/* Copyright (c) 2002, Calum Robinson All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "Smoke.h" #include "Shared.h" #include "Star.h" #include "Spark.h" #define MAXANGLES 16384 #define NOT_QUITE_DEAD 3 #define streamBias 7.0f #define incohesion 0.07f #define streamSpeed 450.0 #define gravity 1500000.0f #define intensity 75000.0f; #define streamSize 25000.0f #define colorIncoherence 0.15f static float FastDistance2D(float x, float y) { // this function computes the distance from 0,0 to x,y with ~3.5% error // first compute the absolute value of x,y x = (x < 0.0f) ? -x : x; y = (y < 0.0f) ? -y : y; // compute the minimum of x,y float mn = x < y ? x : y; // return the distance return x + y - (mn * 0.5f) - (mn * 0.25f) + (mn * 0.0625f); } void InitSmoke(SmokeV* s) { s->nextParticle = 0; s->nextSubParticle = 0; s->lastParticleTime = 0.25f; s->firstTime = 1; s->frame = 0; for (int i = 0; i < 3; i++) s->old[i] = RandFlt(-100.0, 100.0); } void UpdateSmoke_ScalarBase(flurry_info_t* info, SmokeV* s) { float sx = info->star->position[0]; float sy = info->star->position[1]; float sz = info->star->position[2]; double frameRate; double frameRateModifier; s->frame++; if (!s->firstTime) { /* release 12 puffs every frame */ if (info->fTime - s->lastParticleTime >= 1.0f / 121.0f) { float dx; float dy; float dz; float deltax; float deltay; float deltaz; float f; float rsquared; float mag; dx = s->old[0] - sx; dy = s->old[1] - sy; dz = s->old[2] - sz; mag = 5.0f; deltax = (dx * mag); deltay = (dy * mag); deltaz = (dz * mag); for(int i=0; i < info->numStreams; i++) { float streamSpeedCoherenceFactor; s->p[s->nextParticle].delta[0].f[s->nextSubParticle] = deltax; s->p[s->nextParticle].delta[1].f[s->nextSubParticle] = deltay; s->p[s->nextParticle].delta[2].f[s->nextSubParticle] = deltaz; s->p[s->nextParticle].position[0].f[s->nextSubParticle] = sx; s->p[s->nextParticle].position[1].f[s->nextSubParticle] = sy; s->p[s->nextParticle].position[2].f[s->nextSubParticle] = sz; s->p[s->nextParticle].oldposition[0].f[s->nextSubParticle] = sx; s->p[s->nextParticle].oldposition[1].f[s->nextSubParticle] = sy; s->p[s->nextParticle].oldposition[2].f[s->nextSubParticle] = sz; streamSpeedCoherenceFactor = MAX_(0.0f,1.0f + RandBell(0.25f * incohesion)); dx = s->p[s->nextParticle].position[0].f[s->nextSubParticle] - info->spark[i]->position[0]; dy = s->p[s->nextParticle].position[1].f[s->nextSubParticle] - info->spark[i]->position[1]; dz = s->p[s->nextParticle].position[2].f[s->nextSubParticle] - info->spark[i]->position[2]; rsquared = (dx * dx + dy * dy + dz * dz); f = streamSpeed * streamSpeedCoherenceFactor; mag = f / (float)sqrt(rsquared); s->p[s->nextParticle].delta[0].f[s->nextSubParticle] -= (dx * mag); s->p[s->nextParticle].delta[1].f[s->nextSubParticle] -= (dy * mag); s->p[s->nextParticle].delta[2].f[s->nextSubParticle] -= (dz * mag); s->p[s->nextParticle].color[0].f[s->nextSubParticle] = info->spark[i]->color[0] * (1.0f + RandBell(colorIncoherence)); s->p[s->nextParticle].color[1].f[s->nextSubParticle] = info->spark[i]->color[1] * (1.0f + RandBell(colorIncoherence)); s->p[s->nextParticle].color[2].f[s->nextSubParticle] = info->spark[i]->color[2] * (1.0f + RandBell(colorIncoherence)); s->p[s->nextParticle].color[3].f[s->nextSubParticle] = 0.85f * (1.0f + RandBell(0.5f*colorIncoherence)); s->p[s->nextParticle].time.f[s->nextSubParticle] = info->fTime; s->p[s->nextParticle].dead.i[s->nextSubParticle] = 0; s->p[s->nextParticle].animFrame.i[s->nextSubParticle] = (random() & 63); s->nextSubParticle++; if (s->nextSubParticle == 4) { s->nextParticle++; s->nextSubParticle = 0; } if (s->nextParticle >= NUMSMOKEPARTICLES / 4) { s->nextParticle = 0; s->nextSubParticle = 0; } } s->lastParticleTime = info->fTime; } } else { s->lastParticleTime = info->fTime; s->firstTime = 0; } for(int i = 0; i < 3; i++) s->old[i] = info->star->position[i]; frameRate = ((double) info->dframe) / (info->fTime); frameRateModifier = 42.5f / frameRate; for(int i = 0; i < NUMSMOKEPARTICLES / 4; i++) { for(int k = 0; k < 4; k++) { float dx; float dy; float dz; float f; float rsquared; float mag; float deltax; float deltay; float deltaz; if (s->p[i].dead.i[k]) continue; deltax = s->p[i].delta[0].f[k]; deltay = s->p[i].delta[1].f[k]; deltaz = s->p[i].delta[2].f[k]; for(int j = 0; j < info->numStreams; j++) { dx = s->p[i].position[0].f[k] - info->spark[j]->position[0]; dy = s->p[i].position[1].f[k] - info->spark[j]->position[1]; dz = s->p[i].position[2].f[k] - info->spark[j]->position[2]; rsquared = (dx * dx + dy * dy + dz * dz); f = (gravity/rsquared) * frameRateModifier; if ((((i * 4) + k) % info->numStreams) == j) f *= 1.0f + streamBias; mag = f / (float) sqrt(rsquared); deltax -= (dx * mag); deltay -= (dy * mag); deltaz -= (dz * mag); } // slow this particle down by info->drag deltax *= info->drag; deltay *= info->drag; deltaz *= info->drag; if ((deltax * deltax + deltay * deltay + deltaz * deltaz) >= 25000000.0f) { s->p[i].dead.i[k] = 1; continue; } // update the position s->p[i].delta[0].f[k] = deltax; s->p[i].delta[1].f[k] = deltay; s->p[i].delta[2].f[k] = deltaz; for(int j = 0; j < 3; j++) { s->p[i].oldposition[j].f[k] = s->p[i].position[j].f[k]; s->p[i].position[j].f[k] += (s->p[i].delta[j].f[k]) * info->fDeltaTime; } } } } void DrawSmoke_Scalar(flurry_info_t* info, SmokeV* s, float brightness) { int svi = 0; int sci = 0; int sti = 0; int si = 0; float width; float sx; float sy; float u0; float v0; float u1; float v1; float w; float z; float screenRatio = info->sys_glWidth / 1024.0f; float hslash2 = info->sys_glHeight * 0.5f; float wslash2 = info->sys_glWidth * 0.5f; width = (streamSize + 2.5f * info->streamExpansion) * screenRatio; for (int i = 0; i < NUMSMOKEPARTICLES / 4; i++) { for (int k = 0; k < 4; k++) { float thisWidth; float oldz; if (s->p[i].dead.i[k]) continue; thisWidth = (streamSize + (info->fTime - s->p[i].time.f[k]) * info->streamExpansion) * screenRatio; if (thisWidth >= width) { s->p[i].dead.i[k] = 1; continue; } z = s->p[i].position[2].f[k]; sx = s->p[i].position[0].f[k] * info->sys_glWidth / z + wslash2; sy = s->p[i].position[1].f[k] * info->sys_glWidth / z + hslash2; oldz = s->p[i].oldposition[2].f[k]; if (sx > info->sys_glWidth + 50.0f || sx < -50.0f || sy > info->sys_glHeight + 50.0f || sy < -50.0f || z < 25.0f || oldz < 25.0f) { continue; } w = MAX_(1.0f, thisWidth / z); { float oldx = s->p[i].oldposition[0].f[k]; float oldy = s->p[i].oldposition[1].f[k]; float oldscreenx = (oldx * info->sys_glWidth / oldz) + wslash2; float oldscreeny = (oldy * info->sys_glWidth / oldz) + hslash2; float dx = (sx - oldscreenx); float dy = (sy - oldscreeny); float d = FastDistance2D(dx, dy); float sm, os, ow; if (d) sm = w / d; else sm = 0.0f; ow = MAX_(1.0f, thisWidth / oldz); if (d) os = ow / d; else os = 0.0f; { floatToVector cmv; float cm; float m = 1.0f + sm; float dxs = dx * sm; float dys = dy * sm; float dxos = dx * os; float dyos = dy * os; float dxm = dx * m; float dym = dy * m; s->p[i].animFrame.i[k]++; if (s->p[i].animFrame.i[k] >= 64) s->p[i].animFrame.i[k] = 0; u0 = (s->p[i].animFrame.i[k] & 7) * 0.125f; v0 = (s->p[i].animFrame.i[k] >> 3) * 0.125f; u1 = u0 + 0.125f; v1 = v0 + 0.125f; cm = (1.375f - thisWidth / width); if (s->p[i].dead.i[k] == 3) { cm *= 0.125f; s->p[i].dead.i[k] = 1; } si++; cm *= brightness; cmv.f[0] = s->p[i].color[0].f[k] * cm; cmv.f[1] = s->p[i].color[1].f[k] * cm; cmv.f[2] = s->p[i].color[2].f[k] * cm; cmv.f[3] = s->p[i].color[3].f[k] * cm; #if 0 // MDT we can't use vectors in the Scalar routine s->seraphimColors[sci++].v = cmv.v; s->seraphimColors[sci++].v = cmv.v; s->seraphimColors[sci++].v = cmv.v; s->seraphimColors[sci++].v = cmv.v; #else { for (int jj = 0; jj < 4; jj++) { for (int ii = 0; ii < 4; ii++) s->seraphimColors[sci].f[ii] = cmv.f[ii]; sci += 1; } } #endif s->seraphimTextures[sti++] = u0; s->seraphimTextures[sti++] = v0; s->seraphimTextures[sti++] = u0; s->seraphimTextures[sti++] = v1; s->seraphimTextures[sti++] = u1; s->seraphimTextures[sti++] = v1; s->seraphimTextures[sti++] = u1; s->seraphimTextures[sti++] = v0; s->seraphimVertices[svi].f[0] = sx + dxm - dys; s->seraphimVertices[svi].f[1] = sy + dym + dxs; s->seraphimVertices[svi].f[2] = sx + dxm + dys; s->seraphimVertices[svi].f[3] = sy + dym - dxs; svi++; s->seraphimVertices[svi].f[0] = oldscreenx - dxm + dyos; s->seraphimVertices[svi].f[1] = oldscreeny - dym - dxos; s->seraphimVertices[svi].f[2] = oldscreenx - dxm - dyos; s->seraphimVertices[svi].f[3] = oldscreeny - dym + dxos; svi++; } } } } glColorPointer(4, GL_FLOAT, 0, s->seraphimColors); glVertexPointer(2, GL_FLOAT, 0, s->seraphimVertices); glTexCoordPointer(2, GL_FLOAT, 0, s->seraphimTextures); glDrawArrays(GL_QUADS, 0, si * 4); }