, fVariableCount); double p[fVariableCount]; if (!_SolveSubProblem(gxd, am, p)) return false; if (is_zero(p, fVariableCount)) { // compute Lagrange multipliers lambda_i // if lambda_i >= 0 for all i \in W^k \union inequality constraints, // then we're done. // Otherwise remove the constraint with the smallest lambda_i // from the active set. // The derivation of the Lagrangian yields: // \sum_{i \in W^k}(lambda_ia_i) = Gx_k + d // Which is an system we can solve: // A^Tlambda = Gx_k + d // A^T is over-determined, hence we need to reduce the number of // rows before we can solve it. bool independentColumns[an]; double** aa = fTemp1; transpose_matrix(fActiveMatrix, aa, am, an); const int aam = remove_linearly_dependent_rows(aa, fTemp2, independentColumns, an, am); const int aan = am; if (aam != aan) { // This should not happen, since A has full row rank. TRACE_ERROR("Solve(): Transposed A has less linear independent " "rows than it has columns!\n"); return false; } // also reduce the number of rows on the right hand side double lambda[aam]; int index = 0; for (int i = 0; i < an; i++) { if (independentColumns[i]) lambda[index++] = gxd[i]; } bool success = solve(aa, aam, lambda); if (!success) { // Impossible, since we've removed all linearly dependent rows. TRACE_ERROR("Solve(): Failed to compute lambda!\n"); return false; } // find min lambda_i (only, if it's < 0, though) double minLambda = 0; int minIndex = -1; index = 0; for (int i = 0; i < activeCount; i++) { if (independentRows[i]) { Constraint* constraint = (Constraint*)activeConstraints.ItemAt(i); if (!constraint->equality) { if (lambda[index] < minLambda) { minLambda = lambda[index]; minIndex = i; } } index++; } } // if the min lambda is >= 0, we're done if (minIndex < 0 || fuzzy_equals(minLambda, 0)) { _SetResult(x, values); return true; } // remove i from the active set activeConstraints.RemoveItem(minIndex); } else { // compute alpha_k double alpha = 1; int barrier = -1; // if alpha_k < 1, add a barrier constraint to W^k for (int32 i = 0; i < constraintCount; i++) { Constraint* constraint = (Constraint*)fConstraints.ItemAt(i); if (activeConstraints.HasItem(constraint)) continue; double divider = constraint->ActualValue(p); if (divider > 0 || fuzzy_equals(divider, 0)) continue; // (b_i - a_i^Tx_k) / a_i^Tp_k double alphaI = constraint->value - constraint->ActualValue(x); alphaI /= divider; if (alphaI < alpha) { alpha = alphaI; barrier = i; } } TRACE("alpha: %f, barrier: %d\n", alpha, barrier); if (alpha < 1) activeConstraints.AddItem(fConstraints.ItemAt(barrier)); // x += p * alpha; add_vectors_scaled(x, p, alpha, fVariableCount); } } } bool LayoutOptimizer::_SolveSubProblem(const double* d, int am, double* p) { // We have to solve the QP subproblem: // min_p 1/2p^TGp + d^Tp // s.t. a_i^Tp = 0 // with a_i \in activeConstraints // // We use the null space method, i.e. we find matrices Y and Z, such that // AZ = 0 and [Y Z] is regular. Then with // p = Yp_Y + Zp_z // we get // p_Y = 0 // and // (Z^TGZ)p_Z = -(Z^TYp_Y + Z^Tg) = -Z^Td // which is a linear equation system, which we can solve. const int an = fVariableCount; // we get Y and Z by QR decomposition of A^T double tempD[am]; double** const Q = fQ; transpose_matrix(fActiveMatrix, fTemp1, am, an); bool success = qr_decomposition(fTemp1, an, am, tempD, Q); if (!success) { TRACE_ERROR("Solve(): QR decomposition failed!\n"); return false; } // Z is the (1, m + 1) minor of Q const int zm = an; const int zn = an - am; double* Z[zm]; for (int i = 0; i < zm; i++) Z[i] = Q[i] + am; // solve (Z^TGZ)p_Z = -Z^Td // Z^T transpose_matrix(Z, fZtrans, zm, zn); // rhs: -Z^T * d; double pz[zm]; multiply_matrix_vector(fZtrans, d, zn, zm, pz); negate_vector(pz, zn); // fTemp2 = Ztrans * G * Z multiply_optimization_matrix_matrix(Z, an, zn, fTemp1); multiply_matrices(fZtrans, fTemp1, fTemp2, zn, zm, zn); success = solve(fTemp2, zn, pz); if (!success) { TRACE_ERROR("Solve(): Failed to solve() system for p_Z\n"); return false; } // p = Z * pz; multiply_matrix_vector(Z, pz, zm, zn, p); return true; } // _SetResult void LayoutOptimizer::_SetResult(const double* x, double* values) { values[0] = x[0]; for (int i = 1; i < fVariableCount; i++) values[i] = x[i] - x[i - 1]; }