/* * Copyright 2011-2021, Haiku, Inc. All rights reserved. * Distributed under the terms of the MIT License. * * Authors: * Augustin Cavalier * Jian Chiang * Jérôme Duval * Akshay Jaggi * Michael Lotz * Alexander von Gluck */ #include #include #include #include #include #include #include #include "xhci.h" #define USB_MODULE_NAME "xhci" pci_module_info *XHCI::sPCIModule = NULL; pci_x86_module_info *XHCI::sPCIx86Module = NULL; static int32 xhci_std_ops(int32 op, ...) { switch (op) { case B_MODULE_INIT: TRACE_MODULE("xhci init module\n"); return B_OK; case B_MODULE_UNINIT: TRACE_MODULE("xhci uninit module\n"); return B_OK; } return EINVAL; } static const char* xhci_error_string(uint32 error) { switch (error) { case COMP_INVALID: return "Invalid"; case COMP_SUCCESS: return "Success"; case COMP_DATA_BUFFER: return "Data buffer"; case COMP_BABBLE: return "Babble detected"; case COMP_USB_TRANSACTION: return "USB transaction"; case COMP_TRB: return "TRB"; case COMP_STALL: return "Stall"; case COMP_RESOURCE: return "Resource"; case COMP_BANDWIDTH: return "Bandwidth"; case COMP_NO_SLOTS: return "No slots"; case COMP_INVALID_STREAM: return "Invalid stream"; case COMP_SLOT_NOT_ENABLED: return "Slot not enabled"; case COMP_ENDPOINT_NOT_ENABLED: return "Endpoint not enabled"; case COMP_SHORT_PACKET: return "Short packet"; case COMP_RING_UNDERRUN: return "Ring underrun"; case COMP_RING_OVERRUN: return "Ring overrun"; case COMP_VF_RING_FULL: return "VF Event Ring Full"; case COMP_PARAMETER: return "Parameter"; case COMP_BANDWIDTH_OVERRUN: return "Bandwidth overrun"; case COMP_CONTEXT_STATE: return "Context state"; case COMP_NO_PING_RESPONSE: return "No ping response"; case COMP_EVENT_RING_FULL: return "Event ring full"; case COMP_INCOMPATIBLE_DEVICE: return "Incompatible device"; case COMP_MISSED_SERVICE: return "Missed service"; case COMP_COMMAND_RING_STOPPED: return "Command ring stopped"; case COMP_COMMAND_ABORTED: return "Command aborted"; case COMP_STOPPED: return "Stopped"; case COMP_LENGTH_INVALID: return "Length invalid"; case COMP_MAX_EXIT_LATENCY: return "Max exit latency too large"; case COMP_ISOC_OVERRUN: return "Isoch buffer overrun"; case COMP_EVENT_LOST: return "Event lost"; case COMP_UNDEFINED: return "Undefined"; case COMP_INVALID_STREAM_ID: return "Invalid stream ID"; case COMP_SECONDARY_BANDWIDTH: return "Secondary bandwidth"; case COMP_SPLIT_TRANSACTION: return "Split transaction"; default: return "Undefined"; } } usb_host_controller_info xhci_module = { { "busses/usb/xhci", 0, xhci_std_ops }, NULL, XHCI::AddTo }; module_info *modules[] = { (module_info *)&xhci_module, NULL }; status_t XHCI::AddTo(Stack *stack) { if (!sPCIModule) { status_t status = get_module(B_PCI_MODULE_NAME, (module_info **)&sPCIModule); if (status < B_OK) { TRACE_MODULE_ERROR("getting pci module failed! 0x%08" B_PRIx32 "\n", status); return status; } } TRACE_MODULE("searching devices\n"); bool found = false; pci_info *item = new(std::nothrow) pci_info; if (item == NULL) { sPCIModule = NULL; put_module(B_PCI_MODULE_NAME); return B_NO_MEMORY; } // Try to get the PCI x86 module as well so we can enable possible MSIs. if (sPCIx86Module == NULL && get_module(B_PCI_X86_MODULE_NAME, (module_info **)&sPCIx86Module) != B_OK) { // If it isn't there, that's not critical though. TRACE_MODULE_ERROR("failed to get pci x86 module\n"); sPCIx86Module = NULL; } for (int32 i = 0; sPCIModule->get_nth_pci_info(i, item) >= B_OK; i++) { if (item->class_base == PCI_serial_bus && item->class_sub == PCI_usb && item->class_api == PCI_usb_xhci) { TRACE_MODULE("found device at PCI:%d:%d:%d\n", item->bus, item->device, item->function); XHCI *bus = new(std::nothrow) XHCI(item, stack); if (bus == NULL) { delete item; sPCIModule = NULL; put_module(B_PCI_MODULE_NAME); if (sPCIx86Module != NULL) put_module(B_PCI_X86_MODULE_NAME); return B_NO_MEMORY; } // The bus will put the PCI modules when it is destroyed, so get // them again to increase their reference count. get_module(B_PCI_MODULE_NAME, (module_info **)&sPCIModule); if (sPCIx86Module != NULL) get_module(B_PCI_X86_MODULE_NAME, (module_info **)&sPCIx86Module); if (bus->InitCheck() < B_OK) { TRACE_MODULE_ERROR("bus failed init check\n"); delete bus; continue; } // the bus took it away item = new(std::nothrow) pci_info; if (bus->Start() != B_OK) { delete bus; continue; } found = true; } } // The modules will have been gotten again if we successfully // initialized a bus, so we should put them here. put_module(B_PCI_MODULE_NAME); if (sPCIx86Module != NULL) put_module(B_PCI_X86_MODULE_NAME); if (!found) TRACE_MODULE_ERROR("no devices found\n"); delete item; return found ? B_OK : ENODEV; } XHCI::XHCI(pci_info *info, Stack *stack) : BusManager(stack), fRegisterArea(-1), fRegisters(NULL), fPCIInfo(info), fStack(stack), fIRQ(0), fUseMSI(false), fErstArea(-1), fDcbaArea(-1), fCmdCompSem(-1), fStopThreads(false), fRootHub(NULL), fPortCount(0), fSlotCount(0), fScratchpadCount(0), fContextSizeShift(0), fFinishedHead(NULL), fFinishTransfersSem(-1), fFinishThread(-1), fEventSem(-1), fEventThread(-1), fEventIdx(0), fCmdIdx(0), fEventCcs(1), fCmdCcs(1) { B_INITIALIZE_SPINLOCK(&fSpinlock); mutex_init(&fFinishedLock, "XHCI finished transfers"); mutex_init(&fEventLock, "XHCI event handler"); if (BusManager::InitCheck() < B_OK) { TRACE_ERROR("bus manager failed to init\n"); return; } TRACE("constructing new XHCI host controller driver\n"); fInitOK = false; // enable busmaster and memory mapped access uint16 command = sPCIModule->read_pci_config(fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function, PCI_command, 2); command &= ~(PCI_command_io | PCI_command_int_disable); command |= PCI_command_master | PCI_command_memory; sPCIModule->write_pci_config(fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function, PCI_command, 2, command); // map the registers (low + high for 64-bit when requested) phys_addr_t physicalAddress = fPCIInfo->u.h0.base_registers[0]; if ((fPCIInfo->u.h0.base_register_flags[0] & PCI_address_type) == PCI_address_type_64) { physicalAddress |= (uint64)fPCIInfo->u.h0.base_registers[1] << 32; } size_t mapSize = fPCIInfo->u.h0.base_register_sizes[0]; TRACE("map registers %08" B_PRIxPHYSADDR ", size: %" B_PRIuSIZE "\n", physicalAddress, mapSize); fRegisterArea = map_physical_memory("XHCI memory mapped registers", physicalAddress, mapSize, B_ANY_KERNEL_BLOCK_ADDRESS, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA, (void **)&fRegisters); if (fRegisterArea < B_OK) { TRACE_ERROR("failed to map register memory\n"); return; } // determine the register offsets fCapabilityRegisterOffset = 0; fOperationalRegisterOffset = HCI_CAPLENGTH(ReadCapReg32(XHCI_HCI_CAPLENGTH)); fRuntimeRegisterOffset = ReadCapReg32(XHCI_RTSOFF) & ~0x1F; fDoorbellRegisterOffset = ReadCapReg32(XHCI_DBOFF) & ~0x3; TRACE("mapped registers: %p\n", fRegisters); TRACE("operational register offset: %" B_PRId32 "\n", fOperationalRegisterOffset); TRACE("runtime register offset: %" B_PRId32 "\n", fRuntimeRegisterOffset); TRACE("doorbell register offset: %" B_PRId32 "\n", fDoorbellRegisterOffset); int32 interfaceVersion = HCI_VERSION(ReadCapReg32(XHCI_HCI_VERSION)); if (interfaceVersion < 0x0090 || interfaceVersion > 0x0120) { TRACE_ERROR("unsupported interface version: 0x%04" B_PRIx32 "\n", interfaceVersion); return; } TRACE_ALWAYS("interface version: 0x%04" B_PRIx32 "\n", interfaceVersion); TRACE_ALWAYS("structural parameters: 1:0x%08" B_PRIx32 " 2:0x%08" B_PRIx32 " 3:0x%08" B_PRIx32 "\n", ReadCapReg32(XHCI_HCSPARAMS1), ReadCapReg32(XHCI_HCSPARAMS2), ReadCapReg32(XHCI_HCSPARAMS3)); uint32 cparams = ReadCapReg32(XHCI_HCCPARAMS); if (cparams == 0xffffffff) return; TRACE_ALWAYS("capability parameters: 0x%08" B_PRIx32 "\n", cparams); // if 64 bytes context structures, then 1 fContextSizeShift = HCC_CSZ(cparams); // Assume ownership of the controller from the BIOS. uint32 eec = 0xffffffff; uint32 eecp = HCS0_XECP(cparams) << 2; for (; eecp != 0 && XECP_NEXT(eec); eecp += XECP_NEXT(eec) << 2) { TRACE("eecp register: 0x%08" B_PRIx32 "\n", eecp); eec = ReadCapReg32(eecp); if (XECP_ID(eec) != XHCI_LEGSUP_CAPID) continue; if (eec & XHCI_LEGSUP_BIOSOWNED) { TRACE_ALWAYS("the host controller is bios owned, claiming" " ownership\n"); WriteCapReg32(eecp, eec | XHCI_LEGSUP_OSOWNED); for (int32 i = 0; i < 20; i++) { eec = ReadCapReg32(eecp); if ((eec & XHCI_LEGSUP_BIOSOWNED) == 0) break; TRACE_ALWAYS("controller is still bios owned, waiting\n"); snooze(50000); } if (eec & XHCI_LEGSUP_BIOSOWNED) { TRACE_ERROR("bios won't give up control over the host " "controller (ignoring)\n"); } else if (eec & XHCI_LEGSUP_OSOWNED) { TRACE_ALWAYS("successfully took ownership of the host " "controller\n"); } // Force off the BIOS owned flag, and clear all SMIs. Some BIOSes // do indicate a successful handover but do not remove their SMIs // and then freeze the system when interrupts are generated. WriteCapReg32(eecp, eec & ~XHCI_LEGSUP_BIOSOWNED); } break; } uint32 legctlsts = ReadCapReg32(eecp + XHCI_LEGCTLSTS); legctlsts &= XHCI_LEGCTLSTS_DISABLE_SMI; legctlsts |= XHCI_LEGCTLSTS_EVENTS_SMI; WriteCapReg32(eecp + XHCI_LEGCTLSTS, legctlsts); // We need to explicitly take ownership of EHCI ports on earlier Intel chipsets. if (fPCIInfo->vendor_id == PCI_VENDOR_INTEL) { switch (fPCIInfo->device_id) { case PCI_DEVICE_INTEL_PANTHER_POINT_XHCI: case PCI_DEVICE_INTEL_LYNX_POINT_XHCI: case PCI_DEVICE_INTEL_LYNX_POINT_LP_XHCI: case PCI_DEVICE_INTEL_BAYTRAIL_XHCI: case PCI_DEVICE_INTEL_WILDCAT_POINT_XHCI: case PCI_DEVICE_INTEL_WILDCAT_POINT_LP_XHCI: _SwitchIntelPorts(); break; } } // halt the host controller if (ControllerHalt() < B_OK) { return; } // reset the host controller if (ControllerReset() < B_OK) { TRACE_ERROR("host controller failed to reset\n"); return; } fCmdCompSem = create_sem(0, "XHCI Command Complete"); fFinishTransfersSem = create_sem(0, "XHCI Finish Transfers"); fEventSem = create_sem(0, "XHCI Event"); if (fFinishTransfersSem < B_OK || fCmdCompSem < B_OK || fEventSem < B_OK) { TRACE_ERROR("failed to create semaphores\n"); return; } // create event handler thread fEventThread = spawn_kernel_thread(EventThread, "xhci event thread", B_URGENT_PRIORITY, (void *)this); resume_thread(fEventThread); // create finisher service thread fFinishThread = spawn_kernel_thread(FinishThread, "xhci finish thread", B_URGENT_PRIORITY - 1, (void *)this); resume_thread(fFinishThread); // Find the right interrupt vector, using MSIs if available. fIRQ = fPCIInfo->u.h0.interrupt_line; if (sPCIx86Module != NULL && sPCIx86Module->get_msi_count(fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function) >= 1) { uint8 msiVector = 0; if (sPCIx86Module->configure_msi(fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function, 1, &msiVector) == B_OK && sPCIx86Module->enable_msi(fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function) == B_OK) { TRACE_ALWAYS("using message signaled interrupts\n"); fIRQ = msiVector; fUseMSI = true; } } if (fIRQ == 0 || fIRQ == 0xFF) { TRACE_MODULE_ERROR("device PCI:%d:%d:%d was assigned an invalid IRQ\n", fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function); return; } // Install the interrupt handler TRACE("installing interrupt handler\n"); install_io_interrupt_handler(fIRQ, InterruptHandler, (void *)this, 0); memset(fPortSpeeds, 0, sizeof(fPortSpeeds)); memset(fDevices, 0, sizeof(fDevices)); fInitOK = true; TRACE("driver construction successful\n"); } XHCI::~XHCI() { TRACE("tear down XHCI host controller driver\n"); WriteOpReg(XHCI_CMD, 0); int32 result = 0; fStopThreads = true; delete_sem(fCmdCompSem); delete_sem(fFinishTransfersSem); delete_sem(fEventSem); wait_for_thread(fFinishThread, &result); wait_for_thread(fEventThread, &result); mutex_destroy(&fFinishedLock); mutex_destroy(&fEventLock); remove_io_interrupt_handler(fIRQ, InterruptHandler, (void *)this); delete_area(fRegisterArea); delete_area(fErstArea); for (uint32 i = 0; i < fScratchpadCount; i++) delete_area(fScratchpadArea[i]); delete_area(fDcbaArea); if (fUseMSI && sPCIx86Module != NULL) { sPCIx86Module->disable_msi(fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function); sPCIx86Module->unconfigure_msi(fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function); } put_module(B_PCI_MODULE_NAME); if (sPCIx86Module != NULL) put_module(B_PCI_X86_MODULE_NAME); } void XHCI::_SwitchIntelPorts() { TRACE("Looking for EHCI owned ports\n"); uint32 ports = sPCIModule->read_pci_config(fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function, XHCI_INTEL_USB3PRM, 4); TRACE("Superspeed Ports: 0x%" B_PRIx32 "\n", ports); sPCIModule->write_pci_config(fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function, XHCI_INTEL_USB3_PSSEN, 4, ports); ports = sPCIModule->read_pci_config(fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function, XHCI_INTEL_USB3_PSSEN, 4); TRACE("Superspeed ports now under XHCI : 0x%" B_PRIx32 "\n", ports); ports = sPCIModule->read_pci_config(fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function, XHCI_INTEL_USB2PRM, 4); TRACE("USB 2.0 Ports : 0x%" B_PRIx32 "\n", ports); sPCIModule->write_pci_config(fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function, XHCI_INTEL_XUSB2PR, 4, ports); ports = sPCIModule->read_pci_config(fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function, XHCI_INTEL_XUSB2PR, 4); TRACE("USB 2.0 ports now under XHCI: 0x%" B_PRIx32 "\n", ports); } status_t XHCI::Start() { TRACE_ALWAYS("starting XHCI host controller\n"); TRACE("usbcmd: 0x%08" B_PRIx32 "; usbsts: 0x%08" B_PRIx32 "\n", ReadOpReg(XHCI_CMD), ReadOpReg(XHCI_STS)); if (WaitOpBits(XHCI_STS, STS_CNR, 0) != B_OK) { TRACE("Start() failed STS_CNR\n"); } if ((ReadOpReg(XHCI_CMD) & CMD_RUN) != 0) { TRACE_ERROR("Start() warning, starting running XHCI controller!\n"); } if ((ReadOpReg(XHCI_PAGESIZE) & (1 << 0)) == 0) { TRACE_ERROR("controller does not support 4K page size\n"); return B_ERROR; } // read port count from capability register uint32 capabilities = ReadCapReg32(XHCI_HCSPARAMS1); fPortCount = HCS_MAX_PORTS(capabilities); if (fPortCount == 0) { TRACE_ERROR("invalid number of ports: %u\n", fPortCount); return B_ERROR; } fSlotCount = HCS_MAX_SLOTS(capabilities); if (fSlotCount > XHCI_MAX_DEVICES) fSlotCount = XHCI_MAX_DEVICES; WriteOpReg(XHCI_CONFIG, fSlotCount); // find out which protocol is used for each port uint8 portFound = 0; uint32 cparams = ReadCapReg32(XHCI_HCCPARAMS); uint32 eec = 0xffffffff; uint32 eecp = HCS0_XECP(cparams) << 2; for (; eecp != 0 && XECP_NEXT(eec) && portFound < fPortCount; eecp += XECP_NEXT(eec) << 2) { eec = ReadCapReg32(eecp); if (XECP_ID(eec) != XHCI_SUPPORTED_PROTOCOLS_CAPID) continue; if (XHCI_SUPPORTED_PROTOCOLS_0_MAJOR(eec) > 3) continue; uint32 temp = ReadCapReg32(eecp + 8); uint32 offset = XHCI_SUPPORTED_PROTOCOLS_1_OFFSET(temp); uint32 count = XHCI_SUPPORTED_PROTOCOLS_1_COUNT(temp); if (offset == 0 || count == 0) continue; offset--; for (uint32 i = offset; i < offset + count; i++) { if (XHCI_SUPPORTED_PROTOCOLS_0_MAJOR(eec) == 0x3) fPortSpeeds[i] = USB_SPEED_SUPERSPEED; else fPortSpeeds[i] = USB_SPEED_HIGHSPEED; TRACE("speed for port %" B_PRId32 " is %s\n", i, fPortSpeeds[i] == USB_SPEED_SUPERSPEED ? "super" : "high"); } portFound += count; } uint32 params2 = ReadCapReg32(XHCI_HCSPARAMS2); fScratchpadCount = HCS_MAX_SC_BUFFERS(params2); if (fScratchpadCount > XHCI_MAX_SCRATCHPADS) { TRACE_ERROR("invalid number of scratchpads: %" B_PRIu32 "\n", fScratchpadCount); return B_ERROR; } uint32 params3 = ReadCapReg32(XHCI_HCSPARAMS3); fExitLatMax = HCS_U1_DEVICE_LATENCY(params3) + HCS_U2_DEVICE_LATENCY(params3); // clear interrupts & disable device notifications WriteOpReg(XHCI_STS, ReadOpReg(XHCI_STS)); WriteOpReg(XHCI_DNCTRL, 0); // allocate Device Context Base Address array phys_addr_t dmaAddress; fDcbaArea = fStack->AllocateArea((void **)&fDcba, &dmaAddress, sizeof(*fDcba), "DCBA Area"); if (fDcbaArea < B_OK) { TRACE_ERROR("unable to create the DCBA area\n"); return B_ERROR; } memset(fDcba, 0, sizeof(*fDcba)); memset(fScratchpadArea, 0, sizeof(fScratchpadArea)); memset(fScratchpad, 0, sizeof(fScratchpad)); // setting the first address to the scratchpad array address fDcba->baseAddress[0] = dmaAddress + offsetof(struct xhci_device_context_array, scratchpad); // fill up the scratchpad array with scratchpad pages for (uint32 i = 0; i < fScratchpadCount; i++) { phys_addr_t scratchDmaAddress; fScratchpadArea[i] = fStack->AllocateArea((void **)&fScratchpad[i], &scratchDmaAddress, B_PAGE_SIZE, "Scratchpad Area"); if (fScratchpadArea[i] < B_OK) { TRACE_ERROR("unable to create the scratchpad area\n"); return B_ERROR; } fDcba->scratchpad[i] = scratchDmaAddress; } TRACE("setting DCBAAP %" B_PRIxPHYSADDR "\n", dmaAddress); WriteOpReg(XHCI_DCBAAP_LO, (uint32)dmaAddress); WriteOpReg(XHCI_DCBAAP_HI, (uint32)(dmaAddress >> 32)); // allocate Event Ring Segment Table uint8 *addr; fErstArea = fStack->AllocateArea((void **)&addr, &dmaAddress, (XHCI_MAX_COMMANDS + XHCI_MAX_EVENTS) * sizeof(xhci_trb) + sizeof(xhci_erst_element), "USB XHCI ERST CMD_RING and EVENT_RING Area"); if (fErstArea < B_OK) { TRACE_ERROR("unable to create the ERST AND RING area\n"); delete_area(fDcbaArea); return B_ERROR; } fErst = (xhci_erst_element *)addr; memset(fErst, 0, (XHCI_MAX_COMMANDS + XHCI_MAX_EVENTS) * sizeof(xhci_trb) + sizeof(xhci_erst_element)); // fill with Event Ring Segment Base Address and Event Ring Segment Size fErst->rs_addr = dmaAddress + sizeof(xhci_erst_element); fErst->rs_size = XHCI_MAX_EVENTS; fErst->rsvdz = 0; addr += sizeof(xhci_erst_element); fEventRing = (xhci_trb *)addr; addr += XHCI_MAX_EVENTS * sizeof(xhci_trb); fCmdRing = (xhci_trb *)addr; TRACE("setting ERST size\n"); WriteRunReg32(XHCI_ERSTSZ(0), XHCI_ERSTS_SET(1)); TRACE("setting ERDP addr = 0x%" B_PRIx64 "\n", fErst->rs_addr); WriteRunReg32(XHCI_ERDP_LO(0), (uint32)fErst->rs_addr); WriteRunReg32(XHCI_ERDP_HI(0), (uint32)(fErst->rs_addr >> 32)); TRACE("setting ERST base addr = 0x%" B_PRIxPHYSADDR "\n", dmaAddress); WriteRunReg32(XHCI_ERSTBA_LO(0), (uint32)dmaAddress); WriteRunReg32(XHCI_ERSTBA_HI(0), (uint32)(dmaAddress >> 32)); dmaAddress += sizeof(xhci_erst_element) + XHCI_MAX_EVENTS * sizeof(xhci_trb); // Make sure the Command Ring is stopped if ((ReadOpReg(XHCI_CRCR_LO) & CRCR_CRR) != 0) { TRACE_ALWAYS("Command Ring is running, send stop/cancel\n"); WriteOpReg(XHCI_CRCR_LO, CRCR_CS); WriteOpReg(XHCI_CRCR_HI, 0); WriteOpReg(XHCI_CRCR_LO, CRCR_CA); WriteOpReg(XHCI_CRCR_HI, 0); snooze(1000); if ((ReadOpReg(XHCI_CRCR_LO) & CRCR_CRR) != 0) { TRACE_ERROR("Command Ring still running after stop/cancel\n"); } } TRACE("setting CRCR addr = 0x%" B_PRIxPHYSADDR "\n", dmaAddress); WriteOpReg(XHCI_CRCR_LO, (uint32)dmaAddress | CRCR_RCS); WriteOpReg(XHCI_CRCR_HI, (uint32)(dmaAddress >> 32)); // link trb fCmdRing[XHCI_MAX_COMMANDS - 1].address = dmaAddress; TRACE("setting interrupt rate\n"); // Setting IMOD below 0x3F8 on Intel Lynx Point can cause IRQ lockups if (fPCIInfo->vendor_id == PCI_VENDOR_INTEL && (fPCIInfo->device_id == PCI_DEVICE_INTEL_PANTHER_POINT_XHCI || fPCIInfo->device_id == PCI_DEVICE_INTEL_LYNX_POINT_XHCI || fPCIInfo->device_id == PCI_DEVICE_INTEL_LYNX_POINT_LP_XHCI || fPCIInfo->device_id == PCI_DEVICE_INTEL_BAYTRAIL_XHCI || fPCIInfo->device_id == PCI_DEVICE_INTEL_WILDCAT_POINT_XHCI)) { WriteRunReg32(XHCI_IMOD(0), 0x000003f8); // 4000 irq/s } else { WriteRunReg32(XHCI_IMOD(0), 0x000001f4); // 8000 irq/s } TRACE("enabling interrupt\n"); WriteRunReg32(XHCI_IMAN(0), ReadRunReg32(XHCI_IMAN(0)) | IMAN_INTR_ENA); WriteOpReg(XHCI_CMD, CMD_RUN | CMD_INTE | CMD_HSEE); // wait for start up state if (WaitOpBits(XHCI_STS, STS_HCH, 0) != B_OK) { TRACE_ERROR("HCH start up timeout\n"); } fRootHub = new(std::nothrow) XHCIRootHub(RootObject(), 1); if (!fRootHub) { TRACE_ERROR("no memory to allocate root hub\n"); return B_NO_MEMORY; } if (fRootHub->InitCheck() < B_OK) { TRACE_ERROR("root hub failed init check\n"); return fRootHub->InitCheck(); } SetRootHub(fRootHub); TRACE_ALWAYS("successfully started the controller\n"); #ifdef TRACE_USB TRACE("No-Op test...\n"); Noop(); #endif return BusManager::Start(); } status_t XHCI::SubmitTransfer(Transfer *transfer) { // short circuit the root hub if (transfer->TransferPipe()->DeviceAddress() == 1) return fRootHub->ProcessTransfer(this, transfer); TRACE("SubmitTransfer(%p)\n", transfer); Pipe *pipe = transfer->TransferPipe(); if ((pipe->Type() & USB_OBJECT_CONTROL_PIPE) != 0) return SubmitControlRequest(transfer); return SubmitNormalRequest(transfer); } status_t XHCI::SubmitControlRequest(Transfer *transfer) { Pipe *pipe = transfer->TransferPipe(); usb_request_data *requestData = transfer->RequestData(); bool directionIn = (requestData->RequestType & USB_REQTYPE_DEVICE_IN) != 0; TRACE("SubmitControlRequest() length %d\n", requestData->Length); xhci_endpoint *endpoint = (xhci_endpoint *)pipe->ControllerCookie(); if (endpoint == NULL) { TRACE_ERROR("control pipe has no endpoint!\n"); return B_BAD_VALUE; } if (endpoint->device == NULL) { panic("endpoint is not initialized!"); return B_NO_INIT; } status_t status = transfer->InitKernelAccess(); if (status != B_OK) return status; xhci_td *descriptor = CreateDescriptor(3, 1, requestData->Length); if (descriptor == NULL) return B_NO_MEMORY; descriptor->transfer = transfer; // Setup Stage uint8 index = 0; memcpy(&descriptor->trbs[index].address, requestData, sizeof(usb_request_data)); descriptor->trbs[index].status = TRB_2_IRQ(0) | TRB_2_BYTES(8); descriptor->trbs[index].flags = TRB_3_TYPE(TRB_TYPE_SETUP_STAGE) | TRB_3_IDT_BIT | TRB_3_CYCLE_BIT; if (requestData->Length > 0) { descriptor->trbs[index].flags |= directionIn ? TRB_3_TRT_IN : TRB_3_TRT_OUT; } index++; // Data Stage (if any) if (requestData->Length > 0) { descriptor->trbs[index].address = descriptor->buffer_addrs[0]; descriptor->trbs[index].status = TRB_2_IRQ(0) | TRB_2_BYTES(requestData->Length) | TRB_2_TD_SIZE(0); descriptor->trbs[index].flags = TRB_3_TYPE(TRB_TYPE_DATA_STAGE) | (directionIn ? TRB_3_DIR_IN : 0) | TRB_3_CYCLE_BIT; if (!directionIn) { transfer->PrepareKernelAccess(); memcpy(descriptor->buffers[0], (uint8 *)transfer->Vector()[0].iov_base, requestData->Length); } index++; } // Status Stage descriptor->trbs[index].address = 0; descriptor->trbs[index].status = TRB_2_IRQ(0); descriptor->trbs[index].flags = TRB_3_TYPE(TRB_TYPE_STATUS_STAGE) | ((directionIn && requestData->Length > 0) ? 0 : TRB_3_DIR_IN) | TRB_3_CHAIN_BIT | TRB_3_ENT_BIT | TRB_3_CYCLE_BIT; // Status Stage is an OUT transfer when the device is sending data // (XHCI 1.2 § 4.11.2.2 Table 4-7 p213), and the CHAIN bit must be // set when using an Event Data TRB (as _LinkDescriptorForPipe does) // (XHCI 1.2 § 6.4.1.2.3 Table 6-31 p472) descriptor->trb_used = index + 1; status = _LinkDescriptorForPipe(descriptor, endpoint); if (status != B_OK) { FreeDescriptor(descriptor); return status; } return B_OK; } status_t XHCI::SubmitNormalRequest(Transfer *transfer) { TRACE("SubmitNormalRequest() length %ld\n", transfer->FragmentLength()); Pipe *pipe = transfer->TransferPipe(); usb_isochronous_data *isochronousData = transfer->IsochronousData(); bool directionIn = (pipe->Direction() == Pipe::In); xhci_endpoint *endpoint = (xhci_endpoint *)pipe->ControllerCookie(); if (endpoint == NULL) { TRACE_ERROR("pipe has no endpoint!\n"); return B_BAD_VALUE; } if (endpoint->device == NULL) { panic("endpoint is not initialized!"); return B_NO_INIT; } status_t status = transfer->InitKernelAccess(); if (status != B_OK) return status; // TRBs within a TD must be "grouped" into TD Fragments, which mostly means // that a max_burst_payload boundary cannot be crossed within a TRB, but // only between TRBs. More than one TRB can be in a TD Fragment, but we keep // things simple by setting trbSize to the MBP. (XHCI 1.2 § 4.11.7.1 p235.) size_t trbSize = endpoint->max_burst_payload; if (isochronousData != NULL) { if (isochronousData->packet_count == 0) return B_BAD_VALUE; // Isochronous transfers use more specifically sized packets. trbSize = transfer->DataLength() / isochronousData->packet_count; if (trbSize == 0 || trbSize > pipe->MaxPacketSize() || trbSize != (size_t)isochronousData->packet_descriptors[0].request_length) return B_BAD_VALUE; } // Now that we know trbSize, compute the count. const int32 trbCount = (transfer->FragmentLength() + trbSize - 1) / trbSize; xhci_td *td = CreateDescriptor(trbCount, trbCount, trbSize); if (td == NULL) return B_NO_MEMORY; // Normal Stage const size_t maxPacketSize = pipe->MaxPacketSize(); size_t remaining = transfer->FragmentLength(); for (int32 i = 0; i < trbCount; i++) { int32 trbLength = (remaining < trbSize) ? remaining : trbSize; remaining -= trbLength; // The "TD Size" field of a transfer TRB indicates the number of // remaining maximum-size *packets* in this TD, *not* including the // packets in the current TRB, and capped at 31 if there are more // than 31 packets remaining in the TD. (XHCI 1.2 § 4.11.2.4 p218.) int32 tdSize = (remaining + maxPacketSize - 1) / maxPacketSize; if (tdSize > 31) tdSize = 31; td->trbs[i].address = td->buffer_addrs[i]; td->trbs[i].status = TRB_2_IRQ(0) | TRB_2_BYTES(trbLength) | TRB_2_TD_SIZE(tdSize); td->trbs[i].flags = TRB_3_TYPE(TRB_TYPE_NORMAL) | TRB_3_CYCLE_BIT | TRB_3_CHAIN_BIT; td->trb_used++; } // Isochronous-specific if (isochronousData != NULL) { // This is an isochronous transfer; we need to make the first TRB // an isochronous TRB. td->trbs[0].flags &= ~(TRB_3_TYPE(TRB_TYPE_NORMAL)); td->trbs[0].flags |= TRB_3_TYPE(TRB_TYPE_ISOCH); // Isochronous pipes are scheduled by microframes, one of which // is 125us for USB 2 and above. But for USB 1 it was 1ms, so // we need to use a different frame delta for that case. uint8 frameDelta = 1; if (transfer->TransferPipe()->Speed() == USB_SPEED_FULLSPEED) frameDelta = 8; // TODO: We do not currently take Mult into account at all! // How are we supposed to do that here? // Determine the (starting) frame number: if ISO_ASAP is set, // we are queueing this "right away", and so want to reset // the starting_frame_number. Otherwise we use the passed one. uint32 frame; if ((isochronousData->flags & USB_ISO_ASAP) != 0 || isochronousData->starting_frame_number == NULL) { // All reads from the microframe index register must be // incremented by 1. (XHCI 1.2 § 4.14.2.1.4 p265.) frame = ReadRunReg32(XHCI_MFINDEX) + 1; td->trbs[0].flags |= TRB_3_ISO_SIA_BIT; } else { frame = *isochronousData->starting_frame_number; td->trbs[0].flags |= TRB_3_FRID(frame); } frame = (frame + frameDelta) % 2048; if (isochronousData->starting_frame_number != NULL) *isochronousData->starting_frame_number = frame; // TODO: The OHCI bus driver seems to also do this for inbound // isochronous transfers. Perhaps it should be moved into the stack? if (directionIn) { for (uint32 i = 0; i < isochronousData->packet_count; i++) { isochronousData->packet_descriptors[i].actual_length = 0; isochronousData->packet_descriptors[i].status = B_NO_INIT; } } } // Set the ENT (Evaluate Next TRB) bit, so that the HC will not switch // contexts before evaluating the Link TRB that _LinkDescriptorForPipe // will insert, as otherwise there would be a race between us freeing // and unlinking the descriptor, and the controller evaluating the Link TRB // and thus getting back onto the main ring and executing the Event Data // TRB that generates the interrupt for this transfer. // // Note that we *do not* unset the CHAIN bit in this TRB, thus including // the Link TRB in this TD formally, which is required when using the // ENT bit. (XHCI 1.2 § 4.12.3 p250.) td->trbs[td->trb_used - 1].flags |= TRB_3_ENT_BIT; if (!directionIn) { TRACE("copying out iov count %ld\n", transfer->VectorCount()); status_t status = transfer->PrepareKernelAccess(); if (status != B_OK) { FreeDescriptor(td); return status; } WriteDescriptor(td, transfer->Vector(), transfer->VectorCount()); } td->transfer = transfer; status = _LinkDescriptorForPipe(td, endpoint); if (status != B_OK) { FreeDescriptor(td); return status; } return B_OK; } status_t XHCI::CancelQueuedTransfers(Pipe *pipe, bool force) { xhci_endpoint* endpoint = (xhci_endpoint*)pipe->ControllerCookie(); if (endpoint == NULL || endpoint->trbs == NULL) { // Someone's de-allocated this pipe or endpoint in the meantime. // (Possibly AllocateDevice failed, and we were the temporary pipe.) return B_NO_INIT; } TRACE_ALWAYS("cancel queued transfers (%" B_PRId8 ") for pipe %p (%d)\n", endpoint->used, pipe, pipe->EndpointAddress()); MutexLocker endpointLocker(endpoint->lock); if (endpoint->td_head == NULL) { // There aren't any currently pending transfers to cancel. return B_OK; } // Calling the callbacks while holding the endpoint lock could potentially // cause deadlocks, so we instead store them in a pointer array. We need // to do this separately from freeing the TDs, for in the case we fail // to stop the endpoint, we cancel the transfers but do not free the TDs. Transfer* transfers[XHCI_MAX_TRANSFERS]; int32 transfersCount = 0; for (xhci_td* td = endpoint->td_head; td != NULL; td = td->next) { if (td->transfer == NULL) continue; // We can't cancel or delete transfers under "force", as they probably // are not safe to use anymore. if (!force) { transfers[transfersCount] = td->transfer; transfersCount++; } td->transfer = NULL; } // It is possible that while waiting for the stop-endpoint command to // complete, one of the queued transfers posts a completion event, so in // order to avoid a deadlock, we must unlock the endpoint. endpointLocker.Unlock(); status_t status = StopEndpoint(false, endpoint); if (status == B_DEV_STALLED) { // Only exit from a Halted state is a reset. (XHCI 1.2 § 4.8.3 p163.) TRACE_ERROR("cancel queued transfers: halted endpoint, reset!\n"); status = ResetEndpoint(false, endpoint); } endpointLocker.Lock(); // Detach the head TD from the endpoint. xhci_td* td_head = endpoint->td_head; endpoint->td_head = NULL; if (status == B_OK) { // Clear the endpoint's TRBs. memset(endpoint->trbs, 0, sizeof(xhci_trb) * XHCI_ENDPOINT_RING_SIZE); endpoint->used = 0; endpoint->current = 0; // Set dequeue pointer location to the beginning of the ring. SetTRDequeue(endpoint->trb_addr, 0, endpoint->id + 1, endpoint->device->slot); // We don't need to do anything else to restart the ring, as it will resume // operation as normal upon the next doorbell. (XHCI 1.2 § 4.6.9 p136.) } else { // We couldn't stop the endpoint. Most likely the device has been // removed and the endpoint was stopped by the hardware, or is // for some reason busy and cannot be stopped. TRACE_ERROR("cancel queued transfers: could not stop endpoint: %s!\n", strerror(status)); // Instead of freeing the TDs, we want to leave them in the endpoint // so that when/if the hardware returns, they can be properly unlinked, // as otherwise the endpoint could get "stuck" by having the "used" // slowly accumulate due to "dead" transfers. endpoint->td_head = td_head; td_head = NULL; } endpointLocker.Unlock(); for (int32 i = 0; i < transfersCount; i++) { transfers[i]->Finished(B_CANCELED, 0); delete transfers[i]; } // This loop looks a bit strange because we need to store the "next" // pointer before freeing the descriptor. xhci_td* td; while ((td = td_head) != NULL) { td_head = td_head->next; FreeDescriptor(td); } return B_OK; } status_t XHCI::StartDebugTransfer(Transfer *transfer) { Pipe *pipe = transfer->TransferPipe(); xhci_endpoint *endpoint = (xhci_endpoint *)pipe->ControllerCookie(); if (endpoint == NULL) return B_BAD_VALUE; // Check all locks that we are going to hit when running transfers. if (mutex_trylock(&endpoint->lock) != B_OK) return B_WOULD_BLOCK; if (mutex_trylock(&fFinishedLock) != B_OK) { mutex_unlock(&endpoint->lock); return B_WOULD_BLOCK; } if (mutex_trylock(&fEventLock) != B_OK) { mutex_unlock(&endpoint->lock); mutex_unlock(&fFinishedLock); return B_WOULD_BLOCK; } mutex_unlock(&endpoint->lock); mutex_unlock(&fFinishedLock); mutex_unlock(&fEventLock); status_t status = SubmitTransfer(transfer); if (status != B_OK) return status; // The endpoint's head TD is the TD of the just-submitted transfer. // Just like EHCI, abuse the callback cookie to hold the TD pointer. transfer->SetCallback(NULL, endpoint->td_head); return B_OK; } status_t XHCI::CheckDebugTransfer(Transfer *transfer) { xhci_td *transfer_td = (xhci_td *)transfer->CallbackCookie(); if (transfer_td == NULL) return B_NO_INIT; // Process events once, and then look for it in the finished list. ProcessEvents(); xhci_td *previous = NULL; for (xhci_td *td = fFinishedHead; td != NULL; td = td->next) { if (td != transfer_td) { previous = td; continue; } // We've found it! if (previous == NULL) { fFinishedHead = fFinishedHead->next; } else { previous->next = td->next; } bool directionIn = (transfer->TransferPipe()->Direction() != Pipe::Out); status_t status = (td->trb_completion_code == COMP_SUCCESS || td->trb_completion_code == COMP_SHORT_PACKET) ? B_OK : B_ERROR; if (status == B_OK && directionIn) ReadDescriptor(td, transfer->Vector(), transfer->VectorCount()); FreeDescriptor(td); transfer->SetCallback(NULL, NULL); return status; } // We didn't find it. spin(75); return B_DEV_PENDING; } void XHCI::CancelDebugTransfer(Transfer *transfer) { while (CheckDebugTransfer(transfer) == B_DEV_PENDING) spin(100); } status_t XHCI::NotifyPipeChange(Pipe *pipe, usb_change change) { TRACE("pipe change %d for pipe %p (%d)\n", change, pipe, pipe->EndpointAddress()); switch (change) { case USB_CHANGE_CREATED: return _InsertEndpointForPipe(pipe); case USB_CHANGE_DESTROYED: return _RemoveEndpointForPipe(pipe); case USB_CHANGE_PIPE_POLICY_CHANGED: // We don't care about these, at least for now. return B_OK; } TRACE_ERROR("unknown pipe change!\n"); return B_UNSUPPORTED; } xhci_td * XHCI::CreateDescriptor(uint32 trbCount, uint32 bufferCount, size_t bufferSize) { const bool inKDL = debug_debugger_running(); xhci_td *result; if (!inKDL) { result = (xhci_td*)calloc(1, sizeof(xhci_td)); } else { // Just use the physical memory allocator while in KDL; it's less // secure than using the regular heap, but it's easier to deal with. phys_addr_t dummy; fStack->AllocateChunk((void **)&result, &dummy, sizeof(xhci_td)); } if (result == NULL) { TRACE_ERROR("failed to allocate a transfer descriptor\n"); return NULL; } // We always allocate 1 more TRB than requested, so that // _LinkDescriptorForPipe() has room to insert a link TRB. trbCount++; if (fStack->AllocateChunk((void **)&result->trbs, &result->trb_addr, (trbCount * sizeof(xhci_trb))) < B_OK) { TRACE_ERROR("failed to allocate TRBs\n"); FreeDescriptor(result); return NULL; } result->trb_count = trbCount; result->trb_used = 0; if (bufferSize > 0) { // Due to how the USB stack allocates physical memory, we can't just // request one large chunk the size of the transfer, and so instead we // create a series of buffers as requested by our caller. // We store the buffer pointers and addresses in one memory block. if (!inKDL) { result->buffers = (void**)calloc(bufferCount, (sizeof(void*) + sizeof(phys_addr_t))); } else { phys_addr_t dummy; fStack->AllocateChunk((void **)&result->buffers, &dummy, bufferCount * (sizeof(void*) + sizeof(phys_addr_t))); } if (result->buffers == NULL) { TRACE_ERROR("unable to allocate space for buffer infos\n"); FreeDescriptor(result); return NULL; } result->buffer_addrs = (phys_addr_t*)&result->buffers[bufferCount]; result->buffer_size = bufferSize; result->buffer_count = bufferCount; // Optimization: If the requested total size of all buffers is less // than 32*B_PAGE_SIZE (the maximum size that the physical memory // allocator can handle), we allocate only one buffer and segment it. size_t totalSize = bufferSize * bufferCount; if (totalSize < (32 * B_PAGE_SIZE)) { if (fStack->AllocateChunk(&result->buffers[0], &result->buffer_addrs[0], totalSize) < B_OK) { TRACE_ERROR("unable to allocate space for large buffer (size %ld)\n", totalSize); FreeDescriptor(result); return NULL; } for (uint32 i = 1; i < bufferCount; i++) { result->buffers[i] = (void*)((addr_t)(result->buffers[i - 1]) + bufferSize); result->buffer_addrs[i] = result->buffer_addrs[i - 1] + bufferSize; } } else { // Otherwise, we allocate each buffer individually. for (uint32 i = 0; i < bufferCount; i++) { if (fStack->AllocateChunk(&result->buffers[i], &result->buffer_addrs[i], bufferSize) < B_OK) { TRACE_ERROR("unable to allocate space for a buffer (size " "%" B_PRIuSIZE ", count %" B_PRIu32 ")\n", bufferSize, bufferCount); FreeDescriptor(result); return NULL; } } } } else { result->buffers = NULL; result->buffer_addrs = NULL; } // Initialize all other fields. result->transfer = NULL; result->trb_completion_code = 0; result->trb_left = 0; result->next = NULL; TRACE("CreateDescriptor allocated %p, buffer_size %ld, buffer_count %" B_PRIu32 "\n", result, result->buffer_size, result->buffer_count); return result; } void XHCI::FreeDescriptor(xhci_td *descriptor) { if (descriptor == NULL) return; const bool inKDL = debug_debugger_running(); if (descriptor->trbs != NULL) { fStack->FreeChunk(descriptor->trbs, descriptor->trb_addr, (descriptor->trb_count * sizeof(xhci_trb))); } if (descriptor->buffers != NULL) { size_t totalSize = descriptor->buffer_size * descriptor->buffer_count; if (totalSize < (32 * B_PAGE_SIZE)) { // This was allocated as one contiguous buffer. fStack->FreeChunk(descriptor->buffers[0], descriptor->buffer_addrs[0], totalSize); } else { for (uint32 i = 0; i < descriptor->buffer_count; i++) { if (descriptor->buffers[i] == NULL) continue; fStack->FreeChunk(descriptor->buffers[i], descriptor->buffer_addrs[i], descriptor->buffer_size); } } if (!inKDL) { free(descriptor->buffers); } else { fStack->FreeChunk(descriptor->buffers, 0, descriptor->buffer_count * (sizeof(void*) + sizeof(phys_addr_t))); } } if (!inKDL) free(descriptor); else fStack->FreeChunk(descriptor, 0, sizeof(xhci_td)); } size_t XHCI::WriteDescriptor(xhci_td *descriptor, iovec *vector, size_t vectorCount) { size_t written = 0; size_t bufIdx = 0, bufUsed = 0; for (size_t vecIdx = 0; vecIdx < vectorCount; vecIdx++) { size_t length = vector[vecIdx].iov_len; while (length > 0 && bufIdx < descriptor->buffer_count) { size_t toCopy = min_c(length, descriptor->buffer_size - bufUsed); memcpy((uint8 *)descriptor->buffers[bufIdx] + bufUsed, (uint8 *)vector[vecIdx].iov_base + (vector[vecIdx].iov_len - length), toCopy); written += toCopy; bufUsed += toCopy; length -= toCopy; if (bufUsed == descriptor->buffer_size) { bufIdx++; bufUsed = 0; } } } TRACE("wrote descriptor (%" B_PRIuSIZE " bytes)\n", written); return written; } size_t XHCI::ReadDescriptor(xhci_td *descriptor, iovec *vector, size_t vectorCount) { size_t read = 0; size_t bufIdx = 0, bufUsed = 0; for (size_t vecIdx = 0; vecIdx < vectorCount; vecIdx++) { size_t length = vector[vecIdx].iov_len; while (length > 0 && bufIdx < descriptor->buffer_count) { size_t toCopy = min_c(length, descriptor->buffer_size - bufUsed); memcpy((uint8 *)vector[vecIdx].iov_base + (vector[vecIdx].iov_len - length), (uint8 *)descriptor->buffers[bufIdx] + bufUsed, toCopy); read += toCopy; bufUsed += toCopy; length -= toCopy; if (bufUsed == descriptor->buffer_size) { bufIdx++; bufUsed = 0; } } } TRACE("read descriptor (%" B_PRIuSIZE " bytes)\n", read); return read; } Device * XHCI::AllocateDevice(Hub *parent, int8 hubAddress, uint8 hubPort, usb_speed speed) { TRACE("AllocateDevice hubAddress %d hubPort %d speed %d\n", hubAddress, hubPort, speed); uint8 slot = XHCI_MAX_SLOTS; if (EnableSlot(&slot) != B_OK) { TRACE_ERROR("AllocateDevice() failed enable slot\n"); return NULL; } if (slot == 0 || slot > fSlotCount) { TRACE_ERROR("AllocateDevice() bad slot\n"); return NULL; } if (fDevices[slot].slot != 0) { TRACE_ERROR("AllocateDevice() slot already used\n"); return NULL; } struct xhci_device *device = &fDevices[slot]; memset(device, 0, sizeof(struct xhci_device)); device->slot = slot; device->input_ctx_area = fStack->AllocateArea((void **)&device->input_ctx, &device->input_ctx_addr, sizeof(*device->input_ctx) << fContextSizeShift, "XHCI input context"); if (device->input_ctx_area < B_OK) { TRACE_ERROR("unable to create a input context area\n"); return NULL; } if (fContextSizeShift == 1) { // 64-byte contexts have to be page-aligned in order for // _OffsetContextAddr to function properly. ASSERT((((addr_t)device->input_ctx) % B_PAGE_SIZE) == 0); } memset(device->input_ctx, 0, sizeof(*device->input_ctx) << fContextSizeShift); _WriteContext(&device->input_ctx->input.dropFlags, 0); _WriteContext(&device->input_ctx->input.addFlags, 3); uint8 rhPort = hubPort; uint32 route = 0; for (Device *hubDevice = parent; hubDevice != RootObject(); hubDevice = (Device *)hubDevice->Parent()) { if (hubDevice->Parent() == RootObject()) break; if (rhPort > 15) rhPort = 15; route = route << 4; route |= rhPort; rhPort = hubDevice->HubPort(); } uint32 dwslot0 = SLOT_0_NUM_ENTRIES(1) | SLOT_0_ROUTE(route); // Get speed of port, only if device connected to root hub port // else we have to rely on value reported by the Hub Explore thread if (route == 0) { GetPortSpeed(hubPort - 1, &speed); TRACE("speed updated %d\n", speed); } // add the speed switch (speed) { case USB_SPEED_LOWSPEED: dwslot0 |= SLOT_0_SPEED(2); break; case USB_SPEED_FULLSPEED: dwslot0 |= SLOT_0_SPEED(1); break; case USB_SPEED_HIGHSPEED: dwslot0 |= SLOT_0_SPEED(3); break; case USB_SPEED_SUPERSPEED: dwslot0 |= SLOT_0_SPEED(4); break; default: TRACE_ERROR("unknown usb speed\n"); break; } _WriteContext(&device->input_ctx->slot.dwslot0, dwslot0); // TODO enable power save _WriteContext(&device->input_ctx->slot.dwslot1, SLOT_1_RH_PORT(rhPort)); uint32 dwslot2 = SLOT_2_IRQ_TARGET(0); // If LS/FS device connected to non-root HS device if (route != 0 && parent->Speed() == USB_SPEED_HIGHSPEED && (speed == USB_SPEED_LOWSPEED || speed == USB_SPEED_FULLSPEED)) { struct xhci_device *parenthub = (struct xhci_device *) parent->ControllerCookie(); dwslot2 |= SLOT_2_PORT_NUM(hubPort); dwslot2 |= SLOT_2_TT_HUB_SLOT(parenthub->slot); } _WriteContext(&device->input_ctx->slot.dwslot2, dwslot2); _WriteContext(&device->input_ctx->slot.dwslot3, SLOT_3_SLOT_STATE(0) | SLOT_3_DEVICE_ADDRESS(0)); TRACE("slot 0x%08" B_PRIx32 " 0x%08" B_PRIx32 " 0x%08" B_PRIx32 " 0x%08" B_PRIx32 "\n", _ReadContext(&device->input_ctx->slot.dwslot0), _ReadContext(&device->input_ctx->slot.dwslot1), _ReadContext(&device->input_ctx->slot.dwslot2), _ReadContext(&device->input_ctx->slot.dwslot3)); device->device_ctx_area = fStack->AllocateArea((void **)&device->device_ctx, &device->device_ctx_addr, sizeof(*device->device_ctx) << fContextSizeShift, "XHCI device context"); if (device->device_ctx_area < B_OK) { TRACE_ERROR("unable to create a device context area\n"); delete_area(device->input_ctx_area); memset(device, 0, sizeof(xhci_device)); return NULL; } memset(device->device_ctx, 0, sizeof(*device->device_ctx) << fContextSizeShift); device->trb_area = fStack->AllocateArea((void **)&device->trbs, &device->trb_addr, sizeof(xhci_trb) * (XHCI_MAX_ENDPOINTS - 1) * XHCI_ENDPOINT_RING_SIZE, "XHCI endpoint trbs"); if (device->trb_area < B_OK) { TRACE_ERROR("unable to create a device trbs area\n"); delete_area(device->input_ctx_area); delete_area(device->device_ctx_area); memset(device, 0, sizeof(xhci_device)); return NULL; } // set up slot pointer to device context fDcba->baseAddress[slot] = device->device_ctx_addr; size_t maxPacketSize; switch (speed) { case USB_SPEED_LOWSPEED: case USB_SPEED_FULLSPEED: maxPacketSize = 8; break; case USB_SPEED_HIGHSPEED: maxPacketSize = 64; break; default: maxPacketSize = 512; break; } xhci_endpoint* endpoint0 = &device->endpoints[0]; mutex_init(&endpoint0->lock, "xhci endpoint lock"); endpoint0->device = device; endpoint0->id = 0; endpoint0->td_head = NULL; endpoint0->used = 0; endpoint0->current = 0; endpoint0->trbs = device->trbs; endpoint0->trb_addr = device->trb_addr; // configure the Control endpoint 0 if (ConfigureEndpoint(endpoint0, slot, 0, USB_OBJECT_CONTROL_PIPE, false, 0, maxPacketSize, speed, 0, 0) != B_OK) { TRACE_ERROR("unable to configure default control endpoint\n"); delete_area(device->input_ctx_area); delete_area(device->device_ctx_area); delete_area(device->trb_area); memset(device, 0, sizeof(xhci_device)); return NULL; } // device should get to addressed state (bsr = 0) if (SetAddress(device->input_ctx_addr, false, slot) != B_OK) { TRACE_ERROR("unable to set address\n"); delete_area(device->input_ctx_area); delete_area(device->device_ctx_area); delete_area(device->trb_area); memset(device, 0, sizeof(xhci_device)); return NULL; } device->address = SLOT_3_DEVICE_ADDRESS_GET(_ReadContext( &device->device_ctx->slot.dwslot3)); TRACE("device: address 0x%x state 0x%08" B_PRIx32 "\n", device->address, SLOT_3_SLOT_STATE_GET(_ReadContext( &device->device_ctx->slot.dwslot3))); TRACE("endpoint0 state 0x%08" B_PRIx32 "\n", ENDPOINT_0_STATE_GET(_ReadContext( &device->device_ctx->endpoints[0].dwendpoint0))); // Create a temporary pipe with the new address ControlPipe pipe(parent); pipe.SetControllerCookie(endpoint0); pipe.InitCommon(device->address + 1, 0, speed, Pipe::Default, maxPacketSize, 0, hubAddress, hubPort); // Get the device descriptor // Just retrieve the first 8 bytes of the descriptor -> minimum supported // size of any device. It is enough because it includes the device type. size_t actualLength = 0; usb_device_descriptor deviceDescriptor; TRACE("getting the device descriptor\n"); status_t status = pipe.SendRequest( USB_REQTYPE_DEVICE_IN | USB_REQTYPE_STANDARD, // type USB_REQUEST_GET_DESCRIPTOR, // request USB_DESCRIPTOR_DEVICE << 8, // value 0, // index 8, // length (void *)&deviceDescriptor, // buffer 8, // buffer length &actualLength); // actual length if (actualLength != 8) { TRACE_ERROR("failed to get the device descriptor: %s\n", strerror(status)); delete_area(device->input_ctx_area); delete_area(device->device_ctx_area); delete_area(device->trb_area); memset(device, 0, sizeof(xhci_device)); return NULL; } TRACE("device_class: %d device_subclass %d device_protocol %d\n", deviceDescriptor.device_class, deviceDescriptor.device_subclass, deviceDescriptor.device_protocol); if (speed == USB_SPEED_FULLSPEED && deviceDescriptor.max_packet_size_0 != 8) { TRACE("Full speed device with different max packet size for Endpoint 0\n"); uint32 dwendpoint1 = _ReadContext( &device->input_ctx->endpoints[0].dwendpoint1); dwendpoint1 &= ~ENDPOINT_1_MAXPACKETSIZE(0xffff); dwendpoint1 |= ENDPOINT_1_MAXPACKETSIZE( deviceDescriptor.max_packet_size_0); _WriteContext(&device->input_ctx->endpoints[0].dwendpoint1, dwendpoint1); _WriteContext(&device->input_ctx->input.dropFlags, 0); _WriteContext(&device->input_ctx->input.addFlags, (1 << 1)); EvaluateContext(device->input_ctx_addr, device->slot); } Device *deviceObject = NULL; if (deviceDescriptor.device_class == 0x09) { TRACE("creating new Hub\n"); TRACE("getting the hub descriptor\n"); size_t actualLength = 0; usb_hub_descriptor hubDescriptor; status = pipe.SendRequest( USB_REQTYPE_DEVICE_IN | USB_REQTYPE_CLASS, // type USB_REQUEST_GET_DESCRIPTOR, // request USB_DESCRIPTOR_HUB << 8, // value 0, // index sizeof(usb_hub_descriptor), // length (void *)&hubDescriptor, // buffer sizeof(usb_hub_descriptor), // buffer length &actualLength); if (actualLength != sizeof(usb_hub_descriptor)) { TRACE_ERROR("error while getting the hub descriptor: %s\n", strerror(status)); delete_area(device->input_ctx_area); delete_area(device->device_ctx_area); delete_area(device->trb_area); memset(device, 0, sizeof(xhci_device)); return NULL; } uint32 dwslot0 = _ReadContext(&device->input_ctx->slot.dwslot0); dwslot0 |= SLOT_0_HUB_BIT; _WriteContext(&device->input_ctx->slot.dwslot0, dwslot0); uint32 dwslot1 = _ReadContext(&device->input_ctx->slot.dwslot1); dwslot1 |= SLOT_1_NUM_PORTS(hubDescriptor.num_ports); _WriteContext(&device->input_ctx->slot.dwslot1, dwslot1); if (speed == USB_SPEED_HIGHSPEED) { uint32 dwslot2 = _ReadContext(&device->input_ctx->slot.dwslot2); dwslot2 |= SLOT_2_TT_TIME(HUB_TTT_GET(hubDescriptor.characteristics)); _WriteContext(&device->input_ctx->slot.dwslot2, dwslot2); } deviceObject = new(std::nothrow) Hub(parent, hubAddress, hubPort, deviceDescriptor, device->address + 1, speed, false, device); } else { TRACE("creating new device\n"); deviceObject = new(std::nothrow) Device(parent, hubAddress, hubPort, deviceDescriptor, device->address + 1, speed, false, device); } if (deviceObject == NULL || deviceObject->InitCheck() != B_OK) { if (deviceObject == NULL) { TRACE_ERROR("no memory to allocate device\n"); } else { TRACE_ERROR("device object failed to initialize\n"); } delete_area(device->input_ctx_area); delete_area(device->device_ctx_area); delete_area(device->trb_area); memset(device, 0, sizeof(xhci_device)); return NULL; } // We don't want to disable the default endpoint, naturally, which would // otherwise happen when this Pipe object is destroyed. pipe.SetControllerCookie(NULL); TRACE("AllocateDevice() port %d slot %d\n", hubPort, slot); return deviceObject; } void XHCI::FreeDevice(Device *usbDevice) { xhci_device* device = (xhci_device*)usbDevice->ControllerCookie(); TRACE("FreeDevice() slot %d\n", device->slot); // Delete the device first, so it cleans up its pipes and tells us // what we need to destroy before we tear down our internal state. delete usbDevice; DisableSlot(device->slot); fDcba->baseAddress[device->slot] = 0; delete_area(device->trb_area); delete_area(device->input_ctx_area); delete_area(device->device_ctx_area); memset(device, 0, sizeof(xhci_device)); } uint8 XHCI::_GetEndpointState(xhci_endpoint* endpoint) { struct xhci_device_ctx* device_ctx = endpoint->device->device_ctx; return ENDPOINT_0_STATE_GET( _ReadContext(&device_ctx->endpoints[endpoint->id].dwendpoint0)); } status_t XHCI::_InsertEndpointForPipe(Pipe *pipe) { TRACE("insert endpoint for pipe %p (%d)\n", pipe, pipe->EndpointAddress()); if (pipe->ControllerCookie() != NULL || pipe->Parent()->Type() != USB_OBJECT_DEVICE) { // default pipe is already referenced return B_OK; } Device* usbDevice = (Device *)pipe->Parent(); if (usbDevice->Parent() == RootObject()) { // root hub needs no initialization return B_OK; } struct xhci_device *device = (struct xhci_device *) usbDevice->ControllerCookie(); if (device == NULL) { panic("device is NULL\n"); return B_NO_INIT; } const uint8 id = (2 * pipe->EndpointAddress() + (pipe->Direction() != Pipe::Out ? 1 : 0)) - 1; if (id >= XHCI_MAX_ENDPOINTS - 1) return B_BAD_VALUE; if (id > 0) { uint32 devicedwslot0 = _ReadContext(&device->device_ctx->slot.dwslot0); if (SLOT_0_NUM_ENTRIES_GET(devicedwslot0) == 1) { uint32 inputdwslot0 = _ReadContext(&device->input_ctx->slot.dwslot0); inputdwslot0 &= ~(SLOT_0_NUM_ENTRIES(0x1f)); inputdwslot0 |= SLOT_0_NUM_ENTRIES(XHCI_MAX_ENDPOINTS - 1); _WriteContext(&device->input_ctx->slot.dwslot0, inputdwslot0); EvaluateContext(device->input_ctx_addr, device->slot); } xhci_endpoint* endpoint = &device->endpoints[id]; mutex_init(&endpoint->lock, "xhci endpoint lock"); MutexLocker endpointLocker(endpoint->lock); endpoint->device = device; endpoint->id = id; endpoint->td_head = NULL; endpoint->used = 0; endpoint->current = 0; endpoint->trbs = device->trbs + id * XHCI_ENDPOINT_RING_SIZE; endpoint->trb_addr = device->trb_addr + id * XHCI_ENDPOINT_RING_SIZE * sizeof(xhci_trb); memset(endpoint->trbs, 0, sizeof(xhci_trb) * XHCI_ENDPOINT_RING_SIZE); TRACE("insert endpoint for pipe: trbs, device %p endpoint %p\n", device->trbs, endpoint->trbs); TRACE("insert endpoint for pipe: trb_addr, device 0x%" B_PRIxPHYSADDR " endpoint 0x%" B_PRIxPHYSADDR "\n", device->trb_addr, endpoint->trb_addr); const uint8 endpointNum = id + 1; status_t status = ConfigureEndpoint(endpoint, device->slot, id, pipe->Type(), pipe->Direction() == Pipe::In, pipe->Interval(), pipe->MaxPacketSize(), usbDevice->Speed(), pipe->MaxBurst(), pipe->BytesPerInterval()); if (status != B_OK) { TRACE_ERROR("unable to configure endpoint: %s\n", strerror(status)); return status; } _WriteContext(&device->input_ctx->input.dropFlags, 0); _WriteContext(&device->input_ctx->input.addFlags, (1 << endpointNum) | (1 << 0)); ConfigureEndpoint(device->input_ctx_addr, false, device->slot); TRACE("device: address 0x%x state 0x%08" B_PRIx32 "\n", device->address, SLOT_3_SLOT_STATE_GET(_ReadContext( &device->device_ctx->slot.dwslot3))); TRACE("endpoint[0] state 0x%08" B_PRIx32 "\n", ENDPOINT_0_STATE_GET(_ReadContext( &device->device_ctx->endpoints[0].dwendpoint0))); TRACE("endpoint[%d] state 0x%08" B_PRIx32 "\n", id, ENDPOINT_0_STATE_GET(_ReadContext( &device->device_ctx->endpoints[id].dwendpoint0))); } pipe->SetControllerCookie(&device->endpoints[id]); return B_OK; } status_t XHCI::_RemoveEndpointForPipe(Pipe *pipe) { TRACE("remove endpoint for pipe %p (%d)\n", pipe, pipe->EndpointAddress()); if (pipe->Parent()->Type() != USB_OBJECT_DEVICE) return B_OK; Device* usbDevice = (Device *)pipe->Parent(); if (usbDevice->Parent() == RootObject()) return B_BAD_VALUE; xhci_endpoint *endpoint = (xhci_endpoint *)pipe->ControllerCookie(); if (endpoint == NULL || endpoint->trbs == NULL) return B_NO_INIT; pipe->SetControllerCookie(NULL); if (endpoint->id > 0) { xhci_device *device = endpoint->device; uint8 epNumber = endpoint->id + 1; StopEndpoint(true, endpoint); mutex_lock(&endpoint->lock); // See comment in CancelQueuedTransfers. xhci_td* td; while ((td = endpoint->td_head) != NULL) { endpoint->td_head = endpoint->td_head->next; FreeDescriptor(td); } mutex_destroy(&endpoint->lock); memset(endpoint, 0, sizeof(xhci_endpoint)); _WriteContext(&device->input_ctx->input.dropFlags, (1 << epNumber)); _WriteContext(&device->input_ctx->input.addFlags, (1 << 0)); // The Deconfigure bit in the Configure Endpoint command indicates // that *all* endpoints are to be deconfigured, and not just the ones // specified in the context flags. (XHCI 1.2 § 4.6.6 p115.) ConfigureEndpoint(device->input_ctx_addr, false, device->slot); } return B_OK; } status_t XHCI::_LinkDescriptorForPipe(xhci_td *descriptor, xhci_endpoint *endpoint) { TRACE("link descriptor for pipe\n"); // Use mutex_trylock first, in case we are in KDL. MutexLocker endpointLocker(&endpoint->lock, mutex_trylock(&endpoint->lock) == B_OK); // "used" refers to the number of currently linked TDs, not the number of // used TRBs on the ring (we use 2 TRBs on the ring per transfer.) if (endpoint->used >= (XHCI_MAX_TRANSFERS - 1)) { TRACE_ERROR("link descriptor for pipe: max transfers count exceeded\n"); return B_BAD_VALUE; } // We do not support queuing other transfers in tandem with a fragmented one. if (endpoint->td_head != NULL && endpoint->td_head->transfer != NULL && endpoint->td_head->transfer->IsFragmented()) { TRACE_ERROR("cannot submit transfer: a fragmented transfer is queued\n"); return B_DEV_RESOURCE_CONFLICT; } endpoint->used++; descriptor->next = endpoint->td_head; endpoint->td_head = descriptor; const uint8 current = endpoint->current, eventdata = current + 1; uint8 next = eventdata + 1; TRACE("link descriptor for pipe: current %d, next %d\n", current, next); // Add a Link TRB to the end of the descriptor. phys_addr_t addr = endpoint->trb_addr + eventdata * sizeof(xhci_trb); descriptor->trbs[descriptor->trb_used].address = addr; descriptor->trbs[descriptor->trb_used].status = TRB_2_IRQ(0); descriptor->trbs[descriptor->trb_used].flags = TRB_3_TYPE(TRB_TYPE_LINK) | TRB_3_CHAIN_BIT | TRB_3_CYCLE_BIT; // It is specified that (XHCI 1.2 § 4.12.3 Note 2 p251) if the TRB // following one with the ENT bit set is a Link TRB, the Link TRB // shall be evaluated *and* the subsequent TRB shall be. Thus a // TRB_3_ENT_BIT is unnecessary here; and from testing seems to // break all transfers on a (very) small number of controllers. #if !B_HOST_IS_LENDIAN // Convert endianness. for (uint32 i = 0; i <= descriptor->trb_used; i++) { descriptor->trbs[i].address = B_HOST_TO_LENDIAN_INT64(descriptor->trbs[i].address); descriptor->trbs[i].status = B_HOST_TO_LENDIAN_INT32(descriptor->trbs[i].status); descriptor->trbs[i].flags = B_HOST_TO_LENDIAN_INT32(descriptor->trbs[i].flags); } #endif // Link the descriptor. endpoint->trbs[current].address = B_HOST_TO_LENDIAN_INT64(descriptor->trb_addr); endpoint->trbs[current].status = B_HOST_TO_LENDIAN_INT32(TRB_2_IRQ(0)); endpoint->trbs[current].flags = B_HOST_TO_LENDIAN_INT32(TRB_3_TYPE(TRB_TYPE_LINK)); // Set up the Event Data TRB (XHCI 1.2 § 4.11.5.2 p230.) // // We do this on the main ring for two reasons: first, to avoid a small // potential race between the interrupt and the controller evaluating // the link TRB to get back onto the ring; and second, because many // controllers throw errors if the target of a Link TRB is not valid // (i.e. does not have its Cycle Bit set.) // // We also set the "address" field, which the controller will copy // verbatim into the TRB it posts to the event ring, to be the last // "real" TRB in the TD; this will allow us to determine what transfer // the resulting Transfer Event TRB refers to. endpoint->trbs[eventdata].address = B_HOST_TO_LENDIAN_INT64(descriptor->trb_addr + (descriptor->trb_used - 1) * sizeof(xhci_trb)); endpoint->trbs[eventdata].status = B_HOST_TO_LENDIAN_INT32(TRB_2_IRQ(0)); endpoint->trbs[eventdata].flags = B_HOST_TO_LENDIAN_INT32(TRB_3_TYPE(TRB_TYPE_EVENT_DATA) | TRB_3_IOC_BIT | TRB_3_CYCLE_BIT); if (next == (XHCI_ENDPOINT_RING_SIZE - 1)) { // We always use 2 TRBs per _Link..() call, so if "next" is the last // TRB in the ring, we need to generate a link TRB at "next", and // then wrap it to 0. endpoint->trbs[next].address = B_HOST_TO_LENDIAN_INT64(endpoint->trb_addr); endpoint->trbs[next].status = B_HOST_TO_LENDIAN_INT32(TRB_2_IRQ(0)); endpoint->trbs[next].flags = B_HOST_TO_LENDIAN_INT32(TRB_3_TYPE(TRB_TYPE_LINK) | TRB_3_CYCLE_BIT); next = 0; } endpoint->trbs[next].address = 0; endpoint->trbs[next].status = 0; endpoint->trbs[next].flags = 0; // Everything is ready, so write the cycle bit. endpoint->trbs[current].flags |= B_HOST_TO_LENDIAN_INT32(TRB_3_CYCLE_BIT); TRACE("_LinkDescriptorForPipe pCurrent %p phys 0x%" B_PRIxPHYSADDR " 0x%" B_PRIxPHYSADDR " 0x%08" B_PRIx32 "\n", &endpoint->trbs[current], endpoint->trb_addr + current * sizeof(struct xhci_trb), endpoint->trbs[current].address, B_LENDIAN_TO_HOST_INT32(endpoint->trbs[current].flags)); endpoint->current = next; endpointLocker.Unlock(); TRACE("Endpoint status 0x%08" B_PRIx32 " 0x%08" B_PRIx32 " 0x%016" B_PRIx64 "\n", _ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].dwendpoint0), _ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].dwendpoint1), _ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].qwendpoint2)); Ring(endpoint->device->slot, endpoint->id + 1); TRACE("Endpoint status 0x%08" B_PRIx32 " 0x%08" B_PRIx32 " 0x%016" B_PRIx64 "\n", _ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].dwendpoint0), _ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].dwendpoint1), _ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].qwendpoint2)); return B_OK; } status_t XHCI::_UnlinkDescriptorForPipe(xhci_td *descriptor, xhci_endpoint *endpoint) { TRACE("unlink descriptor for pipe\n"); // We presume that the caller has already locked or owns the endpoint. endpoint->used--; if (descriptor == endpoint->td_head) { endpoint->td_head = descriptor->next; descriptor->next = NULL; return B_OK; } else { for (xhci_td *td = endpoint->td_head; td->next != NULL; td = td->next) { if (td->next == descriptor) { td->next = descriptor->next; descriptor->next = NULL; return B_OK; } } } endpoint->used++; return B_ERROR; } status_t XHCI::ConfigureEndpoint(xhci_endpoint* ep, uint8 slot, uint8 number, uint8 type, bool directionIn, uint16 interval, uint16 maxPacketSize, usb_speed speed, uint8 maxBurst, uint16 bytesPerInterval) { struct xhci_device* device = &fDevices[slot]; uint32 dwendpoint0 = 0; uint32 dwendpoint1 = 0; uint64 qwendpoint2 = 0; uint32 dwendpoint4 = 0; // Compute and assign the endpoint type. (XHCI 1.2 § 6.2.3 Table 6-9 p452.) uint8 xhciType = 4; if ((type & USB_OBJECT_INTERRUPT_PIPE) != 0) xhciType = 3; if ((type & USB_OBJECT_BULK_PIPE) != 0) xhciType = 2; if ((type & USB_OBJECT_ISO_PIPE) != 0) xhciType = 1; xhciType |= directionIn ? (1 << 2) : 0; dwendpoint1 |= ENDPOINT_1_EPTYPE(xhciType); // Compute and assign interval. (XHCI 1.2 § 6.2.3.6 p456.) uint16 calcInterval; if ((type & USB_OBJECT_BULK_PIPE) != 0 || (type & USB_OBJECT_CONTROL_PIPE) != 0) { // Bulk and Control endpoints never issue NAKs. calcInterval = 0; } else { switch (speed) { case USB_SPEED_FULLSPEED: if ((type & USB_OBJECT_ISO_PIPE) != 0) { // Convert 1-16 into 3-18. calcInterval = min_c(max_c(interval, 1), 16) + 2; break; } // fall through case USB_SPEED_LOWSPEED: { // Convert 1ms-255ms into 3-10. // Find the index of the highest set bit in "interval". uint32 temp = min_c(max_c(interval, 1), 255); for (calcInterval = 0; temp != 1; calcInterval++) temp = temp >> 1; calcInterval += 3; break; } case USB_SPEED_HIGHSPEED: case USB_SPEED_SUPERSPEED: default: // Convert 1-16 into 0-15. calcInterval = min_c(max_c(interval, 1), 16) - 1; break; } } dwendpoint0 |= ENDPOINT_0_INTERVAL(calcInterval); // For non-isochronous endpoints, we want the controller to retry failed // transfers, if possible. (XHCI 1.2 § 4.10.2.3 p197.) if ((type & USB_OBJECT_ISO_PIPE) == 0) dwendpoint1 |= ENDPOINT_1_CERR(3); // Assign maximum burst size. For USB3 devices this is passed in; for // all other devices we compute it. (XHCI 1.2 § 4.8.2 p161.) if (speed == USB_SPEED_HIGHSPEED && (type & (USB_OBJECT_INTERRUPT_PIPE | USB_OBJECT_ISO_PIPE)) != 0) { maxBurst = (maxPacketSize & 0x1800) >> 11; } else if (speed != USB_SPEED_SUPERSPEED) { maxBurst = 0; } dwendpoint1 |= ENDPOINT_1_MAXBURST(maxBurst); // Assign maximum packet size, set the ring address, and set the // "Dequeue Cycle State" bit. (XHCI 1.2 § 6.2.3 Table 6-10 p453.) dwendpoint1 |= ENDPOINT_1_MAXPACKETSIZE(maxPacketSize); qwendpoint2 |= ENDPOINT_2_DCS_BIT | ep->trb_addr; // The Max Burst Payload is the number of bytes moved by a // maximum sized burst. (XHCI 1.2 § 4.11.7.1 p236.) ep->max_burst_payload = (maxBurst + 1) * maxPacketSize; if (ep->max_burst_payload == 0) { TRACE_ERROR("ConfigureEndpoint() failed invalid max_burst_payload\n"); return B_BAD_VALUE; } // Assign average TRB length. if ((type & USB_OBJECT_CONTROL_PIPE) != 0) { // Control pipes are a special case, as they rarely have // outbound transfers of any substantial size. dwendpoint4 |= ENDPOINT_4_AVGTRBLENGTH(8); } else if ((type & USB_OBJECT_ISO_PIPE) != 0) { // Isochronous pipes are another special case: the TRB size will be // one packet (which is normally smaller than the max packet size, // but we don't know what it is here.) dwendpoint4 |= ENDPOINT_4_AVGTRBLENGTH(maxPacketSize); } else { // Under all other circumstances, we put max_burst_payload in a TRB. dwendpoint4 |= ENDPOINT_4_AVGTRBLENGTH(ep->max_burst_payload); } // Assign maximum ESIT payload. (XHCI 1.2 § 4.14.2 p259.) if ((type & (USB_OBJECT_INTERRUPT_PIPE | USB_OBJECT_ISO_PIPE)) != 0) { // TODO: For SuperSpeedPlus endpoints, there is yet another descriptor // for isochronous endpoints that specifies the maximum ESIT payload. // We don't fetch this yet, so just fall back to the USB2 computation // method if bytesPerInterval is 0. if (speed == USB_SPEED_SUPERSPEED && bytesPerInterval != 0) dwendpoint4 |= ENDPOINT_4_MAXESITPAYLOAD(bytesPerInterval); else if (speed >= USB_SPEED_HIGHSPEED) dwendpoint4 |= ENDPOINT_4_MAXESITPAYLOAD((maxBurst + 1) * maxPacketSize); } _WriteContext(&device->input_ctx->endpoints[number].dwendpoint0, dwendpoint0); _WriteContext(&device->input_ctx->endpoints[number].dwendpoint1, dwendpoint1); _WriteContext(&device->input_ctx->endpoints[number].qwendpoint2, qwendpoint2); _WriteContext(&device->input_ctx->endpoints[number].dwendpoint4, dwendpoint4); TRACE("endpoint 0x%" B_PRIx32 " 0x%" B_PRIx32 " 0x%" B_PRIx64 " 0x%" B_PRIx32 "\n", _ReadContext(&device->input_ctx->endpoints[number].dwendpoint0), _ReadContext(&device->input_ctx->endpoints[number].dwendpoint1), _ReadContext(&device->input_ctx->endpoints[number].qwendpoint2), _ReadContext(&device->input_ctx->endpoints[number].dwendpoint4)); return B_OK; } status_t XHCI::GetPortSpeed(uint8 index, usb_speed* speed) { if (index >= fPortCount) return B_BAD_INDEX; uint32 portStatus = ReadOpReg(XHCI_PORTSC(index)); switch (PS_SPEED_GET(portStatus)) { case 2: *speed = USB_SPEED_LOWSPEED; break; case 1: *speed = USB_SPEED_FULLSPEED; break; case 3: *speed = USB_SPEED_HIGHSPEED; break; case 4: *speed = USB_SPEED_SUPERSPEED; break; default: TRACE_ALWAYS("nonstandard port speed %" B_PRId32 ", assuming SuperSpeed\n", PS_SPEED_GET(portStatus)); *speed = USB_SPEED_SUPERSPEED; break; } return B_OK; } status_t XHCI::GetPortStatus(uint8 index, usb_port_status* status) { if (index >= fPortCount) return B_BAD_INDEX; status->status = status->change = 0; uint32 portStatus = ReadOpReg(XHCI_PORTSC(index)); TRACE("port %" B_PRId8 " status=0x%08" B_PRIx32 "\n", index, portStatus); // build the status switch (PS_SPEED_GET(portStatus)) { case 3: status->status |= PORT_STATUS_HIGH_SPEED; break; case 2: status->status |= PORT_STATUS_LOW_SPEED; break; default: break; } if (portStatus & PS_CCS) status->status |= PORT_STATUS_CONNECTION; if (portStatus & PS_PED) status->status |= PORT_STATUS_ENABLE; if (portStatus & PS_OCA) status->status |= PORT_STATUS_OVER_CURRENT; if (portStatus & PS_PR) status->status |= PORT_STATUS_RESET; if (portStatus & PS_PP) { if (fPortSpeeds[index] == USB_SPEED_SUPERSPEED) status->status |= PORT_STATUS_SS_POWER; else status->status |= PORT_STATUS_POWER; } // build the change if (portStatus & PS_CSC) status->change |= PORT_STATUS_CONNECTION; if (portStatus & PS_PEC) status->change |= PORT_STATUS_ENABLE; if (portStatus & PS_OCC) status->change |= PORT_STATUS_OVER_CURRENT; if (portStatus & PS_PRC) status->change |= PORT_STATUS_RESET; if (fPortSpeeds[index] == USB_SPEED_SUPERSPEED) { if (portStatus & PS_PLC) status->change |= PORT_CHANGE_LINK_STATE; if (portStatus & PS_WRC) status->change |= PORT_CHANGE_BH_PORT_RESET; } return B_OK; } status_t XHCI::SetPortFeature(uint8 index, uint16 feature) { TRACE("set port feature index %u feature %u\n", index, feature); if (index >= fPortCount) return B_BAD_INDEX; uint32 portRegister = XHCI_PORTSC(index); uint32 portStatus = ReadOpReg(portRegister) & ~PS_CLEAR; switch (feature) { case PORT_SUSPEND: if ((portStatus & PS_PED) == 0 || (portStatus & PS_PR) || (portStatus & PS_PLS_MASK) >= PS_XDEV_U3) { TRACE_ERROR("USB core suspending device not in U0/U1/U2.\n"); return B_BAD_VALUE; } portStatus &= ~PS_PLS_MASK; WriteOpReg(portRegister, portStatus | PS_LWS | PS_XDEV_U3); break; case PORT_RESET: WriteOpReg(portRegister, portStatus | PS_PR); break; case PORT_POWER: WriteOpReg(portRegister, portStatus | PS_PP); break; default: return B_BAD_VALUE; } ReadOpReg(portRegister); return B_OK; } status_t XHCI::ClearPortFeature(uint8 index, uint16 feature) { TRACE("clear port feature index %u feature %u\n", index, feature); if (index >= fPortCount) return B_BAD_INDEX; uint32 portRegister = XHCI_PORTSC(index); uint32 portStatus = ReadOpReg(portRegister) & ~PS_CLEAR; switch (feature) { case PORT_SUSPEND: portStatus = ReadOpReg(portRegister); if (portStatus & PS_PR) return B_BAD_VALUE; if (portStatus & PS_XDEV_U3) { if ((portStatus & PS_PED) == 0) return B_BAD_VALUE; portStatus &= ~PS_PLS_MASK; WriteOpReg(portRegister, portStatus | PS_XDEV_U0 | PS_LWS); } break; case PORT_ENABLE: WriteOpReg(portRegister, portStatus | PS_PED); break; case PORT_POWER: WriteOpReg(portRegister, portStatus & ~PS_PP); break; case C_PORT_CONNECTION: WriteOpReg(portRegister, portStatus | PS_CSC); break; case C_PORT_ENABLE: WriteOpReg(portRegister, portStatus | PS_PEC); break; case C_PORT_OVER_CURRENT: WriteOpReg(portRegister, portStatus | PS_OCC); break; case C_PORT_RESET: WriteOpReg(portRegister, portStatus | PS_PRC); break; case C_PORT_BH_PORT_RESET: WriteOpReg(portRegister, portStatus | PS_WRC); break; case C_PORT_LINK_STATE: WriteOpReg(portRegister, portStatus | PS_PLC); break; default: return B_BAD_VALUE; } ReadOpReg(portRegister); return B_OK; } status_t XHCI::ControllerHalt() { // Mask off run state WriteOpReg(XHCI_CMD, ReadOpReg(XHCI_CMD) & ~CMD_RUN); // wait for shutdown state if (WaitOpBits(XHCI_STS, STS_HCH, STS_HCH) != B_OK) { TRACE_ERROR("HCH shutdown timeout\n"); return B_ERROR; } return B_OK; } status_t XHCI::ControllerReset() { TRACE("ControllerReset() cmd: 0x%" B_PRIx32 " sts: 0x%" B_PRIx32 "\n", ReadOpReg(XHCI_CMD), ReadOpReg(XHCI_STS)); WriteOpReg(XHCI_CMD, ReadOpReg(XHCI_CMD) | CMD_HCRST); if (WaitOpBits(XHCI_CMD, CMD_HCRST, 0) != B_OK) { TRACE_ERROR("ControllerReset() failed CMD_HCRST\n"); return B_ERROR; } if (WaitOpBits(XHCI_STS, STS_CNR, 0) != B_OK) { TRACE_ERROR("ControllerReset() failed STS_CNR\n"); return B_ERROR; } return B_OK; } int32 XHCI::InterruptHandler(void* data) { return ((XHCI*)data)->Interrupt(); } int32 XHCI::Interrupt() { SpinLocker _(&fSpinlock); uint32 status = ReadOpReg(XHCI_STS); uint32 temp = ReadRunReg32(XHCI_IMAN(0)); WriteOpReg(XHCI_STS, status); WriteRunReg32(XHCI_IMAN(0), temp); int32 result = B_HANDLED_INTERRUPT; if ((status & STS_HCH) != 0) { TRACE_ERROR("Host Controller halted\n"); return result; } if ((status & STS_HSE) != 0) { TRACE_ERROR("Host System Error\n"); return result; } if ((status & STS_HCE) != 0) { TRACE_ERROR("Host Controller Error\n"); return result; } if ((status & STS_EINT) == 0) { TRACE("STS: 0x%" B_PRIx32 " IRQ_PENDING: 0x%" B_PRIx32 "\n", status, temp); return B_UNHANDLED_INTERRUPT; } TRACE("Event Interrupt\n"); release_sem_etc(fEventSem, 1, B_DO_NOT_RESCHEDULE); return B_INVOKE_SCHEDULER; } void XHCI::Ring(uint8 slot, uint8 endpoint) { TRACE("Ding Dong! slot:%d endpoint %d\n", slot, endpoint) if ((slot == 0 && endpoint > 0) || (slot > 0 && endpoint == 0)) panic("Ring() invalid slot/endpoint combination\n"); if (slot > fSlotCount || endpoint >= XHCI_MAX_ENDPOINTS) panic("Ring() invalid slot or endpoint\n"); WriteDoorReg32(XHCI_DOORBELL(slot), XHCI_DOORBELL_TARGET(endpoint) | XHCI_DOORBELL_STREAMID(0)); ReadDoorReg32(XHCI_DOORBELL(slot)); // Flush PCI writes } void XHCI::QueueCommand(xhci_trb* trb) { uint8 i, j; uint32 temp; i = fCmdIdx; j = fCmdCcs; TRACE("command[%u] = %" B_PRId32 " (0x%016" B_PRIx64 ", 0x%08" B_PRIx32 ", 0x%08" B_PRIx32 ")\n", i, TRB_3_TYPE_GET(trb->flags), trb->address, trb->status, trb->flags); fCmdRing[i].address = trb->address; fCmdRing[i].status = trb->status; temp = trb->flags; if (j) temp |= TRB_3_CYCLE_BIT; else temp &= ~TRB_3_CYCLE_BIT; temp &= ~TRB_3_TC_BIT; fCmdRing[i].flags = B_HOST_TO_LENDIAN_INT32(temp); fCmdAddr = fErst->rs_addr + (XHCI_MAX_EVENTS + i) * sizeof(xhci_trb); i++; if (i == (XHCI_MAX_COMMANDS - 1)) { temp = TRB_3_TYPE(TRB_TYPE_LINK) | TRB_3_TC_BIT; if (j) temp |= TRB_3_CYCLE_BIT; fCmdRing[i].flags = B_HOST_TO_LENDIAN_INT32(temp); i = 0; j ^= 1; } fCmdIdx = i; fCmdCcs = j; } void XHCI::HandleCmdComplete(xhci_trb* trb) { if (fCmdAddr == trb->address) { TRACE("Received command event\n"); fCmdResult[0] = trb->status; fCmdResult[1] = B_LENDIAN_TO_HOST_INT32(trb->flags); release_sem_etc(fCmdCompSem, 1, B_DO_NOT_RESCHEDULE); } else TRACE_ERROR("received command event for unknown command!\n") } void XHCI::HandleTransferComplete(xhci_trb* trb) { const uint32 flags = B_LENDIAN_TO_HOST_INT32(trb->flags); const uint8 endpointNumber = TRB_3_ENDPOINT_GET(flags), slot = TRB_3_SLOT_GET(flags); if (slot > fSlotCount) TRACE_ERROR("invalid slot\n"); if (endpointNumber == 0 || endpointNumber >= XHCI_MAX_ENDPOINTS) { TRACE_ERROR("invalid endpoint\n"); return; } xhci_device *device = &fDevices[slot]; xhci_endpoint *endpoint = &device->endpoints[endpointNumber - 1]; if (endpoint->trbs == NULL) { TRACE_ERROR("got TRB but endpoint is not allocated!\n"); return; } // Use mutex_trylock first, in case we are in KDL. MutexLocker endpointLocker(endpoint->lock, mutex_trylock(&endpoint->lock) == B_OK); if (!endpointLocker.IsLocked()) { // We failed to get the lock. Most likely it was destroyed // while we were waiting for it. return; } // In the case of an Event Data TRB, the "transferred" field refers // to the actual number of bytes transferred across the whole TD. // (XHCI 1.2 § 6.4.2.1 Table 6-38 p478.) const uint8 completionCode = TRB_2_COMP_CODE_GET(trb->status); int32 transferred = TRB_2_REM_GET(trb->status), remainder = -1; TRACE("HandleTransferComplete: ed %d, code %d, transferred %d\n", (flags & TRB_3_EVENT_DATA_BIT), completionCode, transferred); if ((flags & TRB_3_EVENT_DATA_BIT) == 0) { // This should only occur under error conditions. TRACE("got an interrupt for a non-Event Data TRB!\n"); remainder = transferred; transferred = -1; } if (completionCode != COMP_SUCCESS && completionCode != COMP_SHORT_PACKET) { TRACE_ALWAYS("transfer error on slot %" B_PRId8 " endpoint %" B_PRId8 ": %s\n", slot, endpointNumber, xhci_error_string(completionCode)); } const phys_addr_t source = B_LENDIAN_TO_HOST_INT64(trb->address); for (xhci_td *td = endpoint->td_head; td != NULL; td = td->next) { int64 offset = (source - td->trb_addr) / sizeof(xhci_trb); if (offset < 0 || offset >= td->trb_count) continue; TRACE("HandleTransferComplete td %p trb %" B_PRId64 " found\n", td, offset); // The TRB at offset trb_used will be the link TRB, which we do not // care about (and should not generate an interrupt at all.) We really // care about the properly last TRB, at index "count - 1", which the // Event Data TRB that _LinkDescriptorForPipe creates points to. // // But if we have an unsuccessful completion code, the transfer // likely failed midway; so just accept it anyway. if (offset == (td->trb_used - 1) || completionCode != COMP_SUCCESS) { _UnlinkDescriptorForPipe(td, endpoint); endpointLocker.Unlock(); td->trb_completion_code = completionCode; td->td_transferred = transferred; td->trb_left = remainder; // add descriptor to finished list if (mutex_trylock(&fFinishedLock) != B_OK) mutex_lock(&fFinishedLock); td->next = fFinishedHead; fFinishedHead = td; mutex_unlock(&fFinishedLock); release_sem_etc(fFinishTransfersSem, 1, B_DO_NOT_RESCHEDULE); TRACE("HandleTransferComplete td %p done\n", td); } else { TRACE_ERROR("successful TRB 0x%" B_PRIxPHYSADDR " was found, but it wasn't " "the last in the TD!\n", source); } return; } TRACE_ERROR("TRB 0x%" B_PRIxPHYSADDR " was not found in the endpoint!\n", source); } void XHCI::DumpRing(xhci_trb *trbs, uint32 size) { if (!Lock()) { TRACE("Unable to get lock!\n"); return; } for (uint32 i = 0; i < size; i++) { TRACE("command[%" B_PRId32 "] = %" B_PRId32 " (0x%016" B_PRIx64 "," " 0x%08" B_PRIx32 ", 0x%08" B_PRIx32 ")\n", i, TRB_3_TYPE_GET(B_LENDIAN_TO_HOST_INT32(trbs[i].flags)), trbs[i].address, trbs[i].status, trbs[i].flags); } Unlock(); } status_t XHCI::DoCommand(xhci_trb* trb) { if (!Lock()) { TRACE("Unable to get lock!\n"); return B_ERROR; } QueueCommand(trb); Ring(0, 0); // Begin with a 50ms timeout. if (acquire_sem_etc(fCmdCompSem, 1, B_RELATIVE_TIMEOUT, 50 * 1000) != B_OK) { // We've hit the timeout. In some error cases, interrupts are not // generated; so here we force the event ring to be polled once. release_sem(fEventSem); // Now try again, this time with a 750ms timeout. if (acquire_sem_etc(fCmdCompSem, 1, B_RELATIVE_TIMEOUT, 750 * 1000) != B_OK) { TRACE("Unable to obtain fCmdCompSem!\n"); fCmdAddr = 0; Unlock(); return B_TIMED_OUT; } } // eat up sems that have been released by multiple interrupts int32 semCount = 0; get_sem_count(fCmdCompSem, &semCount); if (semCount > 0) acquire_sem_etc(fCmdCompSem, semCount, B_RELATIVE_TIMEOUT, 0); status_t status = B_OK; uint32 completionCode = TRB_2_COMP_CODE_GET(fCmdResult[0]); TRACE("command complete\n"); if (completionCode != COMP_SUCCESS) { TRACE_ERROR("unsuccessful command %" B_PRId32 ", error %s (%" B_PRId32 ")\n", TRB_3_TYPE_GET(trb->flags), xhci_error_string(completionCode), completionCode); status = B_IO_ERROR; } trb->status = fCmdResult[0]; trb->flags = fCmdResult[1]; fCmdAddr = 0; Unlock(); return status; } status_t XHCI::Noop() { TRACE("Issue No-Op\n"); xhci_trb trb; trb.address = 0; trb.status = 0; trb.flags = TRB_3_TYPE(TRB_TYPE_CMD_NOOP); return DoCommand(&trb); } status_t XHCI::EnableSlot(uint8* slot) { TRACE("Enable Slot\n"); xhci_trb trb; trb.address = 0; trb.status = 0; trb.flags = TRB_3_TYPE(TRB_TYPE_ENABLE_SLOT); status_t status = DoCommand(&trb); if (status != B_OK) return status; *slot = TRB_3_SLOT_GET(trb.flags); return *slot != 0 ? B_OK : B_BAD_VALUE; } status_t XHCI::DisableSlot(uint8 slot) { TRACE("Disable Slot\n"); xhci_trb trb; trb.address = 0; trb.status = 0; trb.flags = TRB_3_TYPE(TRB_TYPE_DISABLE_SLOT) | TRB_3_SLOT(slot); return DoCommand(&trb); } status_t XHCI::SetAddress(uint64 inputContext, bool bsr, uint8 slot) { TRACE("Set Address\n"); xhci_trb trb; trb.address = inputContext; trb.status = 0; trb.flags = TRB_3_TYPE(TRB_TYPE_ADDRESS_DEVICE) | TRB_3_SLOT(slot); if (bsr) trb.flags |= TRB_3_BSR_BIT; return DoCommand(&trb); } status_t XHCI::ConfigureEndpoint(uint64 inputContext, bool deconfigure, uint8 slot) { TRACE("Configure Endpoint\n"); xhci_trb trb; trb.address = inputContext; trb.status = 0; trb.flags = TRB_3_TYPE(TRB_TYPE_CONFIGURE_ENDPOINT) | TRB_3_SLOT(slot); if (deconfigure) trb.flags |= TRB_3_DCEP_BIT; return DoCommand(&trb); } status_t XHCI::EvaluateContext(uint64 inputContext, uint8 slot) { TRACE("Evaluate Context\n"); xhci_trb trb; trb.address = inputContext; trb.status = 0; trb.flags = TRB_3_TYPE(TRB_TYPE_EVALUATE_CONTEXT) | TRB_3_SLOT(slot); return DoCommand(&trb); } status_t XHCI::ResetEndpoint(bool preserve, xhci_endpoint* endpoint) { TRACE("Reset Endpoint\n"); switch (_GetEndpointState(endpoint)) { case ENDPOINT_STATE_STOPPED: TRACE("Reset Endpoint: already stopped"); return B_OK; case ENDPOINT_STATE_HALTED: TRACE("Reset Endpoint: warning, weird state!"); default: break; } xhci_trb trb; trb.address = 0; trb.status = 0; trb.flags = TRB_3_TYPE(TRB_TYPE_RESET_ENDPOINT) | TRB_3_SLOT(endpoint->device->slot) | TRB_3_ENDPOINT(endpoint->id + 1); if (preserve) trb.flags |= TRB_3_PRSV_BIT; return DoCommand(&trb); } status_t XHCI::StopEndpoint(bool suspend, xhci_endpoint* endpoint) { TRACE("Stop Endpoint\n"); switch (_GetEndpointState(endpoint)) { case ENDPOINT_STATE_HALTED: TRACE("Stop Endpoint: error, halted"); return B_DEV_STALLED; case ENDPOINT_STATE_STOPPED: TRACE("Stop Endpoint: already stopped"); return B_OK; default: break; } xhci_trb trb; trb.address = 0; trb.status = 0; trb.flags = TRB_3_TYPE(TRB_TYPE_STOP_ENDPOINT) | TRB_3_SLOT(endpoint->device->slot) | TRB_3_ENDPOINT(endpoint->id + 1); if (suspend) trb.flags |= TRB_3_SUSPEND_ENDPOINT_BIT; return DoCommand(&trb); } status_t XHCI::SetTRDequeue(uint64 dequeue, uint16 stream, uint8 endpoint, uint8 slot) { TRACE("Set TR Dequeue\n"); xhci_trb trb; trb.address = dequeue | ENDPOINT_2_DCS_BIT; // The DCS bit is copied from the address field as in ConfigureEndpoint. // (XHCI 1.2 § 4.6.10 p142.) trb.status = TRB_2_STREAM(stream); trb.flags = TRB_3_TYPE(TRB_TYPE_SET_TR_DEQUEUE) | TRB_3_SLOT(slot) | TRB_3_ENDPOINT(endpoint); return DoCommand(&trb); } status_t XHCI::ResetDevice(uint8 slot) { TRACE("Reset Device\n"); xhci_trb trb; trb.address = 0; trb.status = 0; trb.flags = TRB_3_TYPE(TRB_TYPE_RESET_DEVICE) | TRB_3_SLOT(slot); return DoCommand(&trb); } int32 XHCI::EventThread(void* data) { ((XHCI *)data)->CompleteEvents(); return B_OK; } void XHCI::CompleteEvents() { while (!fStopThreads) { if (acquire_sem(fEventSem) < B_OK) continue; // eat up sems that have been released by multiple interrupts int32 semCount = 0; get_sem_count(fEventSem, &semCount); if (semCount > 0) acquire_sem_etc(fEventSem, semCount, B_RELATIVE_TIMEOUT, 0); ProcessEvents(); } } void XHCI::ProcessEvents() { // Use mutex_trylock first, in case we are in KDL. MutexLocker locker(fEventLock, mutex_trylock(&fEventLock) == B_OK); if (!locker.IsLocked()) { // We failed to get the lock. This really should not happen. TRACE_ERROR("failed to acquire event lock!\n"); return; } uint16 i = fEventIdx; uint8 j = fEventCcs; uint8 t = 2; while (1) { uint32 temp = B_LENDIAN_TO_HOST_INT32(fEventRing[i].flags); uint8 event = TRB_3_TYPE_GET(temp); TRACE("event[%u] = %u (0x%016" B_PRIx64 " 0x%08" B_PRIx32 " 0x%08" B_PRIx32 ")\n", i, event, fEventRing[i].address, fEventRing[i].status, B_LENDIAN_TO_HOST_INT32(fEventRing[i].flags)); uint8 k = (temp & TRB_3_CYCLE_BIT) ? 1 : 0; if (j != k) break; switch (event) { case TRB_TYPE_COMMAND_COMPLETION: HandleCmdComplete(&fEventRing[i]); break; case TRB_TYPE_TRANSFER: HandleTransferComplete(&fEventRing[i]); break; case TRB_TYPE_PORT_STATUS_CHANGE: TRACE("port change detected\n"); break; default: TRACE_ERROR("Unhandled event = %u\n", event); break; } i++; if (i == XHCI_MAX_EVENTS) { i = 0; j ^= 1; if (!--t) break; } } fEventIdx = i; fEventCcs = j; uint64 addr = fErst->rs_addr + i * sizeof(xhci_trb); WriteRunReg32(XHCI_ERDP_LO(0), (uint32)addr | ERDP_BUSY); WriteRunReg32(XHCI_ERDP_HI(0), (uint32)(addr >> 32)); } int32 XHCI::FinishThread(void* data) { ((XHCI *)data)->FinishTransfers(); return B_OK; } void XHCI::FinishTransfers() { while (!fStopThreads) { if (acquire_sem(fFinishTransfersSem) < B_OK) continue; // eat up sems that have been released by multiple interrupts int32 semCount = 0; get_sem_count(fFinishTransfersSem, &semCount); if (semCount > 0) acquire_sem_etc(fFinishTransfersSem, semCount, B_RELATIVE_TIMEOUT, 0); mutex_lock(&fFinishedLock); TRACE("finishing transfers\n"); while (fFinishedHead != NULL) { xhci_td* td = fFinishedHead; fFinishedHead = td->next; td->next = NULL; mutex_unlock(&fFinishedLock); TRACE("finishing transfer td %p\n", td); Transfer* transfer = td->transfer; if (transfer == NULL) { // No transfer? Quick way out. FreeDescriptor(td); mutex_lock(&fFinishedLock); continue; } bool directionIn = (transfer->TransferPipe()->Direction() != Pipe::Out); status_t callbackStatus = B_OK; const uint8 completionCode = td->trb_completion_code; switch (completionCode) { case COMP_SHORT_PACKET: case COMP_SUCCESS: callbackStatus = B_OK; break; case COMP_DATA_BUFFER: callbackStatus = directionIn ? B_DEV_DATA_OVERRUN : B_DEV_DATA_UNDERRUN; break; case COMP_BABBLE: callbackStatus = directionIn ? B_DEV_FIFO_OVERRUN : B_DEV_FIFO_UNDERRUN; break; case COMP_USB_TRANSACTION: callbackStatus = B_DEV_CRC_ERROR; break; case COMP_STALL: callbackStatus = B_DEV_STALLED; break; default: callbackStatus = B_DEV_STALLED; break; } size_t actualLength = transfer->FragmentLength(); if (completionCode != COMP_SUCCESS) { actualLength = td->td_transferred; if (td->td_transferred == -1) actualLength = transfer->FragmentLength() - td->trb_left; TRACE("transfer not successful, actualLength=%" B_PRIuSIZE "\n", actualLength); } usb_isochronous_data* isochronousData = transfer->IsochronousData(); if (isochronousData != NULL) { size_t packetSize = transfer->DataLength() / isochronousData->packet_count, left = actualLength; for (uint32 i = 0; i < isochronousData->packet_count; i++) { size_t size = min_c(packetSize, left); isochronousData->packet_descriptors[i].actual_length = size; isochronousData->packet_descriptors[i].status = (size > 0) ? B_OK : B_DEV_FIFO_UNDERRUN; left -= size; } } if (callbackStatus == B_OK && directionIn && actualLength > 0) { TRACE("copying in iov count %ld\n", transfer->VectorCount()); status_t status = transfer->PrepareKernelAccess(); if (status == B_OK) { ReadDescriptor(td, transfer->Vector(), transfer->VectorCount()); } else { callbackStatus = status; } } FreeDescriptor(td); // this transfer may still have data left transfer->AdvanceByFragment(actualLength); if (completionCode == COMP_SUCCESS && transfer->FragmentLength() > 0) { TRACE("still %" B_PRIuSIZE " bytes left on transfer\n", transfer->FragmentLength()); SubmitTransfer(transfer); } else { // The actualLength was already handled in AdvanceByFragment. transfer->Finished(callbackStatus, 0); delete transfer; } mutex_lock(&fFinishedLock); } mutex_unlock(&fFinishedLock); } } inline void XHCI::WriteOpReg(uint32 reg, uint32 value) { *(volatile uint32 *)(fRegisters + fOperationalRegisterOffset + reg) = value; } inline uint32 XHCI::ReadOpReg(uint32 reg) { return *(volatile uint32 *)(fRegisters + fOperationalRegisterOffset + reg); } inline status_t XHCI::WaitOpBits(uint32 reg, uint32 mask, uint32 expected) { int loops = 0; uint32 value = ReadOpReg(reg); while ((value & mask) != expected) { snooze(1000); value = ReadOpReg(reg); if (loops == 100) { TRACE("delay waiting on reg 0x%" B_PRIX32 " match 0x%" B_PRIX32 " (0x%" B_PRIX32 ")\n", reg, expected, mask); } else if (loops > 250) { TRACE_ERROR("timeout waiting on reg 0x%" B_PRIX32 " match 0x%" B_PRIX32 " (0x%" B_PRIX32 ")\n", reg, expected, mask); return B_ERROR; } loops++; } return B_OK; } inline uint32 XHCI::ReadCapReg32(uint32 reg) { return *(volatile uint32 *)(fRegisters + fCapabilityRegisterOffset + reg); } inline void XHCI::WriteCapReg32(uint32 reg, uint32 value) { *(volatile uint32 *)(fRegisters + fCapabilityRegisterOffset + reg) = value; } inline uint32 XHCI::ReadRunReg32(uint32 reg) { return *(volatile uint32 *)(fRegisters + fRuntimeRegisterOffset + reg); } inline void XHCI::WriteRunReg32(uint32 reg, uint32 value) { *(volatile uint32 *)(fRegisters + fRuntimeRegisterOffset + reg) = value; } inline uint32 XHCI::ReadDoorReg32(uint32 reg) { return *(volatile uint32 *)(fRegisters + fDoorbellRegisterOffset + reg); } inline void XHCI::WriteDoorReg32(uint32 reg, uint32 value) { *(volatile uint32 *)(fRegisters + fDoorbellRegisterOffset + reg) = value; } inline addr_t XHCI::_OffsetContextAddr(addr_t p) { if (fContextSizeShift == 1) { // each structure is page aligned, each pointer is 32 bits aligned uint32 offset = p & ((B_PAGE_SIZE - 1) & ~31U); p += offset; } return p; } inline uint32 XHCI::_ReadContext(uint32* p) { p = (uint32*)_OffsetContextAddr((addr_t)p); return *p; } inline void XHCI::_WriteContext(uint32* p, uint32 value) { p = (uint32*)_OffsetContextAddr((addr_t)p); *p = value; } inline uint64 XHCI::_ReadContext(uint64* p) { p = (uint64*)_OffsetContextAddr((addr_t)p); return *p; } inline void XHCI::_WriteContext(uint64* p, uint64 value) { p = (uint64*)_OffsetContextAddr((addr_t)p); *p = value; }