/* * Copyright 2007-2012, Haiku, Inc. All Rights Reserved. * Distributed under the terms of the MIT License. * * Authors: * Ithamar Adema, ithamar AT unet DOT nl * Axel Dörfler, axeld@pinc-software.de */ #include "hda_controller_defs.h" #include #include "driver.h" #include "hda_codec_defs.h" #define MAKE_RATE(base, multiply, divide) \ ((base == 44100 ? FORMAT_44_1_BASE_RATE : 0) \ | ((multiply - 1) << FORMAT_MULTIPLY_RATE_SHIFT) \ | ((divide - 1) << FORMAT_DIVIDE_RATE_SHIFT)) #define HDAC_INPUT_STREAM_OFFSET(controller, index) \ ((index) * HDAC_STREAM_SIZE) #define HDAC_OUTPUT_STREAM_OFFSET(controller, index) \ (((controller)->num_input_streams + (index)) * HDAC_STREAM_SIZE) #define HDAC_BIDIR_STREAM_OFFSET(controller, index) \ (((controller)->num_input_streams + (controller)->num_output_streams \ + (index)) * HDAC_STREAM_SIZE) #define ALIGN(size, align) (((size) + align - 1) & ~(align - 1)) #define PAGE_ALIGN(size) (((size) + B_PAGE_SIZE - 1) & ~(B_PAGE_SIZE - 1)) #define PCI_VENDOR_AMD 0x1002 #define PCI_VENDOR_CREATIVE 0x1102 #define PCI_VENDOR_INTEL 0x8086 #define PCI_VENDOR_NVIDIA 0x10de #define PCI_ALL_DEVICES 0xffffffff #define HDA_QUIRK_SNOOP 0x0001 #define HDA_QUIRK_NO_MSI 0x0002 static const struct { uint32 vendor_id, device_id; uint32 quirks; } kControllerQuirks[] = { { PCI_VENDOR_INTEL, 0x1c20, HDA_QUIRK_SNOOP }, { PCI_VENDOR_INTEL, 0x1d20, HDA_QUIRK_SNOOP }, { PCI_VENDOR_INTEL, 0x1e20, HDA_QUIRK_SNOOP }, { PCI_VENDOR_INTEL, 0x8c20, HDA_QUIRK_SNOOP }, { PCI_VENDOR_INTEL, 0x9c20, HDA_QUIRK_SNOOP }, { PCI_VENDOR_INTEL, 0x9c21, HDA_QUIRK_SNOOP }, { PCI_VENDOR_INTEL, 0x0c0c, HDA_QUIRK_SNOOP }, { PCI_VENDOR_INTEL, 0x811b, HDA_QUIRK_SNOOP }, { PCI_VENDOR_INTEL, 0x080a, HDA_QUIRK_SNOOP }, // Enable snooping for ATI and Nvidia, right now for all their hda-devices, // but only based on guessing. { PCI_VENDOR_AMD, PCI_ALL_DEVICES, HDA_QUIRK_SNOOP }, { PCI_VENDOR_NVIDIA, PCI_ALL_DEVICES, HDA_QUIRK_SNOOP | HDA_QUIRK_NO_MSI }, { PCI_VENDOR_CREATIVE, 0x0010, HDA_QUIRK_NO_MSI }, { PCI_VENDOR_CREATIVE, 0x0012, HDA_QUIRK_NO_MSI } }; static const struct { uint32 multi_rate; uint32 hw_rate; uint32 rate; } kRates[] = { {B_SR_8000, MAKE_RATE(48000, 1, 6), 8000}, {B_SR_11025, MAKE_RATE(44100, 1, 4), 11025}, {B_SR_16000, MAKE_RATE(48000, 1, 3), 16000}, {B_SR_22050, MAKE_RATE(44100, 1, 2), 22050}, {B_SR_32000, MAKE_RATE(48000, 2, 3), 32000}, {B_SR_44100, MAKE_RATE(44100, 1, 1), 44100}, {B_SR_48000, MAKE_RATE(48000, 1, 1), 48000}, {B_SR_88200, MAKE_RATE(44100, 2, 1), 88200}, {B_SR_96000, MAKE_RATE(48000, 2, 1), 96000}, {B_SR_176400, MAKE_RATE(44100, 4, 1), 176400}, {B_SR_192000, MAKE_RATE(48000, 4, 1), 192000}, // this one is not supported by hardware. // {B_SR_384000, MAKE_RATE(44100, ??, ??), 384000}, }; static uint32 get_controller_quirks(pci_info& info) { for (size_t i = 0; i < sizeof(kControllerQuirks) / sizeof(kControllerQuirks[0]); i++) { if (info.vendor_id == kControllerQuirks[i].vendor_id && (kControllerQuirks[i].device_id == PCI_ALL_DEVICES || kControllerQuirks[i].device_id == info.device_id)) return kControllerQuirks[i].quirks; } return 0; } static inline void update_pci_register(hda_controller* controller, uint8 reg, uint32 mask, uint32 value, uint8 size) { uint32 originalValue = (gPci->read_pci_config)(controller->pci_info.bus, controller->pci_info.device, controller->pci_info.function, reg, size); (gPci->write_pci_config)(controller->pci_info.bus, controller->pci_info.device, controller->pci_info.function, reg, size, (originalValue & mask) | value); } static inline rirb_t& current_rirb(hda_controller* controller) { return controller->rirb[controller->rirb_read_pos]; } static inline uint32 next_rirb(hda_controller* controller) { return (controller->rirb_read_pos + 1) % controller->rirb_length; } static inline uint32 next_corb(hda_controller* controller) { return (controller->corb_write_pos + 1) % controller->corb_length; } /*! Called with interrupts off. Returns \c true, if the scheduler shall be invoked. */ static bool stream_handle_interrupt(hda_controller* controller, hda_stream* stream, uint32 index) { if (!stream->running) return false; uint8 status = stream->Read8(HDAC_STREAM_STATUS); if (status == 0) return false; stream->Write8(HDAC_STREAM_STATUS, status); if ((status & STATUS_FIFO_ERROR) != 0) dprintf("hda: stream fifo error (id:%ld)\n", stream->id); if ((status & STATUS_DESCRIPTOR_ERROR) != 0) dprintf("hda: stream descriptor error (id:%ld)\n", stream->id); if ((status & STATUS_BUFFER_COMPLETED) == 0) { dprintf("hda: stream buffer not completed (id:%ld)\n", stream->id); return false; } // Normally we should use the DMA position for the stream. Apparently there // are broken chipsets, which don't support it correctly. If we detect this, // we switch to using the LPIB instead. The link position is ahead of the // DMA position for recording and behind for playback streams, but just // for determining the currently active buffer, it should be good enough. if (stream->use_dma_position && stream->incorrect_position_count >= 32) { dprintf("hda: DMA position for stream (id:%ld) seems to be broken. " "Switching to using LPIB.\n", stream->id); stream->use_dma_position = false; } // Determine the buffer we're switching to. Some chipsets seem to trigger // the interrupt before the DMA position in memory has been updated. We // round it, so we still get the right buffer. uint32 dmaPosition = stream->use_dma_position ? controller->stream_positions[index * 2] : stream->Read32(HDAC_STREAM_POSITION); uint32 bufferIndex = ((dmaPosition + stream->buffer_size / 2) / stream->buffer_size) % stream->num_buffers; // get the current recording/playing position and the system time uint32 linkBytePosition = stream->Read32(HDAC_STREAM_POSITION); bigtime_t now = system_time(); // compute the frame position for the byte position uint32 linkFramePosition = 0; while (linkBytePosition >= stream->buffer_size) { linkFramePosition += stream->buffer_length; linkBytePosition -= stream->buffer_size; } linkFramePosition += std::min( linkBytePosition / (stream->num_channels * stream->sample_size), stream->buffer_length); // compute the number of frames processed since the previous interrupt int32 framesProcessed = (int32)linkFramePosition - (int32)stream->last_link_frame_position; if (framesProcessed < 0) framesProcessed += stream->num_buffers * stream->buffer_length; stream->last_link_frame_position = linkFramePosition; // update stream playing/recording state and notify buffer_exchange() acquire_spinlock(&stream->lock); if (bufferIndex == (stream->buffer_cycle + 1) % stream->num_buffers) stream->incorrect_position_count = 0; else stream->incorrect_position_count++; stream->real_time = now; stream->frames_count += framesProcessed; stream->buffer_cycle = bufferIndex; release_spinlock(&stream->lock); release_sem_etc(controller->buffer_ready_sem, 1, B_DO_NOT_RESCHEDULE); return true; } static int32 hda_interrupt_handler(hda_controller* controller) { int32 handled = B_HANDLED_INTERRUPT; // Check if this interrupt is ours uint32 intrStatus = controller->Read32(HDAC_INTR_STATUS); if ((intrStatus & INTR_STATUS_GLOBAL) == 0) return B_UNHANDLED_INTERRUPT; // Controller or stream related? if (intrStatus & INTR_STATUS_CONTROLLER) { uint8 rirbStatus = controller->Read8(HDAC_RIRB_STATUS); uint8 corbStatus = controller->Read8(HDAC_CORB_STATUS); // Check for incoming responses if (rirbStatus) { controller->Write8(HDAC_RIRB_STATUS, rirbStatus); if ((rirbStatus & RIRB_STATUS_RESPONSE) != 0) { uint16 writePos = (controller->Read16(HDAC_RIRB_WRITE_POS) + 1) % controller->rirb_length; for (; controller->rirb_read_pos != writePos; controller->rirb_read_pos = next_rirb(controller)) { uint32 response = current_rirb(controller).response; uint32 responseFlags = current_rirb(controller).flags; uint32 cad = responseFlags & RESPONSE_FLAGS_CODEC_MASK; hda_codec* codec = controller->codecs[cad]; if (codec == NULL) { dprintf("hda: Response for unknown codec %ld: " "%08lx/%08lx\n", cad, response, responseFlags); continue; } if ((responseFlags & RESPONSE_FLAGS_UNSOLICITED) != 0) { dprintf("hda: Unsolicited response: %08lx/%08lx\n", response, responseFlags); codec->unsol_responses[codec->unsol_response_write++] = response; codec->unsol_response_write %= MAX_CODEC_UNSOL_RESPONSES; release_sem_etc(codec->unsol_response_sem, 1, B_DO_NOT_RESCHEDULE); handled = B_INVOKE_SCHEDULER; continue; } if (codec->response_count >= MAX_CODEC_RESPONSES) { dprintf("hda: too many responses received for codec %ld" ": %08lx/%08lx!\n", cad, response, responseFlags); continue; } // Store response in codec codec->responses[codec->response_count++] = response; release_sem_etc(codec->response_sem, 1, B_DO_NOT_RESCHEDULE); handled = B_INVOKE_SCHEDULER; } } if ((rirbStatus & RIRB_STATUS_OVERRUN) != 0) dprintf("hda: RIRB Overflow\n"); } // Check for sending errors if (corbStatus) { controller->Write8(HDAC_CORB_STATUS, corbStatus); if ((corbStatus & CORB_STATUS_MEMORY_ERROR) != 0) dprintf("hda: CORB Memory Error!\n"); } } if ((intrStatus & INTR_STATUS_STREAM_MASK) != 0) { for (uint32 index = 0; index < HDA_MAX_STREAMS; index++) { if ((intrStatus & (1 << index)) != 0) { if (controller->streams[index]) { if (stream_handle_interrupt(controller, controller->streams[index], index)) { handled = B_INVOKE_SCHEDULER; } } else { dprintf("hda: Stream interrupt for unconfigured stream " "%ld!\n", index); } } } } // NOTE: See HDA001 => CIS/GIS cannot be cleared! return handled; } static status_t reset_controller(hda_controller* controller) { // stop streams for (uint32 i = 0; i < controller->num_input_streams; i++) { controller->Write8(HDAC_STREAM_CONTROL0 + HDAC_STREAM_BASE + HDAC_INPUT_STREAM_OFFSET(controller, i), 0); controller->Write8(HDAC_STREAM_STATUS + HDAC_STREAM_BASE + HDAC_INPUT_STREAM_OFFSET(controller, i), 0); } for (uint32 i = 0; i < controller->num_output_streams; i++) { controller->Write8(HDAC_STREAM_CONTROL0 + HDAC_STREAM_BASE + HDAC_OUTPUT_STREAM_OFFSET(controller, i), 0); controller->Write8(HDAC_STREAM_STATUS + HDAC_STREAM_BASE + HDAC_OUTPUT_STREAM_OFFSET(controller, i), 0); } for (uint32 i = 0; i < controller->num_bidir_streams; i++) { controller->Write8(HDAC_STREAM_CONTROL0 + HDAC_STREAM_BASE + HDAC_BIDIR_STREAM_OFFSET(controller, i), 0); controller->Write8(HDAC_STREAM_STATUS + HDAC_STREAM_BASE + HDAC_BIDIR_STREAM_OFFSET(controller, i), 0); } // stop DMA controller->Write8(HDAC_CORB_CONTROL, 0); controller->Write8(HDAC_RIRB_CONTROL, 0); // reset DMA position buffer controller->Write32(HDAC_DMA_POSITION_BASE_LOWER, 0); controller->Write32(HDAC_DMA_POSITION_BASE_UPPER, 0); // Set reset bit - it must be asserted for at least 100us uint32 control = controller->Read32(HDAC_GLOBAL_CONTROL); controller->Write32(HDAC_GLOBAL_CONTROL, control & ~GLOBAL_CONTROL_RESET); for (int timeout = 0; timeout < 10; timeout++) { snooze(100); control = controller->Read32(HDAC_GLOBAL_CONTROL); if ((control & GLOBAL_CONTROL_RESET) == 0) break; } if ((control & GLOBAL_CONTROL_RESET) != 0) { dprintf("hda: unable to reset controller\n"); return B_BUSY; } // Unset reset bit control = controller->Read32(HDAC_GLOBAL_CONTROL); controller->Write32(HDAC_GLOBAL_CONTROL, control | GLOBAL_CONTROL_RESET); for (int timeout = 0; timeout < 10; timeout++) { snooze(100); control = controller->Read32(HDAC_GLOBAL_CONTROL); if ((control & GLOBAL_CONTROL_RESET) != 0) break; } if ((control & GLOBAL_CONTROL_RESET) == 0) { dprintf("hda: unable to exit reset\n"); return B_BUSY; } // Wait for codecs to finish their own reset (apparently needs more // time than documented in the specs) snooze(1000); // Enable unsolicited responses control = controller->Read32(HDAC_GLOBAL_CONTROL); controller->Write32(HDAC_GLOBAL_CONTROL, control | GLOBAL_CONTROL_UNSOLICITED); return B_OK; } /*! Allocates and initializes the Command Output Ring Buffer (CORB), and Response Input Ring Buffer (RIRB) to the maximum supported size, and also the DMA position buffer. Programs the controller hardware to make use of these buffers (the DMA positioning is actually enabled in hda_stream_setup_buffers()). */ static status_t init_corb_rirb_pos(hda_controller* controller) { // Determine and set size of CORB uint8 corbSize = controller->Read8(HDAC_CORB_SIZE); if ((corbSize & CORB_SIZE_CAP_256_ENTRIES) != 0) { controller->corb_length = 256; controller->Write8(HDAC_CORB_SIZE, CORB_SIZE_256_ENTRIES); } else if (corbSize & CORB_SIZE_CAP_16_ENTRIES) { controller->corb_length = 16; controller->Write8(HDAC_CORB_SIZE, CORB_SIZE_16_ENTRIES); } else if (corbSize & CORB_SIZE_CAP_2_ENTRIES) { controller->corb_length = 2; controller->Write8(HDAC_CORB_SIZE, CORB_SIZE_2_ENTRIES); } // Determine and set size of RIRB uint8 rirbSize = controller->Read8(HDAC_RIRB_SIZE); if (rirbSize & RIRB_SIZE_CAP_256_ENTRIES) { controller->rirb_length = 256; controller->Write8(HDAC_RIRB_SIZE, RIRB_SIZE_256_ENTRIES); } else if (rirbSize & RIRB_SIZE_CAP_16_ENTRIES) { controller->rirb_length = 16; controller->Write8(HDAC_RIRB_SIZE, RIRB_SIZE_16_ENTRIES); } else if (rirbSize & RIRB_SIZE_CAP_2_ENTRIES) { controller->rirb_length = 2; controller->Write8(HDAC_RIRB_SIZE, RIRB_SIZE_2_ENTRIES); } // Determine rirb offset in memory and total size of corb+alignment+rirb uint32 rirbOffset = ALIGN(controller->corb_length * sizeof(corb_t), 128); uint32 posOffset = ALIGN(rirbOffset + controller->rirb_length * sizeof(rirb_t), 128); uint8 posSize = 8 * (controller->num_input_streams + controller->num_output_streams + controller->num_bidir_streams); uint32 memSize = PAGE_ALIGN(posOffset + posSize); // Allocate memory area controller->corb_rirb_pos_area = create_area("hda corb/rirb/pos", (void**)&controller->corb, B_ANY_KERNEL_ADDRESS, memSize, B_CONTIGUOUS, 0); if (controller->corb_rirb_pos_area < 0) return controller->corb_rirb_pos_area; // Rirb is after corb+aligment controller->rirb = (rirb_t*)(((uint8*)controller->corb) + rirbOffset); physical_entry pe; status_t status = get_memory_map(controller->corb, memSize, &pe, 1); if (status != B_OK) { delete_area(controller->corb_rirb_pos_area); return status; } // Program CORB/RIRB for these locations controller->Write32(HDAC_CORB_BASE_LOWER, (uint32)pe.address); controller->Write32(HDAC_CORB_BASE_UPPER, (uint32)((uint64)pe.address >> 32)); controller->Write32(HDAC_RIRB_BASE_LOWER, (uint32)pe.address + rirbOffset); controller->Write32(HDAC_RIRB_BASE_UPPER, (uint32)(((uint64)pe.address + rirbOffset) >> 32)); // Program DMA position update controller->Write32(HDAC_DMA_POSITION_BASE_LOWER, (uint32)pe.address + posOffset); controller->Write32(HDAC_DMA_POSITION_BASE_UPPER, (uint32)(((uint64)pe.address + posOffset) >> 32)); controller->stream_positions = (uint32*) ((uint8*)controller->corb + posOffset); controller->Write16(HDAC_CORB_WRITE_POS, 0); // Reset CORB read pointer controller->Write16(HDAC_CORB_READ_POS, CORB_READ_POS_RESET); // Reading CORB_READ_POS_RESET as zero fails on some chips. // We reset the bit here. controller->Write16(HDAC_CORB_READ_POS, 0); // Reset RIRB write pointer controller->Write16(HDAC_RIRB_WRITE_POS, RIRB_WRITE_POS_RESET); // Generate interrupt for every response controller->Write16(HDAC_RESPONSE_INTR_COUNT, 1); // Setup cached read/write indices controller->rirb_read_pos = 1; controller->corb_write_pos = 0; // Gentlemen, start your engines... controller->Write8(HDAC_CORB_CONTROL, CORB_CONTROL_RUN | CORB_CONTROL_MEMORY_ERROR_INTR); controller->Write8(HDAC_RIRB_CONTROL, RIRB_CONTROL_DMA_ENABLE | RIRB_CONTROL_OVERRUN_INTR | RIRB_CONTROL_RESPONSE_INTR); return B_OK; } // #pragma mark - public stream functions void hda_stream_delete(hda_stream* stream) { if (stream->buffer_area >= 0) delete_area(stream->buffer_area); if (stream->buffer_descriptors_area >= 0) delete_area(stream->buffer_descriptors_area); free(stream); } hda_stream* hda_stream_new(hda_audio_group* audioGroup, int type) { hda_controller* controller = audioGroup->codec->controller; hda_stream* stream = (hda_stream*)calloc(1, sizeof(hda_stream)); if (stream == NULL) return NULL; stream->buffer_area = B_ERROR; stream->buffer_descriptors_area = B_ERROR; stream->type = type; stream->controller = controller; stream->incorrect_position_count = 0; stream->use_dma_position = true; switch (type) { case STREAM_PLAYBACK: stream->id = 1; stream->offset = HDAC_OUTPUT_STREAM_OFFSET(controller, 0); break; case STREAM_RECORD: stream->id = 2; stream->offset = HDAC_INPUT_STREAM_OFFSET(controller, 0); break; default: dprintf("%s: Unknown stream type %d!\n", __func__, type); free(stream); return NULL; } // find I/O and Pin widgets for this stream if (hda_audio_group_get_widgets(audioGroup, stream) == B_OK) { switch (type) { case STREAM_PLAYBACK: controller->streams[controller->num_input_streams] = stream; break; case STREAM_RECORD: controller->streams[0] = stream; break; } return stream; } dprintf("hda: hda_audio_group_get_widgets failed for %s stream\n", type == STREAM_PLAYBACK ? " playback" : "record"); free(stream); return NULL; } /*! Starts a stream's DMA engine, and enables generating and receiving interrupts for this stream. */ status_t hda_stream_start(hda_controller* controller, hda_stream* stream) { dprintf("hda_stream_start() offset %lx\n", stream->offset); stream->frames_count = 0; stream->last_link_frame_position = 0; controller->Write32(HDAC_INTR_CONTROL, controller->Read32(HDAC_INTR_CONTROL) | (1 << (stream->offset / HDAC_STREAM_SIZE))); stream->Write8(HDAC_STREAM_CONTROL0, stream->Read8(HDAC_STREAM_CONTROL0) | CONTROL0_BUFFER_COMPLETED_INTR | CONTROL0_FIFO_ERROR_INTR | CONTROL0_DESCRIPTOR_ERROR_INTR | CONTROL0_RUN); stream->running = true; return B_OK; } /*! Stops the stream's DMA engine, and turns off interrupts for this stream. */ status_t hda_stream_stop(hda_controller* controller, hda_stream* stream) { dprintf("hda_stream_stop()\n"); stream->Write8(HDAC_STREAM_CONTROL0, stream->Read8(HDAC_STREAM_CONTROL0) & ~(CONTROL0_BUFFER_COMPLETED_INTR | CONTROL0_FIFO_ERROR_INTR | CONTROL0_DESCRIPTOR_ERROR_INTR | CONTROL0_RUN)); controller->Write32(HDAC_INTR_CONTROL, controller->Read32(HDAC_INTR_CONTROL) & ~(1 << (stream->offset / HDAC_STREAM_SIZE))); stream->running = false; return B_OK; } status_t hda_stream_setup_buffers(hda_audio_group* audioGroup, hda_stream* stream, const char* desc) { // Clear previously allocated memory if (stream->buffer_area >= 0) { delete_area(stream->buffer_area); stream->buffer_area = B_ERROR; } if (stream->buffer_descriptors_area >= 0) { delete_area(stream->buffer_descriptors_area); stream->buffer_descriptors_area = B_ERROR; } // Find out stream format and sample rate uint16 format = (stream->num_channels - 1) & 0xf; switch (stream->sample_format) { case B_FMT_8BIT_S: format |= FORMAT_8BIT; stream->bps = 8; break; case B_FMT_16BIT: format |= FORMAT_16BIT; stream->bps = 16; break; case B_FMT_20BIT: format |= FORMAT_20BIT; stream->bps = 20; break; case B_FMT_24BIT: format |= FORMAT_24BIT; stream->bps = 24; break; case B_FMT_32BIT: format |= FORMAT_32BIT; stream->bps = 32; break; default: dprintf("hda: Invalid sample format: 0x%lx\n", stream->sample_format); break; } for (uint32 index = 0; index < sizeof(kRates) / sizeof(kRates[0]); index++) { if (kRates[index].multi_rate == stream->sample_rate) { format |= kRates[index].hw_rate; stream->rate = kRates[index].rate; break; } } // Calculate size of buffer (aligned to 128 bytes) stream->buffer_size = ALIGN(stream->buffer_length * stream->num_channels * stream->sample_size, 128); dprintf("HDA: sample size %ld, num channels %ld, buffer length %ld\n", stream->sample_size, stream->num_channels, stream->buffer_length); dprintf("IRA: %s: setup stream %ld: SR=%ld, SF=%ld F=0x%x (0x%lx)\n", __func__, stream->id, stream->rate, stream->bps, format, stream->sample_format); // Calculate total size of all buffers (aligned to size of B_PAGE_SIZE) uint32 alloc = stream->buffer_size * stream->num_buffers; alloc = PAGE_ALIGN(alloc); // Allocate memory for buffers uint8* buffer; stream->buffer_area = create_area("hda buffers", (void**)&buffer, B_ANY_KERNEL_ADDRESS, alloc, B_CONTIGUOUS, B_READ_AREA | B_WRITE_AREA); if (stream->buffer_area < B_OK) return stream->buffer_area; // Get the physical address of memory physical_entry pe; status_t status = get_memory_map(buffer, alloc, &pe, 1); if (status != B_OK) { delete_area(stream->buffer_area); return status; } phys_addr_t bufferPhysicalAddress = pe.address; dprintf("%s(%s): Allocated %lu bytes for %ld buffers\n", __func__, desc, alloc, stream->num_buffers); // Store pointers (both virtual/physical) for (uint32 index = 0; index < stream->num_buffers; index++) { stream->buffers[index] = buffer + (index * stream->buffer_size); stream->physical_buffers[index] = bufferPhysicalAddress + (index * stream->buffer_size); } // Now allocate BDL for buffer range uint32 bdlCount = stream->num_buffers; alloc = bdlCount * sizeof(bdl_entry_t); alloc = PAGE_ALIGN(alloc); bdl_entry_t* bufferDescriptors; stream->buffer_descriptors_area = create_area("hda buffer descriptors", (void**)&bufferDescriptors, B_ANY_KERNEL_ADDRESS, alloc, B_CONTIGUOUS, 0); if (stream->buffer_descriptors_area < B_OK) { delete_area(stream->buffer_area); return stream->buffer_descriptors_area; } // Get the physical address of memory status = get_memory_map(bufferDescriptors, alloc, &pe, 1); if (status != B_OK) { delete_area(stream->buffer_area); delete_area(stream->buffer_descriptors_area); return status; } stream->physical_buffer_descriptors = pe.address; dprintf("%s(%s): Allocated %ld bytes for %ld BDLEs\n", __func__, desc, alloc, bdlCount); // Setup buffer descriptor list (BDL) entries uint32 fragments = 0; for (uint32 index = 0; index < stream->num_buffers; index++, bufferDescriptors++) { bufferDescriptors->lower = (uint32)stream->physical_buffers[index]; bufferDescriptors->upper = (uint32)((uint64)stream->physical_buffers[index] >> 32); fragments++; bufferDescriptors->length = stream->buffer_size; bufferDescriptors->ioc = 1; // we want an interrupt after every buffer } // Configure stream registers stream->Write16(HDAC_STREAM_FORMAT, format); stream->Write32(HDAC_STREAM_BUFFERS_BASE_LOWER, (uint32)stream->physical_buffer_descriptors); stream->Write32(HDAC_STREAM_BUFFERS_BASE_UPPER, (uint32)(stream->physical_buffer_descriptors >> 32)); stream->Write16(HDAC_STREAM_LAST_VALID, fragments - 1); // total cyclic buffer size in _bytes_ stream->Write32(HDAC_STREAM_BUFFER_SIZE, stream->buffer_size * stream->num_buffers); stream->Write8(HDAC_STREAM_CONTROL2, stream->id << CONTROL2_STREAM_SHIFT); stream->controller->Write32(HDAC_DMA_POSITION_BASE_LOWER, stream->controller->Read32(HDAC_DMA_POSITION_BASE_LOWER) | DMA_POSITION_ENABLED); dprintf("hda: stream: %ld fifo size: %d num_io_widgets: %ld\n", stream->id, stream->Read16(HDAC_STREAM_FIFO_SIZE), stream->num_io_widgets); dprintf("hda: widgets: "); hda_codec* codec = audioGroup->codec; uint32 channelNum = 0; for (uint32 i = 0; i < stream->num_io_widgets; i++) { corb_t verb[2]; verb[0] = MAKE_VERB(codec->addr, stream->io_widgets[i], VID_SET_CONVERTER_FORMAT, format); uint32 val = stream->id << 4; if (channelNum < stream->num_channels) val |= channelNum; else val = 0; verb[1] = MAKE_VERB(codec->addr, stream->io_widgets[i], VID_SET_CONVERTER_STREAM_CHANNEL, val); uint32 response[2]; hda_send_verbs(codec, verb, response, 2); //channelNum += 2; // TODO stereo widget ? Every output gets the same stream for now dprintf("%ld ", stream->io_widgets[i]); hda_widget* widget = hda_audio_group_get_widget(audioGroup, stream->io_widgets[i]); if ((widget->capabilities.audio & AUDIO_CAP_DIGITAL) != 0) { verb[0] = MAKE_VERB(codec->addr, stream->io_widgets[i], VID_SET_DIGITAL_CONVERTER_CONTROL1, format); hda_send_verbs(codec, verb, response, 1); } } dprintf("\n"); snooze(1000); return B_OK; } // #pragma mark - public controller functions status_t hda_send_verbs(hda_codec* codec, corb_t* verbs, uint32* responses, uint32 count) { hda_controller* controller = codec->controller; uint32 sent = 0; codec->response_count = 0; while (sent < count) { uint32 readPos = controller->Read16(HDAC_CORB_READ_POS); uint32 queued = 0; while (sent < count) { uint32 writePos = next_corb(controller); if (writePos == readPos) { // There is no space left in the ring buffer; execute the // queued commands and wait until break; } controller->corb[writePos] = verbs[sent++]; controller->corb_write_pos = writePos; queued++; } controller->Write16(HDAC_CORB_WRITE_POS, controller->corb_write_pos); status_t status = acquire_sem_etc(codec->response_sem, queued, B_RELATIVE_TIMEOUT, 50000ULL); if (status != B_OK) return status; } if (responses != NULL) memcpy(responses, codec->responses, count * sizeof(uint32)); return B_OK; } status_t hda_verb_write(hda_codec* codec, uint32 nid, uint32 vid, uint16 payload) { corb_t verb = MAKE_VERB(codec->addr, nid, vid, payload); return hda_send_verbs(codec, &verb, NULL, 1); } status_t hda_verb_read(hda_codec* codec, uint32 nid, uint32 vid, uint32* response) { corb_t verb = MAKE_VERB(codec->addr, nid, vid, 0); return hda_send_verbs(codec, &verb, response, 1); } /*! Setup hardware for use; detect codecs; etc */ status_t hda_hw_init(hda_controller* controller) { uint16 capabilities; uint16 stateStatus; uint16 cmd; status_t status; uint32 quirks = get_controller_quirks(controller->pci_info); // Map MMIO registers controller->regs_area = map_physical_memory("hda_hw_regs", controller->pci_info.u.h0.base_registers[0], controller->pci_info.u.h0.base_register_sizes[0], B_ANY_KERNEL_ADDRESS, 0, (void**)&controller->regs); if (controller->regs_area < B_OK) { status = controller->regs_area; goto error; } cmd = (gPci->read_pci_config)(controller->pci_info.bus, controller->pci_info.device, controller->pci_info.function, PCI_command, 2); if (!(cmd & PCI_command_master)) { dprintf("hda: enabling PCI bus mastering\n"); cmd |= PCI_command_master; } if (!(cmd & PCI_command_memory)) { dprintf("hda: enabling PCI memory access\n"); cmd |= PCI_command_memory; } if ((cmd & PCI_command_int_disable)) { dprintf("hda: enabling PCI interrupts\n"); cmd &= ~PCI_command_int_disable; } (gPci->write_pci_config)(controller->pci_info.bus, controller->pci_info.device, controller->pci_info.function, PCI_command, 2, cmd); // Absolute minimum hw is online; we can now install interrupt handler controller->irq = controller->pci_info.u.h0.interrupt_line; controller->msi = false; if (gPCIx86Module != NULL && (quirks & HDA_QUIRK_NO_MSI) == 0 && gPCIx86Module->get_msi_count( controller->pci_info.bus, controller->pci_info.device, controller->pci_info.function) >= 1) { // Try MSI first uint8 vector; if (gPCIx86Module->configure_msi(controller->pci_info.bus, controller->pci_info.device, controller->pci_info.function, 1, &vector) == B_OK && gPCIx86Module->enable_msi(controller->pci_info.bus, controller->pci_info.device, controller->pci_info.function) == B_OK) { dprintf("hda: using MSI vector %u\n", vector); controller->irq = vector; controller->msi = true; } } status = install_io_interrupt_handler(controller->irq, (interrupt_handler)hda_interrupt_handler, controller, 0); if (status != B_OK) goto no_irq; // TCSEL is reset to TC0 (clear 0-2 bits) update_pci_register(controller, PCI_HDA_TCSEL, PCI_HDA_TCSEL_MASK, 0, 1); if ((quirks & HDA_QUIRK_SNOOP) != 0) { switch (controller->pci_info.vendor_id) { case PCI_VENDOR_NVIDIA: update_pci_register(controller, NVIDIA_HDA_TRANSREG, NVIDIA_HDA_TRANSREG_MASK, NVIDIA_HDA_ENABLE_COHBITS, 1); update_pci_register(controller, NVIDIA_HDA_ISTRM_COH, ~NVIDIA_HDA_ENABLE_COHBIT, NVIDIA_HDA_ENABLE_COHBIT, 1); update_pci_register(controller, NVIDIA_HDA_OSTRM_COH, ~NVIDIA_HDA_ENABLE_COHBIT, NVIDIA_HDA_ENABLE_COHBIT, 1); break; case PCI_VENDOR_AMD: update_pci_register(controller, ATI_HDA_MISC_CNTR2, ATI_HDA_MISC_CNTR2_MASK, ATI_HDA_ENABLE_SNOOP, 1); break; case PCI_VENDOR_INTEL: update_pci_register(controller, INTEL_SCH_HDA_DEVC, ~INTEL_SCH_HDA_DEVC_SNOOP, 0, 2); break; } } capabilities = controller->Read16(HDAC_GLOBAL_CAP); controller->num_input_streams = GLOBAL_CAP_INPUT_STREAMS(capabilities); controller->num_output_streams = GLOBAL_CAP_OUTPUT_STREAMS(capabilities); controller->num_bidir_streams = GLOBAL_CAP_BIDIR_STREAMS(capabilities); // show some hw features dprintf("hda: HDA v%d.%d, O:%ld/I:%ld/B:%ld, #SDO:%d, 64bit:%s\n", controller->Read8(HDAC_VERSION_MAJOR), controller->Read8(HDAC_VERSION_MINOR), controller->num_output_streams, controller->num_input_streams, controller->num_bidir_streams, GLOBAL_CAP_NUM_SDO(capabilities), GLOBAL_CAP_64BIT(capabilities) ? "yes" : "no"); // Get controller into valid state status = reset_controller(controller); if (status != B_OK) { dprintf("hda: reset_controller failed\n"); goto reset_failed; } // Setup CORB/RIRB/DMA POS status = init_corb_rirb_pos(controller); if (status != B_OK) { dprintf("hda: init_corb_rirb_pos failed\n"); goto corb_rirb_failed; } // Don't enable codec state change interrupts. We don't handle // them, as we want to use the STATE_STATUS register to identify // available codecs. We'd have to clear that register in the interrupt // handler to 'ack' the codec change. controller->Write16(HDAC_WAKE_ENABLE, 0x0); // Enable controller interrupts controller->Write32(HDAC_INTR_CONTROL, INTR_CONTROL_GLOBAL_ENABLE | INTR_CONTROL_CONTROLLER_ENABLE); snooze(1000); stateStatus = controller->Read16(HDAC_STATE_STATUS); if (!stateStatus) { dprintf("hda: bad codec status\n"); status = ENODEV; goto corb_rirb_failed; } controller->Write16(HDAC_STATE_STATUS, stateStatus); // Create codecs for (uint32 index = 0; index < HDA_MAX_CODECS; index++) { if ((stateStatus & (1 << index)) != 0) hda_codec_new(controller, index); } for (uint32 index = 0; index < HDA_MAX_CODECS; index++) { if (controller->codecs[index] && controller->codecs[index]->num_audio_groups > 0) { controller->active_codec = controller->codecs[index]; break; } } controller->buffer_ready_sem = create_sem(0, "hda_buffer_sem"); if (controller->buffer_ready_sem < B_OK) { dprintf("hda: failed to create semaphore\n"); status = ENODEV; goto corb_rirb_failed; } if (controller->active_codec != NULL) return B_OK; dprintf("hda: no active codec\n"); status = ENODEV; delete_sem(controller->buffer_ready_sem); corb_rirb_failed: controller->Write32(HDAC_INTR_CONTROL, 0); reset_failed: if (controller->msi) { gPCIx86Module->disable_msi(controller->pci_info.bus, controller->pci_info.device, controller->pci_info.function); } remove_io_interrupt_handler(controller->irq, (interrupt_handler)hda_interrupt_handler, controller); no_irq: delete_area(controller->regs_area); controller->regs_area = B_ERROR; controller->regs = NULL; error: dprintf("hda: ERROR: %s(%ld)\n", strerror(status), status); return status; } /*! Stop any activity */ void hda_hw_stop(hda_controller* controller) { // Stop all audio streams for (uint32 index = 0; index < HDA_MAX_STREAMS; index++) { if (controller->streams[index] && controller->streams[index]->running) hda_stream_stop(controller, controller->streams[index]); } } /*! Free resources */ void hda_hw_uninit(hda_controller* controller) { if (controller == NULL) return; // Stop all audio streams hda_hw_stop(controller); if (controller->buffer_ready_sem >= B_OK) { delete_sem(controller->buffer_ready_sem); controller->buffer_ready_sem = B_ERROR; } reset_controller(controller); // Disable interrupts, and remove interrupt handler controller->Write32(HDAC_INTR_CONTROL, 0); if (controller->msi) { // Disable MSI gPCIx86Module->disable_msi(controller->pci_info.bus, controller->pci_info.device, controller->pci_info.function); } remove_io_interrupt_handler(controller->irq, (interrupt_handler)hda_interrupt_handler, controller); if (gPCIx86Module != NULL) { put_module(B_PCI_X86_MODULE_NAME); gPCIx86Module = NULL; } // Delete corb/rirb area if (controller->corb_rirb_pos_area >= 0) { delete_area(controller->corb_rirb_pos_area); controller->corb_rirb_pos_area = B_ERROR; controller->corb = NULL; controller->rirb = NULL; controller->stream_positions = NULL; } // Unmap registers if (controller->regs_area >= 0) { delete_area(controller->regs_area); controller->regs_area = B_ERROR; controller->regs = NULL; } // Now delete all codecs for (uint32 index = 0; index < HDA_MAX_CODECS; index++) { if (controller->codecs[index] != NULL) hda_codec_delete(controller->codecs[index]); } controller->active_codec = NULL; }